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Exact Solution of the Sommerfeld Half-Plane Problem:
a Path Integral Approach Without Discretization

R. W. Ziolkowski

Lawrence Livermore National Laboratory
P. O. Box 5504, L-156
Livermore, CA 94550, USA

Abstract- The exact solution of the two-dimensional Sommerfeld half-plane problem is
obtained with a path integral approach. The approach relies on the Riemann space
associated with this problem but does not require discretization nor a transformation
to the corresponding heat conduction problem. A new intrinsic symmetry property of
the half-plane problem solutions is revealed and is connected to the characteristics of
the underlying Riemann space. An endpoint rather than a stationary point argument
reproduces Keller’s GTD results from the path integral expression.

1. INTRODUCTION

The similarity of quantum mechanics and electromagnetics results from the wave
nature of the phenomena they both attempt to describe. The Feynman Path
Integral (FPI) represents in a particular manner the interference effects of quan-
tum mechanics. A similar path integral representation should also be capable of
describing the interference of electromagnetic waves.

Imitating Feynman’s reasoning [1], a solution of the scalar Helmholtz equation
in two dimensions:

{A + kYK (7, 7o) = 6(7F — 7p) (1.1)
can be represented in path integral (PI) form as
Kﬁ%yi/JmMDv (1.2)
s

where v = ik and where exp[v (S|y)] is the value assigned to the path + which
connects the source point 7y = (rg,8y) to the observation point 7= (r, 8). The
set I' represents all possible «v. The classical action, (§]y), along 7 is the optical
length of ~:

Sh:/nﬂ (1.3)
Y

where £ is the arc-length parameter and n is the index of refraction of the
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medium. The path integral (1.2) is viewed as describing an interference effect
between the paths in T'.

There are two major difficulties encountered in the evaluation of the represen-
tation (1.2). First, in contrast to the Wiener integral, a procedure to calculate
the measure Dy in (1.2) is not known. Secondly, in contrast to the Schrédinger
equation (for which the FPI was derived), there is no preferred coordinate associ-
ated with the reduced wave equation. The present problem requires an enlarged
path set. In particular, paths that intersect with themselves and that traverse co-
ordinate planes any number of times (a path set with a preferred time coordinate
would contain paths that cross a spatial coordinate plane only in one direction)
are now allowed. Thus, the standard discretization process, which is based on a
preferred coordinate, is not applicable.

A path integral interpretation of the free-space solution of (1.1):

Kp(7,7) = 2 H) (ksy) (L9)

where sy = | — 7| is the straight line distance between 7y and 7, is developed
in Section 2. It has the form (1.2) and is based on a decomposition of the path set
I' into sets of paths whose elements share equal path-lengths. As in Ziolkowski
[2], a Riemann space is introduced in Section 3 to represent the boundary con-
ditions imposed by the diffracting half-plane. The modification of the free-space
path-length set by the presence of the half-plane is then easily explained. The
PI on this two-sheeted covering of the physical space follows readily. The actual
half-plane solution is constructed in Section 4 and is shown to be exact. Keller’s
[3] GTD results are trivially reproduced in Section 5 from the PI solution. How-
ever, in contrast to the usual PI asymptotic analyses based upon stationary phase
concepts, an endpoint evaluation of the expressions is employed. Finally, an equiv-
alent detour representation of the half-plane solution is developed in parallel with
the path-length description. In Section 6 it is used to reveal a new symmetry
relation characteristic of the half-plane solutions. This relation is linked to the
properties of the underlying Riemann space and an associated inhomogeneous
Riemann-Hilbert problem [4]. Various ramifications of this symmetry property
are discussed.

Several other PI approaches to half-plane problems have appeared recently in
the literature. In contrast to Lee [5] and Ziolkowski [2], the original electromag-
netics problem is not converted to an equivalent heat problem. Moreover, in [5]
the results are restricted to the case where the observation point is located ex.
actly on the incident shadow boundary and to only the leading term of order k°
in the asymptotic field solution. As noted above, the ezact solution (everywhere)
is derived in this paper. In contrast with Schulman [6] (upon which [7] is based)
and Lee [5], a semigroup property argument is not employed. Thus, necessary
assumptions about particular intermediate time parameters are avoided. How-
ever, in analogy with [5-7], the modification of the path set by the presence of
the half-plane is shown to be responsible for reproducing the diffraction effects.
Several aspects of the derivation in Section 3 are quite similar conceptually with
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the approach taken by Wiegel and Boersma(8] in solving the corresponding heat
conduction problem. Solutions of the corresponding wedge problems based on
path integral techniques on multiply-connected spaces have been discussed by

Dowker([9], DeWitt-Morette et al [10], Crandall[11], and Ziolkowski[2].

2. PATH INTEGRAL INTERPRETATION OF THE FREE-SPACE
PROPAGATOR

Consider the free-space propagator (1.4). A simple manipulation of the expression
[12, 8.42.11] yields the equivalent representation:

1 0 e¥i s
Kp(F,7, :“/ P 2.1
F( 0) 271' S (82 _ 83)1/2 ( )

Starting with (1.2), a PI interpretation of (2.1) is given in this section. This
identification is facilitated with the following decomposition of the path set I'.

