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Collective effect in an electron plasma system catalyzed by a localized electromagnetic wave
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The possibility of the existence of an essentially single-species plasma state represented by a stable
packet of charged particles moving collectively through space-time is examined. The collective
plasma state is catalyzed by a localized electromagnetic wave. Condensation to this state is shown
to occur on a very short time scale. The model treats the particle packet as a warm electron plasma
(fluid) and self-consistently incorporates the resulting electromagnetic field. Predicted characteris-
tics of the localized particle packet and its associated electromagnetic fields compare favorably with

recent experimental data.

I. INTRODUCTION

It has been shown recently that localized-wave (LW)
solutions can be constructed for a variety of linear hyper-
bolic partial differential equations.!™* For instance,
these novel space-time solutions have been constructed
for the scalar wave equation, Maxwell’s equations, and
the Klein-Gordon equation. They are characterized by
the maintainence of their initial, localized characteristics
over unusually long propagation distances.

Recent ultra-short-time discharge plasma experiments
by Shoulders and his co-workers have produced data’
that indicate the existence of a plasma state representing
a freely moving, localized packet of electrons. This col-
lective plasma state has been called an electromagnetic
vortex (EV) by that group. They have been described as
tightly bound groups of negative charges with extremely
high densities. In particular, the EV’s have been reported
as follows:

(1) to be roughly spherically symmetric with radii on
the order of 1.0 um;

(2) to travel at speeds on the order of 0.1c;

(3) to have electron densities approaching that of a
solid, on the order of 10%° to 10?* cm ™3 with negligible
ion content;

(4) to have highly localized electromagnetic fields asso-
ciated with them;

(5) to tend to propagate in straight lines for non-
negligible distances on the order of 1.0 to 10.0 mm;

(6) to deflect and accelerate in experiments as though
they have only electron characteristics;

(7) to be a highly localized energy state since they
release copious amounts of x rays with their sudden de-
struction;

(8) to transport in some cases (called the black EV
state) without emission of electrons or photons;

(9) and to form other quasistable structures by coupling
adjacent EV’s together.

The principle requirement for generating these EV struc-
tures has been reported to be a sudden creation of a very
high, uncompensated set of electronic charges in a very
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small volume of space; i.e., a fast emission process cou-
pled to a fast switching process. The times of creation
are noted to be considerably less than 1013 sec. The ac-
tual threshold initiation times for the particle packet are
believed to be 7, ~ 107 1% sec. The packet then travels ap-
proximately 10°r; before it catastrophically decays.
Thus, these localized, long-lived, collective charge states
are associated with very short time scales, and it is these
short time scales, not the long propagation distances, that
dictate their unusual characteristics. Additionally, al-
though ions are present in the creation process, the mass
differential between the electrons and the ions precludes
the ions from moving at the observed speeds with the
electron packets resulting in their absence.

Unfortunately, much of the experimental data is ex-
tremely difficult to obtain and exact quantitative numbers
for speeds, packet sizes, and their electron densities do
not appear to have been obtained. This opens the obser-
vations to a variety of explanations—some agreeing with
those given in Ref. 5 and others agreeing with conven-
tional wisdom. Nonetheless, the possibilities are intrigu-
ing and the ramifications of this work are startling if fu-
ture efforts confirm the original observations and inter-
pretations.

The similarity of this observed, localized plasma state
with the LW solutions prompted our investigation. For
discussion purposes, we will take its nominal descriptive
parameters to be a threshold initiation time on the order
of 7,~10715 sec, an electron density on the order of
no~10* m™3, a radius on the order of p~1.0 um. and a
group velocity on the order of v, ~0.1c. With these plas-
ma parameters and space-time scales in mind, we will ex-
amine the possibility of localized plasma states, discern
their characteristics from the resulting model, and com-
pare these results to the experimental data.

