Exact solutions of the wave equation with complex source locations
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New exact solutions of the homogeneous, free-space wave equation are obtained. They originate
from complex source points moving at a constant rate parallel to the real axis of propagation and,
therefore, they maintain a Gaussian profile as they propagate. Finite energy pulses can be
constructed from these Gaussian pulses by superposition.

|. INTRODUCTION

A recent article by Brittingham' has indicated the exis-
tence of a new type of solution of the homogeneous, free-
space wave equation

Lo r,e)= {4 —F )P (re) =0, (1)

which was termed a focus wave mode (FWM) for its alleged
solitonlike properties. It has been found that this FWM is
but one of a class of solutions of (1). In particular, assuming
the desired direction of propagation is along the z axis, a
solution of the form

D(rt)=e* et F (x,y,z —ct) 2)
reduces (1) to a Schrédinger equation; i.e.,

emikeren[ Jokierep = (A, +4ikd,}F, =0, (3)
where the transverse Laplacian is 4, = &% + J> and the
characteristic variables are (7,0) = (z — ¢, z 4 ¢t ). Equation
(2) has a symmetric solution (p* = x* + »?)

Fi(x, y, 7) = exp[ — kp*/(zy + i)} /4milzy + iT),  (4)
that originates at the complex source location { p,7) = (0,iz,),

{4, + 4ik 3.} F,(x, y, T) = 8( bl — izo), (5)
the right-hand side being identically zero for a point in real
space-time.

Clearly, the source location z = iz, + ¢t moves parallel
to the real z axis. Moreover, defining the complex variance
V =z, + ir so that

1/V=1/4 — i/R, {6)
it is recognized immediately that (4) represents a moving
Gaussian beam with beam spread 4 = z3 + (7°/z,), phase
front curvature R = 7 + (23 /7), and normalized beam waist
{4 /k }*'2. Consequently, combining (2) and (4), the funda-
mental solution
expliko — kp*/(zy + iT)]

4rri(zy + iT)
is a modulated, moving Gaussian pulse.

P(rt)=du(prio) =

il. SOLUTION BEHAVIOR

A short time history of Re® with f=kc/
27 = 3.0% 10° and z, = 1.0 is shown in Fig. 1. The second
subplots are contour plots of the three-dimensional surface
plots given in the first subplot. The Gaussian profile of the
pulse is apparent. Notice that this profile is maintained dur-
ing propagation with only local variations. The latter occur
primarily near the profile center { p,7} = (0,0). The variation
in the shape of @ with k is illustrated in Fig. 2. The pulse is
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concentrated near the p axis for small & and becomes more
concentrated along the z axis for large k. The unusual fea-
tures of the plots in Fig. 2(c) such as the jagged peaks and the
ragged contours are artifacts of the coarseness of the compu-
tational grid. It has also been demonstrated that the pulse
amplitude decreases as z, increases.

The FWM solution of Maxwell’s equations in Ref. 1 is
readily obtained from (7) with a Hertzian potential formula-
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FIG. 1. A time sequence of the fundamental solution {7) for f= kc/
27 = 3.0X10° and z, = 1.0 demonstrates that it is 2 modulated moving
Gaussian pulse: (a) 7 =0.0, {b) 7 = 4.0Xx 107, (¢} 1 = 8.0 107,
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FIG. 2. As k increases, the Gaussian pulse profile becomes more concen-
trated along the z axis than along the p axis: (a) f= 3.0X107, (b)
F=3.0x%10° (c) f=3.0% 10",
tion. It is the zeroth-order mode in a sequence of multipoles
that can be generated in a cylindrical (rectangular) geometry
by applying Laguerre {Hermite) polynomial operators to the
fundamental Gaussian mode (7). Dr. Brittingham has
brought to my attention that Bélanger? also recognized this
point. However, contrary to the original article' and to Ref.
2, Fig. 1 demonstrates that the solution is neither focused
nor packetlike nor a boost solution {translationally invar-
iant}. Moreover, recognizing that these pulses originate from
complex source locations connects these results to a large
body of literature. In particular, the concept that a Gaussian
beam is equivalent paraxially to a spherical wave with a cen-
ter at a (stationary} complex location was introduced by Des-
champs® and was later used extensively by Felsen (for exam-
ple, see Ref. 4) to model the propagation and scattering of
Gaussian beams. In contrast to those beam descriptions, (7)
is an exact solution of (1). On the other hand, the fundamen-
tal Gaussian pulse satisfies all of the properties associated
with Gaussian beams. For example, its propagation through
an optical system will be described by the ABCD transforma-
tion law (see Ref. 5, Sec. 6.7).