2.1 Path-Length Representation

Since the index of refraction n = 1 in free-space, the term S|y appearing in
(1.2) reduces simply to s, the path length of ~. Consequently, let the path set
I', which is composed of all of the paths connecting 7y to 7, be decomposed into
disjoint subsets, I's, which consist of all those paths in I' whose path length is
8;i.e., let

[y ={ally eT|(S|y) = s} (2.2a)
so that
I'sNniy=0 if s#t (2.28)
and
'= u T, 2.2¢)
3158S82

where s; and s3 are, respectively, the minimum and maximum path lengths at-
tained by any path in I'. This classification of the paths simplifies the analysis
of the PI (1.2) since the subsets, I'y, are characterized by one fundamental pa-
rameter. Moreover, because the value assigned to a path in (1.2) now depends
only on its path length, all the paths in a particular subset 'y contribute to the
propagator with the same strength. Therefore, one can concentrate on the con-
tributions to the propagator of the individual subsets I'; rather than examining
the influence of each v in T'.
This path-length decomposition then allows one to express the PI (1.2) as

K(F,Fg):AeW /I:aD*y:jAa(I‘s)ds (2.3)
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where the value assigned to the path set Ty is

a(T's) = ”* A(F,7o; 5) (2.4)

and where A denotes theintervalin R that represents the set of possible (distinct)
path lengths of the pathsin I': A = [s,s9]. The path-length set A is determined
solely by the scattering geometry. Notice that the interference viewpoint remains
intact in (2.3), but now there is an additional amplitude factor, A(7,79; 8) , which
represents the collective effects of the paths in I'y and is related to a measure of
the size of that subset:

A(F,Fg;s):/r Du (2.5)

where Dy = Duds.

The geometry of the free-space problem is illustrated in Fig. 1. It is obvious
that the path-length set Ap = [sg,00[. Therefore the free-space amplitude factor
associated with T, is obtained immediately from (2.1):

1

Ap(7,fp;8) = ———

(2.6)

A heuristic derivation of this term follows.

Figure 1. Paths of length s sweep out an ellipse of area Zs(s? — 53)1/2 .

Consider the path set I's. A path in 'y can be visualized as an arbitrary
configuration of a (continuous) string of length s connecting 7y to #. As shown
in Fig. 1, the paths in T'y sweep out the area of the ellipse whose foci are located
at 7o and 7. This planar area is a(s,sy) = Ts(s? — 5%)1/2. The associated
quantity a(s,sg)/s = N(s,sg), the area per path length s, can be viewed as a
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measure of the number of paths in I'y. However, with respect to the propagator
(2.3), (2.5) not only measures the extent of Ty, it also reflects the collective
importance of its elements to the overall description of the physics. Drawing from
standard asymptotic analyses, one observes that for k& large in (2.3), the paths
whose length s is closest to the minimum path-length will contribute the most
to the propagator. Consequently, the description of the physical system should
be biased to give more importance to those paths. Longer length paths should
make a relatively smaller contribution to the propagator; hence, they should have
a smaller “physical” measure. On the other hand, paths of smaller lengths are less
numerous: if s < t, then N(s,s9) < N(¢,39). Therefore, the amplitude factor
Ap(7,70;8) is set proportional to the inverse of N(s,sg):

Ap(F,7o;0) = ofs® — o5) 71/
to reflect the “biased measure” concept. This assignment clearly gives 4 F(7,70; 8)
> Ap(¥,70;t) if t > s. The boundary conditions for the propagator fix the nor-
malization constant to be ¢ = 1/27; and hence, the amplitude (2.6) is recovered.
From this free-space result I deduce that for a general scattering problem in
which the space of interest is almost everywhere RZ, the propagator (2.3) takes
the form:

e¥* ds

sy 1 [
K(T,TO) = Zr—‘ Ll m (2.7)

The allowed paths, hence, the endpoints, s; and s9, of the path-length set A
are then determined by the physics of the problem.

At first glance, this “biased measure” concept may seem incompatible with
Feynman’s PI construction. It is not. As demonstrated, for example, in [1], the
major contributions to a PI result from the paths that minimize the action. In
the present context, those paths are the ones of minimum length. Moreover,
the path set decomposition approach and the associated formation of a measure
which embraces the resulting collective effects also rely heavily on the physics of
the problem. This approach simply reduces the PI to a more tractable form.

