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Properties of Electromagnetic Beams
Generated by Ultra-Wide Bandwidth
Pulse-Driven Arrays

Richard W. Ziolkowski, Senior Member, IEEE

Abstract—The characteristics of the beams generated by
ultra-wide bandwidth electromagnetic systems are central to
their practical applications. These characteristics include the
rate of beam divergence, the beam intensity, and the energy
efficiency. Analytical bounds on the characteristics of beams
generated by an arbitrary pulse-driven array are derived and
supported with numerical calculations. These bounds extend the
meaning of near-field distances or diffraction lengths to the
situation where the array driving functions can be broad-band-
width signals. Particular attention is given to transmitting and
receiving array systems which consist of elements that are not
large in comparison to the shortest wavelength of significance
contained in the signals driving them. The output signals of
such systems are time derivatives of the input driving functions.
They constitute higher-order beams whose coherence properties
are degraded more slowly by diffraction than lower-order beams.
The bounds define the extent of these emhancements. It is
further shown that for certain measures of performance involv-
ing these beam characteristics, a localized wave pulse-driven
array can outperform similar continuous-wave-driven arrays. A
new type of array is required to realize these localized wave
effects—one that has independently addressable elements. The
enhanced localization effects are intimately coupled to the proper
spatial distribution of broad-bandwidth signals driving the ar-
ray; i.e., by controlling not only the amplitudes, but also the
frequency spectra of the pulses driving the array.

1. INTRODUCTION

ARGE classes of nonseparable space-time solutions

o the equations governing many wave phenomena
(e.g., scalar wave [1]-[6], Maxwell’s [3], [7], Klein—Gordon
[8] equations) have been reported recently. When com-
pared with traditional monochromatic, continuous wave
(CW) solutions such as Gaussian or piston beams, these
localized wave (LW) solutions are characterized by ex-
tended regions of localization; i.e., their shapes and/or
amplitudes are maintained over much larger distances
than their CW analog. These discoveries have prompted
several extensive investigations into the possibility of us-
ing these LW solutions to drive finite-sized arrays and
thus to launch fields having extended localization proper-
ties.
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The physics behind the LW effect involves array ele-
ments driven with broad-bandwidth signals whose time
dependence varies from location to location. This scheme
exploits an additional degree of freedom not used with
current CW systems: a designed union between the space
and frequency portions of phase space. An LW solution
naturally provides this connection; the spatially dis-
tributed component waveforms and, therefore, their broad
bandwidth spectra are correlated to each other, a self-sim-
ilarity property inherent in an LW solution. The degree of
these correlations can be optimized for a given system.
Away from the array the dependence of the current
spectrum on location follows from different spectral con-
tributions to the pulse arriving from different locations. A
moving interference pattern forms at enhanced distances
as the individual waveforms continue to propagate away
from their sources. An alternative type of array is neces-
sary to achieve this effect-—each array element must be
independently addressable so that the appropriate broad
bandwidth time signal can be radiated from it. This is in
contrast to conventional arrays which deliver the same
CW or narrow-bandwidth time signal to each subsystem
and then only have independent phase control over each
radiating element for beam steering purposes and ampli-
tude control (shading) for the setting of sidelobe levels.
Enhanced localization effects can be achieved by driving
an array with a properly designed spatial distribution of
broad bandwidth signals; i.e., by controlling not only the
amplitudes, but also the frequency spectra of the pulses
driving the array. Evidence confirming this LW effect with
ultrasonic waves in water has been reported [9], [10].

Figures of merit between novel, ultra-wide bandwidth
(UWB) pulse solutions and continuous-wave waveforms
are difficult to establish. There is no apparent special
frequency that can be chosen in a traditional manner to
define, for instance, a near-field (Rayleigh) distance or
diffraction length when several different broad-bandwidth
spectra are involved. Meaningful comparisons of the per-
formance of beams, e.g., the beam divergence, beam in-
tensity and measured beam energy, generated by arrays
driven with broad-bandwidth and narrow-bandwidth sig-
nals share this difficulty. The traditional performance
criteria are based upon CW or, at most, narrow-band-
width concepts. Moreover, those beam quantities are con-
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nected with different portions of the frequency spectra in
the broad-bandwidth case, a possibility that does not arise
in the CW problem. These issues are particularly acute
when the LW solutions are considered. Nevertheless, per-
formance comparisons are desirable and inevitable.