We will consider a non-neutral electron plasma and
model it as a single component fluid. The associated elec-
tromagnetic fields are described by Maxwell’s equations.
In contrast to conventional analyses, the short time scales
considered here necessitate the inclusion of the displace-
ment current effects in our model. With the available
LW solutions to the Klein-Gordon equation, we con-
struct LW solutions to the combined Maxwell and fluid
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equation set. The characteristics of the resulting local-
ized plasma state are discussed, and it will be shown that
they are very similar to the ones observed experimentally.
This long-lived state, bosonic in nature, can be treated as
a collective mode of the plasma whose presence is ca-
talyzed by the localized electromagnetic wave. Detailed
descriptions of the actual creation of the packet are
beyond the scope of the present work. Rather, we em-
phasize the possible existence of the localized plasma
state given a realizable set of plasma and field parameters.

II. EM-PLASMA SYSTEM

We begin with the equations describing the behavior of
an unconfined electron plasma. If its local density is n
and its local velocity is v, then one has the continuity
equation

9,n+V-(nv)=0 (1a)

and the momentum equation
3,v+(v-Viv="L(E+vXB)———Vp . (1b)
m mn

The presence of the scalar pressure term p in the momen-
tum equation is synonymous with a warm plasma model.
We assume the plasma can be treated locally as a free-
electron ideal gas. Thus, closure of the plasma equation
system is achieved with the equation of state

p=nkT , (1c)

where the temperature is taken to be constant locally.
An increase in the particle density will then result in a de-
crease of the local velocity of the packet. Note that any
equation of state in which the pressure p is a function of
the electron density n will lead to the same results below.
The present choice appears to be an adequate representa-
tion of the physical system under consideration.

The equations that describe the associated electromag-
netic field behavior are Maxwell’s equations

VXB=pueJ+€uuyd,E , (2a)

VXE=—9,B, (2b)

v-E=24 2¢)
€o

V-B=0. (2d)

The free-space permittivity and permeability are given,
respectively, as €, and u, and satisfy equo=c ~ 2. The par-
ticle current is given simply as the current equation

J=ngv . (3)

We will demonstrate that localized wave (LW) solutions
for the joint plasma-fluid and electromagnetic-field sys-
tem occur. This is achieved by reducing the equations to
Klein-Gordon form and then using known Klein-Gordon
LW solutions (see Appendix A for a discussion of these
solutions).
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III. REDUCTION TO KLEIN-GORDON FORMS

Consider first the electromagnetic-field behavior. We
seek a Klein-Gordon equation for the vector potential A,
where the fields are defined in terms of the vector poten-
tial A and the scalar potential ® as

E=—Vd—0, A, (4a)
B=VX A . (4b)
Maxwell’s equations and these expressions lead to the fol-

lowing equations for the potentials:

V2o +9,(V-A)y=—"24
€o

B (5)
VZA—3LA—V(V-A+c 29,0)=—pu,J .

These equations are closed by a choice of gauge. We use
the Lorentz gauge

V-A+c %,2=0, (6)
unless stated otherwise. This reduces the equations relat-
ing the potentials and the sources to the form

V-3, d=—"1

€o
2 2 (5)
V-A—0, A=—puyl .

Now consider combining the momentum equation and
the vector identity (V‘V)V:V(%Uz)—VX(VXV). One
obtains

(B+vXB)+vX(VXV) = V(1) = —-Vp

9,v=

3o I

(E+vXB)+vX(VXv)—V [gv2+%T—1nn

Applying the curl operator to this relation yields
3,(Vxv)=—2L3,B+LVX(vXB)+VX[vX(VXV)].
m m

Introducing the definition for the vorticity

§=VXv, (8)
this relation can be rewritten as

9,Q=VX(vXQ), 9)
where the quantity

Q=¢+ %B . (10)
Since

V-Q=0, (11)

Eq. (9) means that the quantity Q is preserved along the
flow. Thus, if the system is prepared so that Q=0, it will
retain that value for all time along the flow. We assume
this to be the case with the result that
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—_ 9
9 mB- (12)

We note that (9), hence this result, is independent of the
form of the pressure term as long as p < f(n); i.e., if the
pressure can be written as a simple function of the densi-
ty. The momentum equation can then be rewritten in the
form

av+vir)=LE—L vy, (13)
m nm

Equations (12) and (13) represent a slight generalization
of the London equations which are used to describe the
basic principles underpinning superconductivity.® The
following analysis draws on this parallel.