2.2 Detour Parameter Representation

A physically appealing representation of the expression (2.7) is generated with
the following change of variables. Let

7 = [k(s — sg)]*/? (2.8)
so that s = (72/k) +sg and ds = (27/k)dr. Since k(s — sp) is a measure of the
difference in phase of the paths 7 and vy whose path lengths are, respectively, s
and sq, the parameter 7 describes the amount of deviation or detour of the path
Y from <. Hence, it is called the detour parameter. Intuitively, a parameter
such as 7 should play a major role in the analysis of diffraction problems. It has
appeared already in this context in [13].
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The equivalent detour parameter representation of the propagator (2.7) is

I &
K(r, 7 :f&I‘ dri= f 2.9
(:70) T () ™ Jn (7‘2+2k30)1/2 &)
where 7, = [k(s; — 50)]'/? for i = 1,2 such that the detour parameter set

T = [r1,79]. This expression represents a weighted Gaussian distribution with a
complex variance. Thus, the PI solution can be reduced either to an analysis of
the paths in terms of their path lengths or their detour parameters. Notice that
the free-space propagator (2.1) becomes

vsg oo ir? vag oo ir? d
Rl ) = e / e’ dr _€ / e T (2.1')
™ Joo (724 2kso)V/2 2™ J_oo (2 + 2ksg)l/?

>

= - 85)

Figure 2. The geometry of the half-plane problem employs a cylindrical
coordinate system.

3. P;-SPACE PATH INTEGRAL

The geometry of the Sommerfeld problem is shown in Fig. 2. Cartesian coordinate
(z,y,2) and cylindrical coordinate (r,,z) systems are erected at the edge of a
perfectly conducting half-plane. The z-axis coincides with its edge; the 8 =
0 and positive z-axis lie along the half-plane. Positive angles are measured
in a counterclockwise direction. The physical space [0,00[ % [0,27] is denoted
by P. A line source parallel to the edge is located at 7y = (rg,fy). This
assumption reduces the three-dimensional vector problem to a two-dimensional
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scalar problem. The observation point is ¥ = (r,8). A solution U(¥) of (1.1) is
sought that, depending on the given polarization of the incident wave, satisfies on
the half-plane either of the boundary conditions:

(1) the solution U(7) =0 [electric field parallel to the edge] (3.1a)
(2) the normal derivative 9,U(7) =0 [magnetic field parallel to the edge] (3.1%)
and that satisfies the radiation condition at infinity.

3.1 Riemann Space P

Following Sommerfeld [14] and Ziolkowski [2], the original diffraction problem
in the physical space P is converted to one in a space Py constructed as follows.
Take two replicas of P, called P4 and P_, and join them along the half-plane,
%. Then

P,=PL,UP_UZ

The spaces P+ and P_ will be respectively called the upper and lower sheets of
P, ; the space P4 is identified with the physical space P. To suggest pictorally
the two sheets, the “edge” of P_ is drawn outside that of Py as shown in Fig.
3.

Image Source

P

Figure 3. The introduction of the P;-space, a two-sheeted surface, re-
moves the half-plane boundary.

The space P is the Riemann space associated with the half-plane problem
and coincides with the one introduced by Sommerfeld [14]. Natural coordinates
in P, are the distance 7 from the origin and the polar angle § measured from
the upper edge (8 = 0) of the half-plane. This angle now varies from 0 to 4.

The angles § = 0 and § = 27 have no special properties. In fact, the ef-
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fect of introducing P, may be considered as “erasing” the boundaries, £. The
boundary conditions (3.1) are satisfied by locating an image source on P_ at
7o’ = (rq, —6p) . The desired field can be decomposed as

U(F) = K(F# FO) + K(F? FOI) (3'2)

the minus [plus] sign solution satisfying (3.1a) [(3.1b)]. The P, -space propagators
K(r,7y) and K(7, 7y') represent, respectively, the field at 7 due to the sources
at 7o and 7y . Their construction is a main object of this paper and will be
considered next.

3.2 Path Integral on P,

The propagators K (7,7) and K(7,7y") will be generated with the path-length
decomposition introduced in Section 2. However, because the edge of the half-
plane is a singular point, one must now also account for topologically inequivalent
path sets. In particular, let p be the map that projects P, onto P. It maps the
two preimages (r,6) in Py and (r,0+27) in P_ onto ¥ in P. Let &[v,0] be
the angle swept out by a path - with respect to the edge, o = 6, of the half-plane
and measured from the 6 = 0 axis [15, Sec. 20]. Then with [Thm. 22.1, 15] one
has for a path ¢ in P, connecting 7y to #:

[p(£); 0] =0 — 6y +m2r (3.3a)

where m is an integer. Similarly, for a path (¢ in Py connecting 7y to 7:

¢lp(¢), 0] =0+ 6y + m 27 (3.3)

Any path associated with the propagator K(7,7y) or K(7,7’) must, respectively,
be either of the ¢ or the ¢ type. The allowed values of m in both cases depend
on the relative locations of 7, 7o';and ¥ on Py and P_. In particular, for the
£ -paths one finds that m can only take the values {...,—5,—3, -1,0,42,+4,
+6,-+-} =TI, when 6 > 6;; and the values {---,—6,—4, -2,0,+1,+3,+5,---}
= I<, when 8 < 6. For instance, when 6 > 6, the observation point 7 can
be reached from the source point 7o by either (a) leaving 7 and encircling o
in a positive (counterclockwise) sense 2n times before reaching 7 or (b) leaving
7o and encircling ¢ in a negative (clockwise) sense 2n + 1 times before reaching
7. The first type of excursion gives the nonnegative values in Is. , the second
gives the negative values. Examples of configurations having paths with edge
interaction indexes in I~ and in I< are given respectively in F igs. 4a and 4b,
Note that the value of @(p(¢), o)/27 rounded down to the nearest integer can be
interpreted as the winding number of § with respect to o ; i.e., the number of
times ¢ completely encircles or “winds around” o . Clearly, if 8 < @y, then the
winding number of a ¢ -path with respect to o is always one less then it would
be if & > 6. This explains why Ig=J1y —1, Similarly, for the ¢-paths the
factor m € I. when p(4r — 6o) > p() and m € I when p(4m — 6p) < p(6).
Examples of these configurations are given respectively in Figs. 4c and 4d.
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P