The approach that led from (1) to (7) can also be used to
define Gaussian pulse solutions of related equations of im-
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port. Consider the Klein-Gordon equation
L — p2ew =0, (8)
where u = mc/#. It has the exact axially symmetric solution
¥ (rt) = exp( — iu*r/4k )P (r,t) = expliu’ct 2k )eik”“Fk, {9)
where the effective modulation frequency
g =kge =k —p*/dk)c = [1 — (mc/2#k ) ke  (10)
has been modified by the mass of the particle. Note that this
modulation frequency disappears when #ik = mc/2 leaving
only the time harmonic portion exp(iu’ct /2k)

= expl[i(mc?)t /#]. Similarly, the wave equation in a trans-
verse quadratic medium

Lo — (e + x>+, ¥ =0 (11a)
reduces to a harmonic oscillator Schridinger equation
4ik 3. F, = — A, F, + (€ + €,X* + €, V)F,.  (11b)

Restricting the problem to one transverse spatial dimension,
one can obtain an exact solution from path integral literature
{e.g., see Ref. 6, Chap. 6) that is readily converted to one
originating from a complex source location. A modified
Gaussian pulse is obtained. In fact, when the transverse me-
dium coefficients are small, the results reduce to those dis-
cussed above. One should then be able to modify standard
quantum electronic results (e.g., see Ref. 5, Chap. 6) to apply
directly to these exact complex center pulse solutions.

A strong objection to the results in Ref. 1 has been
raised essentially because the solution (7) has infinite energy.
This is not a drawback per se. Plane wave solutions of (1) also
share the infinite energy property and are commonly em-
ployed in constructing physical signals. The Gaussian pulse
solutions offer a new set of modes that can be used to con-
struct finite energy solutions of (1). In particular, the func-
tion

Fit)=h (p,r0) = f "dk F(k) ,( pim,0)
= [4rilz, + iT)] -1 fwdk Fikle~ ks pirio), {12)

where s{p,7,0) = — io + p*/(z, + i) satisfies (1) in real
space-time. The wave number has been restricted to non-
negative values in this expansion (as well as assuming that
2,>0) to guarantee the finiteness of the kernel ¢, . The re-
sulting Laplace transform expression yields a rich class of
possible solutions. An inversion formula corresponding to
the Gaussian pulse expansion (12) is

Fi=|" dof " ar[ pdpwilprathipmar (13
where the kernel is
Yl p,1,0) = 8% ~ (=g ¥ p.1,0), (14)

¥ being the complex conjugate of ¢,. Equivalently, the
completeness relation

[ o[ ar["papwiipmorstipmo)=sik—k)

e e 0 (15)
is satisfied by ¢, and ¢, . The density exp[ — (r/4kz,)1dr
represents a (Gaussian measure over 7 with real variance
8(kz,)%, kz, being the source phase distance, which guaran-
tees the finiteness of the 7 integration.
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Consider, as an example, the spectrum F(k)
= exp( — ak ). Equation (12) gives the pulse

flrt) = [4milzo + in)] ! [slpyri0) + 0]~ (16)
Setting . (r,t) = f(r,2 ), f_(r,t) =f,{r, — t),anda =2z, =y,
the composite pulse
‘I/(l',t) =f+(l',t) _‘f—(r’t)
1 Yiet)
2r {[p*+z—cr)z+ct)+ VP12 + 4 et )2%17

is a real, exact solution of (1). A time sequence of a pulse (17}
with ¢ = 1.01s given in Fig. 3. The pulse has zero amplitude
at? = O and its maxima occuratp = z = 0,for0 <#<y/cand
lie on the sphere p> + 22 =R > = (et} — %, for t> y/c. Its
amplitude on that sphere [87)(ct )] ~ ' decreases essentially as
R ~ ! for ct> . The likeness of these figures to those describ-
ing a pebble dropped in a pond precipitated the name “splash
pulse.” As the figures illustrate, the support of the splash
pulse is localized in space and separates space into two re-
gions of null field for > /¢, the pulse layer being relatively
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FIG. 3. Time sequence of the splash pulse (17) with y = 1.0: (a)
F=8.0X1071, (b2 =2.1X10"", (c) = 8.0x 10~
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FIG. 4. The interaction of two splash pulses (¥ = 1.0} confirms the linearity
of the problem. The splash centers are { p,z) = (0,0} and ( p,z) = (7.5,0}.

thin. The apparent spikes in the surface subplot in Fig. 3(c}
again are due to the coarseness of the computational grid
employed in the graphics routine.

The interaction of two splash pulses is depicted in Fig.
4. The apparent splash centers are the point ( p,2) = (0,0} and
the ring { p,z) = (7.5,0). The linear nature of the problem is
reflected in the simple superposition in the overlap region
and the decoupled propagation of each splash pulse.

Hl. CONCLUSION

Several issues remain outstanding and are currently un-
der investigation. Foremost is the possible launchability of
pulses derived from the fundamental Gaussian pulses. The
physical connection between resonating structures and
Gaussian beams (stationary complex center descriptions)
leads one to speculate that such pulses may be associated
with some special type of resonator cavity. In addition to the
indicated k-superposition/transform pair, another class of
solutions, those constructed by superposition of the complex
source location z,, may lead to other physically interesting
pulses. Finally, with (2), nonlinear wave equations reduce
immediately to the corresponding nonlinear Schrodinger
equations. For instance, the cubic wave equation

e —aj@?¢=0 (18)
reduces to the cubic Schridinger equation
4ik 3,F, = — A, F, + a|F|*F,. (19)

At least for one transverse dimension, {19} has known soliton
solutions (see Ref. 7, Sec. 5.3). Extensions of these solitons to
ones associated with complex source locations may yield
other physically interesting wave equation solutions.
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