Now consider the vector potential A, in particular,
with respect to Egs. (4b) and (12). We introduce the gen-
eralized momentum w=mv-+q A so that mQ=V X.
Moreover, with Q=0 this generalized momentum can be
written in the form: #w=#VYy, ¢ being a scalar field
whose gradient leads to a local wave-vector field and #
being the constant of proportionality which we set equal
to Planck’s constant. Consequently, the velocity and the
vector potential are related as

v=—=" A+ gy (14)
m m

The vector potential is defined up to a gauge transforma-
tion; i.e., the vector potential can be modified as
A'= A+V/Sf, for any function f, with no resulting
change in the field structure. Note that the vorticity is
also unchanged by this gauge transformation even though
the velocity field itself would be. This importance of the
vector potential on the actual physics is similar to its role
in quantum kinematical issues such as the Aharonov-
Bohm effect.” We note that if Q#0, an additional term
would have to be included in 7, hence (14), to reflect this
fact.

Now with Egs. (5') and (14), we obtain the equation for
the vector potential

nq2

A+-M9_gy (15)
€ymce

(35 —VH)A=— 5
€gmce
Introducing the plasma frequency

2
w;:& , (16)

the vector potential equation then takes a Klein-Gordon
form

&

2la=2"Lyy. (17)
c

Q|
N{'EEN

‘az, —-Vi+
c

Note that if »n is locally constant, since B=V X A and

&= —(q/m)B, the magnetic field and the vorticity satisfy

a homogeneous Klein-Gordon equation, irrespective of

any gauge transformation: e.g., Eq. (17) gives

2

(2]
3%, —V+—% |B=0. (18)
c

Equation (17) must be combined with Egs. (1a) and (14)
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to describe the behavior of the charge density. The latter
give

d q L
—1 _ — w—=—2Y. A——
dTnn Vv mV mVl[', (19)
where the convective derivative
d
d—T=a, +v-V.

Several cases are possible that lead to the desired local-
ized wave results. First, consider the case where ¥=0.
the resulting equation set is

v=—(g/m)A, (20a)
wZ

3% —V*+—L |A=0, (20b)
c

d =4

—Inn=—--V-A. (20c)

dr m

Even though the vector potential equation has been re-
duced to a homogeneous Klein-Gordon form, this system
is highly coupled and nonlinear due to the presence of n
in the plasma frequency «, term. General solution
schemes for this case include iteration and linearization.
For example, an iterative solution is obtained if we take
n ~ng and introduce the local plasma frequency

wp()= > (2 1)

in (20b). The desired LW solution A, then follows from
the discussion in Appendix A. Details of this solution
will be discussed in Sec. IV. Formally one can then ob-
tain the density solution of (20c) in terms of a LW solu-
tion of (20b)

n =ngexp +%deTV'A0 , (22)

where L is a flow line of the flow defined by v. Since A,
is highly localized near the LW center, z =v,1, n will be
very small in comparison to n, everywhere except near
the flow lines connected to the initial peaks of the particle
packet. This solution could then be inserted back into
(20b) for the next iteration and so on. However, because
of the highly localized nature of the solutions, the
zeroth-order solution A, of the iteration sequence is
quite good. We see immediately that a localized plasma
state, defined by the initial distribution and a local per-
turbation, results if a localized electromagnetic wave is
excited.