Figure 4.  See caption on Page 386.
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Figure 4. Different source-edge-observation point configurations lead to
different allowed values of m in Egs. (3.3a) and (3.3b): (a)
0 > 6y and m = +2; (b) 8 <y and m = —2; (c) p(4r—¥6g) >
p(0) and m = —1; and (d) p(4r — 6p) < p(6) and m = +1.
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Referring to (3.3a) and (3.3b), I define the edge interaction index of a path ~
to be

ne(7) = |m| (3.4)

It is a nonnegative integer for any path of the ¢ or { type. The edge interaction
index is a measure of the number of times a path wraps around the edge of the
half-plane.

Consider the path set T' associated with the propagator K(7,7p) . It can be
decomposed into the topologically inequivalent path sets I'g,T'q,T's,--- charac-
terized by the edge interaction index; e.g., I'; represents all paths v € ' with
ng(y) = 1. Each I'm (m = 0,1,2,---) can then be decomposed further into
equal path-length subsets and the associated path-length sets A,, can be de-
termined. The corresponding amplitude factors coincide with the free-space term
(2.6). This simplification arises because the Pj-space construction has not altered
the path-length measure; the space Py is simply fabricated from two replicas of
P, free-space. Therefore, the contribution to the propagator K(7,7p) from each
of the topologically distinct path subsets I'y, takes the form of (2U7):

1 e"? ds
o o WS f - 3.5

For the diffraction problem, the paths of length s that are in I';, will not be the
same as those in I's for the free-space case because of the presence of the diffract-
ing edge. This modification of the allowed paths will be seen to be responsible for
the diffraction effects.

Following standard prescriptions [2, 8-11, 16-20], the contributions from each
of the topologically distinct path subsets must be added with relative phase terms
x(T'm) to yield the total propagator

o0

K(7,70) = Y, x(Tm) Km(7,7) (3.6)

m=0

This representation is a manifestation of the multi-valuedness of the propagator on
Py . The terms x(I'm) are necessarily a unitary, one-dimensional representation
of the fundamental group of the covering space of P,. Because Py is a double
covering of P, the phase factors are thus simply

x(Tm) = & (3.7)

so that |x(I'm)| =1 and x(T'm)x(Tn) = x(T'm4n). The contributions to (3.6)
from all even or all odd edge interaction numbered paths therefore add in phase,
but the even and odd sets add completely out of phase. The equivalence of the
paths with either an even or an odd interaction index is expected because a closed
path on Py, which will return a function to its original value [see, for instance,
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(6.14) below], has an angular extent of ndm , hence, an edge interaction index of
2n. The +1 weight to the “even” path sets and —1 weight to the “odd” ones is
also expected because the group that is naturally associated with solutions based
on Py is the monodromy group {e";n = 0,1}. This property reflects the fact
that the edge o is the location of a square root branch point.

The paths in all of the sets I'y, (m =1,2,...) will be called indirect paths
because they must first “interact” with the edge before reaching the observation
point. The minimum length indirect path for each index value is the same. It
is the piecewise straight path Tgor whose length is 7y + . In contrast, the
paths in Ty will be called direct paths. The minimum length of a direct path,
Smin » is determined by the relative configuration of 7y, o, and 7. Paths with
infinite length are the maximum for all index subsets. Thus, the path-length sets
Ag = [smin,00[= Ay and A, = [ro +7r,00[= A; for m = 1,2,.... This reduces
the real source propagator (3.6) to a sum of the contributions from the direct and
the indirect paths:

K(7,70) = Kg(7,7) + K;(7,7p) (3.8)

Because the minimum path length for all of the indirect paths is the same, the
partial propagators K (7, 7o) will be identical for all m — 1,2,.... However,
to avoid the difficulties associated with summing unit amplitude terms, I follow
the standard practice of introducing into (3.6) a small decay term e—™e€ y &% L,
from each of the partial propagators Km/(7,7); perform the required sum; and
then take the limit ¢ — 0. This yields

Ky, 7y) = ix(I‘m)Km(F,ngz—%[l f ﬂf_] (3.9)

m=1 2m Ja; (% — a3)1/2

Consequently, the real source propagator (3.6) becomes

1 o0 evs ds 1 oo eya d.'s
K(7,7 :*/ 1__L__/ _ s
7270 = o smin (82— 8Q)V2dm Jrirg (52 = 2)172 (3.5

Setting the detour parameters Tmin = [k($min — 50)] 1/2 and

(r+ 7o + 30)]1/2

1= k(470 = s)l /2 = [k(r + 1 — so) Er——

- (£5) -

where p = 2rrg/(r + 7o + s0) and explicitly sg = [r2 4 rg — 2rrg cos(8 — 6y)]1/2,
the detour parameter representation of (3.8') is
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vsg oo ir? d v8g oo ir? d
K(7,7) = = / e o ¢ / — T (311)
T Jrmin (T2 + 2k30)1/2 2 Jy (24 2k50)1/

m

These propagator expressions can be simplified by introducing the functions

1 00 eV ds
b) = — — :
V(a1 ) 2'JT /‘; (32 _ 62)1/2 (3 12)
. 2
eVC[ o0 etf dT
Wap) = [7 4 (3.13)
™ Jg (724 2ka)l/
In particular,
. 1
K(7,7) = V(0, 8min) — EV(SO,T‘ +rg)
1
= W(‘qUaTmin) - §W(~90,7?) (314)

The important features of the direct and indirect path contributions and the
essential differences between them are much more apparent in these forms. They
will be utilized extensively in the following sections.

The image source propagator is obtained in a similar fashion. In particular,

with T:nin = [k(.s;m-n — 36)]1/2 and
n' = [k(r +ro — sh)]//% = (Qkp’)l/zycos(g-;—go” (3.10")

where p' = 2rrg/(r+rg+s}) and sf = |F—7!| = [r? +r(2) — 2rrg cos(8 + 6p)]1/2,
one simply has

K(7,70') = K4(7,70") + Ki(7, 7o)

1 1
= V(50: $min) = 5V (50,7 +70) = W (s, 7ynin) = 5 W (s,') (3.14')

min

4. HALF-PLANE SOLUTION

To complete the construction of the half-plane problem solution, the values s,,;,
and s] . of the minimum length direct paths £; and ¢; must be determined. As
indicated above, they depend on the relative locations of the source and observa-
tion points and the edge of the half-plane. There are three distinct configurations.
Referring to Fig. 5, they are
1. 7 lies in Region I, the shadow of both the actual and image sources, where
0 elm+ 8y, 2m]
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2. 7 lies in Region II, the lit region of the actual source an

image source, where 4 € Im — 69,7 + 6]

3. 7 lies in Region III, the lit re
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The shadow boundaries of the source and its image divide the
space P into three distinct regions.

Consider the first case. As shown in Fig. 6a,
are the piecewise straight paths

are both r 4 ry. Consequently,

Figure 5.

the minimum length direct paths

€g = TyoF and {4 = 7o'o7. Their path-lengths
the propagators

R 1 1
K(7,7y) = V(sg,r + 7o) — EV(so, e o 1 = EV(SO’T +rg)

5 1 1
K(7,70") = V(sh,r + ro) — EV(SB,T +7g) = §V(-‘-‘f)," + 7o)
and the total field (3.2) is

w1 1

U(F) = 5[V(s0,7 + o) F V(sh,r + rg)] = 2 [W(s0:m) F W(sg,n)]  (41)
Consider now the second case. As shown in Fig. 6b, the minimum length
th {3 = 77 and the piecewise straight path
70'o7. Their lengths are respectively sy and ry 4+ r. Notice that the

R. W. Ziolkowski
d the shadow of the

gion of both the actual and image sources,

— 9 [aA
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i 1
KF(T',T()) = V(SU,SQ) = W(SU,O) == EW(SO’_OO) (42)
Consequently, the propagators
o 1 oL 1
K(7,70) = V(s0,0) — 3V (s0,7 + 1) = Kp(F,70) - 5 V(s0,7 + 7o)
—~ =] ! 1 1 1 !
K(7,70) = V(sp,m +79) = 5V(s0,m +10) = 5V (s0,7 + 70)
and the total field (3.2) becomes
o . i
U(F) = Kp(7,79) — E[V(SO,T + 7o) = V(s:],r + 70)]

= (W (s0,~n) F W(sh, )] (4.3)

The last relation required (4.2) and the identity

) ol
30 7 e dr eV%o Q0 e dr
W (s, —00) — W(sg,n) = f = f
(so ) (s0,7) - ! o (.,.2 +2k30)1/2 T - (72 + 21660)1/2

= W(sg9,—7) (4.4)

Finally, consider the third case. As shown in Fig. 6c, the minimum length
direct paths are now the straight line paths £ = 77 and {3 = 7y'7. Their
lengths are respectively sy and sz] . Consequently, the propagators

. 1 G 1
K(7,79) = V(s0,30) — §V(sﬂ,r + 7o) = Kp(F,7p) — EV(ag,r + )
- 1 o 1
K('r,ro') == V(s;,,sf}) - EV(SB,? +7g) = KF(T,TO') - EV(SB,T +rp)
and the total field

e ops p— 1
U(7) = Kp(7,70) F Kp(7,70') — 3[V(so,r +1r0) £ V(sh, ™ +70)]