Note that the values of V- A, hence V-v are not re-
stricted in this case. Thus the flow is compressible, and
we can take the vector potential to be along the z axis

A=AZ, (23)

where A is a LW solution of the Klein-Gordon equation
2

w
R, —V+—L [A=0. (24)
c

The magnetic field
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B=—0,A0, (25a)

is transverse to the direction of propagation. The associ-
ated electric field can be obtained from integrating the
curl equation (2a)

2

(0]
13,r3,A)+ 222
¥ c

(3,3,A R+ . (25b)

Ezczfotdt

It has both longitudinal and transverse components. The
resulting vector structure of the electromagnetic field is
characteristic of a moving electric dipole. The size of this
dipole is, of course, ~nyq. At the speeds the particle
packet is moving, the resulting dipole field will be peaked
near the axis of propagation.

Next, consider the case where ¥=<0. LW solutions to a
forced Klein-Gordon equation such as (17) have been
achieved recently by Besieris, Ziolkowski, and Shaarawi,
and will be reported elsewhere. These new forced equa-
tion solutions are not as easy to characterize as those
given in Appendix A. However, we do not have to aban-
don the latter because the homogeneous Klein-Gordon
form can be recovered if we resort to a gauge transforma-
tion. Let A'’=A+Vy and ®'=®—3,y, where the
gauge potential ) is defined by xy=—(%/q)y and
(V2—32%)x=0. This results in the following relations
which are expressed in terms of the gauge transformed
potentials:

v=—=29 A",
m
a)2
ag,—v2+c—’2’ A'=0, (26)
ilnn=ﬁ—V-A’ .
dr m

One can then proceed immediately as we did above. On
the other hand, we can now force

V-A'=0, (27

without coming in conflict with the original potential
equations (5') and (6). Then V-v=0 results and the flow
field will be incompressible. The continuity equation
reduces to the simple form

d

ar Inn =0, (28)
which means the particle density n will be constant along
the flow lines, i.e., n =n,, the initial particle density. The
Klein-Gordon equation for the vector potential A’ again
provides the desired LW solution (see Sec. IV below).
Note that the constraint (27) means that

v2¢=+%v-A . (29)

Thus in this case, the term 3 represents a quantum-
mechanical potential associated with the plasma that
compensates for the presence of the electromagnetic vec-
tor potential to maintain the initial particle density of the
packet. For instance, if A= A4,Z so that V- A=3,4,,
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the potential ¢ arises from the longitudinal variation in
the vector potential: V*=(q/%)d, A,. Furthermore, if
A, is specified as the localized-wave solution (34), it will
be symmetric and uniformly decreasing about its center,
which is located at z =v,z. One then has 0, 4, <O ahead
of this center and 9, 4, > 0 behind it so that from (14) the
term 9,Y~(q/#) [ (3, A,)dz compensates for any local
changes in the velocity from the longitudinal (static) com-
ponent of A to keep the charges moving with the pulse
center, 1i.e., near the center of the packet
v,=—(q/m)[ A,—(#/q)3,y]~const. Therefore, with
A being defined by a localized-wave solution, one finds
that the source of ¥, hence, ¥ itself moves with the pack-
et and compensates locally for any expansion forces to
sustain a constant particle density along the flow.

The constraint (27) then is equivalent to enforcing a
Coulomb gauge for the transformed potentials. Equation
(6) also yields 3,9’=0. The fields in this case can then be
constructed from the relations

A'=VX(AZ),
E=—0,A", (30)
B=VXA’.

This gives an electric field that will be transverse to the
particle packet propagation direction. The associated
magnetic field has components along all of the coordinate
axes.