= 5 (W (s0, =) F W(sh,~')] (45)

Comparing the expressions (4.1), (4.3), and (4.5) with those given in [21, Sec-
tion 11.7], it is verified immediately that the exact solution has been recovered
in all cases. Such comparisons are facilitated by deriving a single expression that
encompasses all three cases.
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"
i & 0
Figure Ba.
Figure 6b.
Figure Be.
Figure 6. The locations of the source, image source, edge and observation

points determine the minimum length direct paths £; and (4.
(a) 7 isin RegionI; (b) 7 isin Region IT; and (¢) 7 is in Region
I11.
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Yt =0 F 0y — (7 £ 6y) (4.6)

Let be the angles measured from the source shadow boundary ( .4 ) and from the
shadow boundary of its image (3_ ). Then, for instance, %+ < 0 in the lit region
of the source and % > 0 in its shadow region. Defining the detour parameters

Q = (2kp)'/2 sin(3p./2) (4.7)
0 = (2kp")/? sin(y_/2) (4.7)

the half-plane solution in all cases is simply

U(7) = 51 (50, 2) F W (sh, 2 (48)

The detour parameters (4.7) and (4.7°) are analogous to those introduced for the
plane wave half-plane problem by Lee and Deschamps [13].

The distinction between the direct and indirect paths is emphasized by the
solutions for cases 2 and 3. When the observation point is in the lit region of one
of the sources, the direct propagator recovers the field incident from that source
— the free-space propagator. In contrast, the propagator arising from the indirect
paths clearly represents the diffraction process — the interaction of the incident
field with the edge of the half-plane. This refines Sommerfeld’s original conclusion
[14, pp. 256-257] that the transition from one sheet of Py to the other constitutes
the diffraction phenomena. It also reinforces the conclusion that the diffraction
effects originate in the modification of the free-space path set by the presence of
the half-plane.

5. ASYMPTOTIC CONSIDERATIONS

The standard GTD concepts of the direct and diffracted rays [3] are closely related
to the direct and indirect path set effects. These connections are elucidated by
considering the high frequency (k — oo ) asymptotic approximations of the path-
length forms of the PI expressions. They also reaffirm the physically appealing
aspects of GTD: a generalized Fermat’s principle and a localization of the relevant
physical effects.

According to Keller’s theory, the indirect (kinked) path yo7 minimizes the
action (1.3) in addition to the direct (straight line) path 747. Hence, for 7 in the
lit region of the source the propagator should asymptotically be a combination
of the contributions ffd and K; from the neighborhoods of these two types of
stationary paths:

K7, 7g) = /F S Dy ~ By, 70) + KalF, 70) (5.1)

Moreover, the edge is recognized as the fundamental source of the diffraction
effects. To account for this, the minimum length indirect path is identified as the



304 R. W. Ziolkowski

diffracted ray and a diffraction coefficient x4 is introduced to represent the edge
interaction. With the asymptotic form of the free-space propagator

cilksot/4)
Kgp(7,70) ~ g(ksy) = ——75 3.2
7(7,70) ~ g(kso) @noso) 2 (5.2)
Keller assumes that
K4(,70) = g(kso) (5.3)
and
K(7,70) = g(kr) x+ g(kro) (54)
which corresponds to the Feynman diagram:
K(7,7) ~ + (5.5)
Direct Ray Diffracted Ray

The diffraction coefficient is obtained from the asymptotic form of the exact so-
lution.

This asymptotic structure arises naturally from the path-length expressions.
As above, let 7 be in the lit region of the source. The propagator

1 e o) evs d.‘j
K(7,7) = Kp(7,73) — — e B R .
(7,70) F(7,70) 4r £+1‘0 (2 — 3(2])1/2 (5.6)

The asymptotic form of the direct contributions obviously gives the geometrical
optics field:

K4(7,70) = KF(7,70) ~ K4(7,70) = g(kso) (5.7)
The natural choice for the asymptotic approximation of the indirect paths term is
an endpoint evaluation. Standard stationary phase arguments are not appropriate

because the kinked minimum length indirect path 7yor lies on the boundary of
the indirect path set. For a general integral this approximation has the form

/00 ellf(fﬂ,y) B(qg’y) de ~ #y_le"f('l,y) B(ﬂ,, y)/aalf(ﬂ‘: y)

The indirect path propagator then yields the diffracted field:
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P eV %min

KA7. 7)) ~ K;(7,79) = — = g(k k .8
1(7‘77‘0) K; ""?TU) Aah (Sgnin — 8%)1/2 g( T) X+ g( TU) (5 )

The diffraction coefficients

x+ = csc(P+/2) (5.9)

y— being obtained in a similar fashion from the image source indirect propagator.
Clearly the direct and diffracted ray concepts are included intrinsically in the path-
length PI representation. Moreover, the special significance ascribed to the edge
is incorporated succinctly in the indirect path definition.

6. HALF-PLANE PROPAGATOR SYMMETRY RELATION

Equations (4.2) and (4.4) yield the detour parameter symmetry relation:

W (50,0) = 37 (s0,7) + W(s0,~) (61)

or

Kr(7,70) = 5[W(s0,1) + W(s0, ) (61

With it one immediately recovers, for example, the standard symmetry relation
associated with the half-plane problem solution:

U(r,0) — U(r,2m — 6) = %{[W(SO: Q) — W(sp, )] — [W (s, —0') — W (so, —Q)]}
— W(s0,0) — W(sh,0) = Kp(7,70) — Kp(7,70') (6.2)

On the other hand, it will be demonstrated that symmetry relations mimicking
(6.1) are satisfied by all of the canonical half-plane problem solution functions.
Moreover, (6.1') will be connected to an intrinsic property of the half-plane prop-
agator on Py . Several other interesting relations satisfied by the half-plane prop-
agator are also revealed.

Consider the (two-dimensional) problem of a plane wave incident on the half-
plane from the direction 8. The solution is generated from (4.8) by letting
ro — oo and multiplying it by g 1(kr) . Setting the Fresnel function

e—im/4  poo i
Fle) = iz ‘[; e du (6.3)

and the detour parameters {ly = (2kr}1/2sin(7j)+/2) and Qf = (,‘Zkr)l/z
sin(1—/2), the total field is

Up(7) = exp|—ikr cos(8 — 60)|F(20) F exp|—ikr cos(8 + p)]F(©y)  (64)
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Subsequently, defining the function
Wp(7,6p) = 2 exp[—ikr cos(8 — 6y)] F(Qp)
and the plane wave
U;,nc(r_") = exp[—tkr cos(f — b)]

the solution (6.4) becomes

Up(7) = S (Wl 00) T WylF, o)) (6.4)

and the symmetry relation

Wp(,0) = 5 [Wp(F, 60) + Wa(F, —to)] = U (3) (6.5)

results from the Fresnel function properties [13]: F(0) = 1/2 and F(z)+F(—z) =
1. These relations remain valid in the corresponding three-dimensional, oblique
incidence case when the substitutions k& — ksinf, r — rsinf, and W, —
Wpexp(ikr cos?3) are made, the plane wave being incident at an angle g with
respect to the edge.

Similar considerations apply to the three-dimensional problem of a spherical
wave incident on the half-plane from a point source. The incident field

. ev|F—f‘ﬂ|
Kp(7,7) = pr—— (6.6)

where 7y = (rg,8p,20) and ¥ = (r,8, z) so that the (straight-line) distance
7 — 70| =80 =[r% + r?] —2rrgcos(@ —0p) + (z — 20)2]1/2
Because [22, Eq. 5.4.12d]

eVSU

- f " 2 - V2RO - 8046 ac (&)

4dmsg

where R(6 — 8y) = [»2 + r% — 2rrg cos(8 — 60)]1/2 and ( is the wave vector
component along the z-axis, the total field may be derived from the line source
case by replacing k with (k2 - §2)1/2 in that solution and by applying the
operator (i/87) [0 d(exp[i{(z — z9)] to it. On the other hand, because the
{ree-space propagator [21, 11.7.37]

= SR s K e (6.7')
oo (k)2 Am sy (2=

Y /00 H{l)(72+k30) dr v [ H%l)(ks)ds
4drsy 4w



Ezact Solution of the Sommerfeld Half-Plane Problem: a Path Integral 397

the path-length/detour parameter approach to the line source problem is directly
applicable. In particular, let & be the point on the edge where the straight lines
70& and &7 both make an angle 8 with respect to the edge and let p; = |&— 7|
and py = |F — &| be the distances associated with those paths. The minimum
length indirect path is the kinked path 77 and has the length p; + p2 =
[(r+70)%+ (2 — z0)2}1/2 . The corresponding detour parameter is

Qy = (2kps)/?sin B sin(31./2) (6-8)

where ps = 2p1pa/(p1 + p2 + sg). The image source detour parameter ) is

simply (6.8) with the substitutions ¢4 — ¢_ and sy — s;] . Introducing the

function

v ]m HM (22 4 ka)dr

Ws(a,8) = 5= 5 (1_2 n 2ka)1/2 (6.9)

2n

the detour parameter form of the solution is

U() = S 1Ws(s0, ) F Wa(sh, )] (6.10)

and the symmetry relation

Ws(s9,0) = %[I’VS(SU,Q) + Wi(sp, )] = Kp(7,7)) (6.11)

is obtained. Path-length versions of (6.10) for the various source-edge-observation
point configurations are obviously available and have the same structure as the
line source case expressions.

Returning now to the line source case, consider the detour parameter represen-
tation of the source propagator:

K(#,70) = ;W (50,0) (6.12)

Since the substitution 6 — 0 + 27 causes & — —{1, the relation (6.1) gives the
symmetry condition:

Kp(r, 870) = K(r,8;7) + K(r,0 + 2m;70) (6.13)

From a P,-space point of view, this means the sum of the propagators at the
preimages of the observation point equals equivalently the incident field or the free-
space propagator. This relation was recognized by Sommerfeld [14] and Carslaw
[23,24] from their contour integral representations of the solution. Carslaw also
established this property for the solutions of the corresponding heat and potential
problems. The relation (6.13) is an intrinsic property of the Ps-space solutions
of half-plane problems.
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ot

Shadow
Boundary

Figure 7. The propagators from 7y to a particular configuration of obser-
vation points b, and b+ are related by (6.15).