IV. LOCALIZED-WAVE EV SOLUTIONS

In contrast to standard arguments describing many
collective effects associated with plasmas, we have as-
sumed in deriving our relations that the displacement
current is of the same order as the particle current and,
hence, is not negligible. This can occur only if the pro-
cess, which causes the collective effect of interest here,
occurs on a very short time scale. In particular one has

J=ngv) | 4’| A
9,(¢E) egm | 0,E
~ol | -E |~ 2.
20 a%—E (wpoht)"~1,

so that the particle and displacement currents are compa-
rable if the time scale for change At¢ is on the same order
as the inverse of the plasma frequency

At~L . (31)

C()po
Since we are dealing with phenomena where the density
may be quite large, i.e., on the order of n0~1027 m™3,
the time scale for the desired effect is on the order of

At~—— 10715 sec
56.4X1/ ng

Thus if the plasma is formed on this time scale, a local-
ized field described by (24) generates the localized-
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particle state according to either (22) or (28).
Following the LW Klein-Gordon analysis in Ref. 2 and
in Appendix A, Eq. (24) has a general LW solution

—iBy1+v2 /e )z —(c? /vy i)

Ay, =e cos(m6)

X ji(2By [p*+ vz —v,1)*]'?)

(z —v,t)
X P 2 7/2 £ 291/2 ] ’ (32)
[P*+7z —v,1)?]
where the wave-number
Ug Dpo
=y |—= | |[— 3
B=vy p p (33)

This solution assumes a cylindrical coordinate system

(p,0,z). We restrict the discussion only to the azimuthal-

ly symmetric zeroth order Klein-Gordon solution
A=Refe —iByA(1+vl /e Nz —(e? /vy i)

X jo(2By[p*+vHz —v,)2]'/D)} . (34)

1.0‘1

0.5 /’ \\\
o ..s‘{{““ '} I \' ’I;';’;;.
9 , };%l\\ﬁ\\\\'l 'I[[[ilfzis§"l"”’
3 0.0 7700095 Y\ JONIUSRNGE
2 R R RSO
= 20 200NN S NN
" ‘\\\}}&:!::QOQ’Q'Q’Qz:Qz"{III’
: KK
£

Energy density AR

m) 1o

FIG. 1. The electromagnetic vector potential, localized-wave
solution A is shown as a function of the spatial variables at
t =0. (a) Its amplitude A and (b) its energy density |A |2
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This localized vector potential moves along the z axis
with a local group speed v, <c, and its center occurs at
z =v,t. The degree of localization of the particle and
electromagnetic wave packets is determined from the
spherical Bessel function term. For speeds v, ~0.1c one
has ¥y ~1 and

172

UV, v —
Ve

g™ p0
[j’~————=
c?

2
q9
eyme?

The location of the first zero of j, occurs at a distance d,
either along the transverse p or longitudinal y(z —v,¢)
coordinate, given by the expression

d~——~——. (35)

Thus if the time scales are on the order of 1071 sec; i.e.,
n~10* m™? so that w,,~2X 10" sec "', then

d~10X3.0X10%/2.0x10°~10"° m=1.0 um .

These packet parameters agree quite nicely with the ob-
served EV states. This micrometer-sized LW solution A
and its energy density |A|?> are shown in Figs. 1(a) and
1(b), respectively, for t =0. The dashed contours in both
figures indicate regions where the values are less than or
equal to zero.

V. CONCLUSIONS

In this paper we have shown the possibility of a collec-
tive, single-species plasma state that could be created in
an ultrashort discharge event and that moves away from
its initial region in a stable manner. This plasma state is
correlated to a localized electromagnetic wave, particu-
larly its vector potential, through the local velocity field
that guides the packet. In one situation, the incompressi-
ble flow case, it was shown that a quantum-mechanical
potential could arise that locally preserves the packet
shape by compensating for the local electromagnetic field
forces. For the compressible flow case, a LW state was
realized through an iteration of the field and plasma
quantities to reduce the coupled, nonlinear vector poten-
tial and plasma density equations to a manageable form.
The characteristics of all of the resulting localized plasma
states agree well with reported experimental data.