Equations (6.1) and (6.13) are actually manifestations of a more fundamental

concept. Evaluating (6.13) at a point 7 = (w,0) on the “branch cut” X, one
obtains

&_(w) = T(w) &4(w) + F(w)

where T(w) = ~1, ®4(w) = K(w,0;7), &_(w) = K(w,2mr;7), and F(w) =
Kp(w,0;7q) . This transition condition relates the values of K on two sides of the
branch cut. In fact, it represents an inhomogeneous Riemann-Hilbert problem [4,
25, 26], T being its coefficient and F its free term. The propagator K(7,7)) is
its solution; the function W(sg, ) is the solution to the related Riemann-Hilbert
problem whose free-term is 2F.

In this context, (6.13) rewritten as

K(r,0 4+ 2m;7y) = —K(r,0;7) + Kp(r,0;79) (6.13")
and the relation

K(r,0 4 4m;7) = +K(r,0; 7)) (6.14)

which follows directly from (6.12) or (6.13), describe how the different branches
of K fit together as one loops about the edge. One observes that a single loop
about o involves the transition (6.13’) and a double loop returns the original
function. These results recover the monodromy group {e®™;n =0, 1} which was
introduced in a related context in Section 3. The coefficient T(w) = —1 is also
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characteristic of the square root behavior of the solution near the edge o .

The symmetry relation (6.1) has several other interesting ramifications. Re-
ferring to Fig. 7, the point b= (r,m + ) lies on the source shadow boundary
and the points b+ = (rym + 8y £+ ¢) are symmetrically located with respect to it,
being equidistant from the point b and equidistant from o . Moreover, all three
points lie on the circle of radius sq centered at 7. Equation (6.1) indicates that
the propagator to a shadow boundary point b is the average of the propagators
to any pair of points b :

1
K(r, 8y + m70) = §[K(v~,90 +m— ¢;70) + K(r,00 + 7+ ¢;70)]  (6.15)

The single detour parameter expression (6.12) represents the solution to many
source-edge-observation point configurations. In particular, consider an ellipse
whose focal points are 7y and 7. Every configuration for which ¢ lies on this
ellipse and the half-plane separates the ellipse into two regions, each containing
either 7y or 7 but not both, has the same minimum detour parameter £ =75 >
0. Two examples of this case are shown in Fig. 8a. Consequently, all of these
configurations are represented by a smgle point on the positive {}-axis shown
in Fig. 9 and support the propagator QW(.SO,TI) Similarly, any conﬁguratlon
in which o lies on the ellipse but the half-plane does not separate 7y and
has the minimum detour parameter { = —5 < 0 and supports the propagator
—W(.so, —n). They are represented by the point —n on the {I-axis in Fig. 9.
Examples of these cases are given in Fig. 8b. Finally, the configurations for which
the minimum detour parameter 2 = 0 have o lying on the stra.lght segment
connecting 7y to 7 and support half of the free-space propagator EW(So, ).
Exa.mples of these cases are given in Fig. 8c. They are reprcsented by the point

= 0 in Fig. 9. These results suggest that the propagator K(r ,70) may be
v1ewed as resultmg from sums over paths with particular detour parameter sets.
Setting ®(n) = 3W(s0,7), the propagators associated with Figs. 8a, 8b, and 8¢
and with free-space are, respectively, ®(n), ®(—n), ®(0), and &(—oo). The
corresponding detour parameter intervals are [r;, [; [-m,00[; [0,00[; and | —
00,00[. The minimum detour is fixed by the given configuration, and the half-
plane suppresses contributions to the PI from paths whose detours are less than
that minimum. In this context, the symmetry relation (6.1) becomes

&(—c0) = &(n) + 2(—n) = 22(0)
2(n) — 2(0) = 2(—n) — 2(0) (6-16)

which indicates the sum over paths with detour parameters in the interval [0,7]
equals the sum over those in [—n,0]. Furthermore, it is ascertained that the
difference between the propagators associated with Figs. 8a and 8b is

3(—n) — &(n) = 2[2(0) — &(n)] (6.17)
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Figure 8a.

A

Figure 8b.

Figure 8c.

Figure 8. Each detour parameter expression encompasses a large variety
of possible configurations. Examples are given where the detour

parameter (a) € >0;(b) 2 <0;and (c) 2=0.
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£ AXIS

Figure 9.  The half-plane path sets can be organized from a detour param-
eter point of view.

The difference results from all of those paths whose detours are in the interval
[0,7]; i.e., the paths contained in the ellipse.

Similar conclusions may be drawn for the related two- and three- dimensional
versions of the electromagnetic half-plane problem. They also pertain to the
corresponding heat and potential problems.
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