We must reemphasize that we have not modeled in any
detail the breakdown events that lead to the localized
charge states. Nonetheless, we anticipate that during the
charge initiation process, there will be many ions present
in the source region that would help compensate for the
Coulomb repulsion forces of the electrons, hence, the for-
mation of the electron cluster. As we have shown in Ap-
pendix B, if one accounts for a two-component plasma
made up of ions and electrons, one can establish the ex-
istence of a localized state for that plasma. This localized
state evolves into an electron cluster away from the
source region because of the large difference in mass ra-
tios between the electrons and the ions. Note that the ex-
istence of this state was established without the need of
any external structure. If one were to introduce a dielec-



43 COLLECTIVE EFFECT IN AN ELECTRON PLASMA SYSTEM . ..

tric guiding channel for the electron clusters, which has
also been done experimentally,’ their lifetimes would be
enhanced because that structure would provide addition-
al compensation for the Coulomb forces trying to dis-
solve the cluster. The latter configuration is analogous to
laser-induced guiding channels for electron beams in
rarefied gases. The localized electromagnetic fields excit-
ed by the very short initiation process provided the mech-
anism which overcame the Coulomb forces and led to the
possible existence of the collective state represented by
the “free”’-electron cluster treated here.

With the possible theoretical existence of an EV state
in hand, we will be investigating numerically in the future
the full evolution of an EV state: from the initial condi-
tions for their creation in a discharge event to their prop-
agation through and interaction with the local environ-
ment. We hope to predict typical discharge parameters
and configurations that lead to an EV state so that this
phenomena can be investigated experimentally in a very
detailed manner.
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APPENDIX A: LOCALIZED-WAVE SOLUTIONS
OF THE KLEIN-GORDON EQUATION

Consider the general Klein-Gordon (KG) equation

(3%, —V +ut)w=0. (A1)

The bidirectional form of the LW KG solution is ob-
tained from the ansatz*

V=G (p,z,t)e'P", (A2)

where the variable

2
n:z+ C_

g

and the group velocity of the localized wave is

__ IBle
& (B4
This reduces (A1) to the form
i2/3(az—vg716, )G (p,z,t)+ (32 —c ~202)G (p,z,t)
+V3iG(p,z,t)=0 .

(A3)

(A4)

Introducing the variables
y=[1—(vg/c)]7'?,
T=y(z —v,t),
(A4) becomes a hyperbolized Schrédinger equation

i4By9d,.G (p,7)+32G (p,7)+AG (p,7)=0 . (A4)
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A simple substitution
G(p,7)=g(p,T)e 127 (AS)
results in the Helmholtz equation
Vg (p,7)+32g (p,7)+4B*y’g(p,7)=0, (A6)
which has the known, general solution
&im (P, T)=j(2BYE)P[(7/E)cos(mB) , (A7)

where
E=[p*+yHz —v,1)*]'2 .

Consequently, the general bidirectional solution has the
form

T
3

We note that the wave vector of the localized wave is
defined from (A3) simply as

v, (r,t)=j,(2ByE)P" cos(m@)e 2PrTeiBn - (AB)

Vg

B=v I (A9)

If we hold v, fixed and change u, the wave number 8
changes proportionately to p. This is of interest because
B! determined the length scale of the localization. In
the plasma case where n, is a constant particle density
and

= =775
c? eymc?
and where v, <<c, one obtains
B~\/n0vg .

Thus, the LW solution is more localized for larger elec-
tron densities and for larger velocities.

Other LW solutions are possible.
unidirectional ansatz

(A10)

For instance, the

~ia[z~(c2/ug)t]

Y=G(p,r)e (A11)

reduces the Klein-Gordon equation directly to a
Helmholtz equation

V3G (p,7)+32G (p,7)+x*G (p,7)=0 , (A12)
where the solution constants a and Y are related as
2
| | £ | =1 —x2=p2. (A13)
Vg

Using known solutions to the Helmholtz equation, we ar-
rive immediately at the general unidirectional form

T {—ialz—(c? /v )]}
- e .
§

v, (r,t)=j,(x&)P" cos(m@)

(A14)

In contrast to the bidirectional representation, note that
(A13) can be rewritten as
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b = tac

g (a2+#2+X2)1/2
Thus, the unidirectional form of the KG solutions differs
from the bidirectional one in that given the group veloci-
ty, there are now two free parameters, @ and Y, rather
than one, 8. Moreover, with (A 15) it allows for positive-
and negative-energy solutions. Superpositions of (A8) of
(A 14) over their free parameters lead to further LW solu-
tions.

(A15)

APPENDIX B: LOCALIZED CHARGED-PARTICLE
STATES FOR A TWO-COMPONENT PLASMA

Consider the fluid equations for a two-component plas-
ma consisting of electrons and ions coupled with
Maxwell’s equations. Each species will be labeled by a
subscript a, where a =i for the ions and a =e for the
electrons. Assuming a scalar pressure for each com-
ponent of the plasma, p, =f,(n,), and assuming charge
neutrality so that the densities n, =n; =n, this equation
set takes the form

d,n+V-(nv,)=0, (Bla)
vs | Vpa _ 4 9

d,v,+V 7 +T"=—m"—al~:+va>< §a+maB ,

(B1b)

VXB=pugnq(v;,—v,)+uee.d,E , (Blc)

VXE=—9,B, (B1d)

where the vorticity §, =V Xv,. Taking the curl of (B1b)
and setting

9q
=¢,+
Q=g+

B, (B2)

gives
9,Q, =VX(v,XQ,) .

Since V-Q, =0, this relation means that Q, and Q; are
preserved along the flows defined by v, and v;, respec-

(B3)
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tively. Now if the vector potential A is introduced such
that B=V X A, the equation set for the two-component
plasma becomes

9,n+V-(nv,)=0, (B4a)
3tQ, =V X(v,XQ,) , (B4b)
32, A—V2A=pyng(v,—v,), (B4c)

together with the appropriate initial conditions. If the
system is prepared initially in the state where
Q,(t =0)=0, then one has for all times from (B4b):

9
=— B, B5
;a m, (B5a)
or equivalently,
v,=—ds A4 P ogy . (B5b)
a a
Then (B4c) reduces to the Klein-Gordon form
2 2 2
@ i @ A Dpi
2 A _ w2 Pp a1 Cpe _h Y,
905, A—V A+ 22 A= m, e vy, + m e vy, ,
(B6)
where the plasma frequencies
, _ Md
pa P ’
2 2
ng n
ol=—te_ 4 (B7)
€M, €ym;

One can then proceed as was done in Secs. IIT and IV to
obtain localized solutions to the remaining equation set
(B4a) and (B6). However, since in general m; >>m,, one
finds that v, >>v; and w,,>>w,; so that (B6) reduces
essentially to the electron equation (17). Moreover, this
also means that even though an extremely rapid
discharge event would most probably form a combined
electron-ion localized state, that state quickly transforms
itself into the related electron localized state described in
Sec. III.

*Present address: Electromagnetics Laboratory, University of
Arizona, Electrical and Computer Engineering Building 104,
Room 422E, Tucson, AZ, 85721.

tPresent address: Courant Institute, New York University,
New York, NY 10012.

IR. W. Ziolkowski, J. Math. Phys. 26, 861 (1985).

2R. W. Ziolkowski, Phys. Rev. A 39, 2005 (1989).

31. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, J. Math.
Phys. 30, 1254 (1989).

4A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, J.
MAth. Phys. 31, 2511 (1990).

5K. R. Shoulders, EV: A Tale of Discovery (Jupiter Technolo-
gies, Austin, TX, 1985).

SA. L. Fetter and J. D. Walecka, Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York, 1971), p.
420-430.

7Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).