Performance bounds on the quantities associated with a
beam generated by an arbitrary pulse-driven array, e.g.,
beam divergence, transmitted beam intensity and mea-
sured beam energy, have been derived analytically for the
acoustic case [11]. In particular, the concept of a Rayleigh
distance or diffraction length has been extended from the
narrow-bandwidth case to a broad-bandwidth configura-
tion. This generalization required the introduction of a
frequency value that is characteristic of the frequencies
associated with each beam quantity under investigation. It
has been shown that there exist useful choices for these
characteristic frequency values. The existence of these
characteristic frequencies is very important, since it per-
mits a well-defined comparison between the efficiencies
and the spreading of the beams generated by CW and
UWB pulse-driven arrays. Particular attention has been
given to transmitting and receiving array systems consist-
ing of elements that are not large in comparison to the
shortest wavelength of significance contained in the sig-
nals driving them. The output signals of such systems are
related to the input driving functions by several time
derivatives. It has been demonstrated that the properties
of the resulting beams depend on the higher order mo-
ments of the spectra of the input driving functions and
that diffraction degrades the coherence of these higher
order moments more slowly than its lower orders. A
properly designed set of input driving signals having a
high degree of correlation in the higher order moments of
their spectra will produce a beam that has extended
diffraction lengths and localization properties. The local-
ized wave solutions provide an immediate access to this
situation. Numerical results supporting these arguments
have been given; the experimental results have been re-
evaluated in terms of these bounds. The reported conclu-
sions [10] that an LW pulse-driven array can outperform
its CW counterpart have been reaffirmed by this investi-
gation.

In this paper, the acoustic array performance bounds
are extended to the electromagnetic case. This discussion
requires an analysis of the transmitting and receiving
systems since even when only two elements are involved
in the UWB case, the measured signal is not simply a
replica of the input signal. The issues of beam divergence,
transmitted beam intensity and measured beam energy
will be addressed in Section II for an arbitrary electro-
magnetic system consisting of pulse-driven transmitting
and receiving arrays. This includes the introduction of the
frequencies that are useful characterizations of a set of
UWB signals. Several other practical choices for these
characteristic frequency values will also be considered. To
illustrate the concepts, particular attention will be given in
Section III to transmitting and receiving array systems
consisting of center-fed, pulse-driven, linear dipole ele-
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ments that are not large in comparison to the shortest
wavelength of significance contained in the signals driving
them. In Section IV the transmitting array will be driven
with an LW solution, and it will be determined whether or
not the resulting beams exhibit the desired enhanced
localization effects. Numerical examples will be given to
characterize and support this discussion. It will be demon-
strated explicitly that a set of ultra-wide bandwidth LW
signals can be designed for a pulse-driven array so that it
will generate a beam that will outperform its CW counter-
part in a variety of applications. In Section V we briefly
review and summarize the physics and engineering issues
presented here.

The electrically short dipole transmitter—receiver sys-
tem is chosen to illustrate the results because it is one of
the simplest examples of a system whose output signals
are related to the input driving functions by several time
derivatives. Since the diffraction process affects the higher
order moments of the spectra more slowly than lower
orders, it will be shown that extended diffraction lengths
are associated with these higher derivative systems. More-
over, if the driving signals have a high degree of correla-
tion, it will be shown that these systems also exhibit
enhanced transverse localization properties. Thus, a set of
UWRB signals and an electromagnetic transmitter—receiver
system can be designed to realize enhancements of a
particular beam parameter. Again, the LW solutions sim-
ply provide an immediate access to this situation.

In a series of papers [12]-[18] Mclntosh, Pozar,
Schaubert, and their coworkers have developed methods
which yield the transient waveforms that achieve specific
performance criteria for bandlimited transmitter—receiver
systems. For instance, the bandlimited current waveforms
that produce the maximum signal intensity in a specified
direction or the maximum energy in a specified time
interval, when they are applied to an array of linear dipole
antennas, have been obtained with these methods. The
results of their studies have provided bounds on specific
performance criteria associated with these bandlimited
transmitter—receiver systems. The bounds we present in
this paper recover those results and extend them to time-
limited signals. Consequently, the present analysis can be
readily applied, for example, to the photoconductive switch
transmission and reception systems currently under con-
sideration [19]-[25] for applications to radar, microwave
spectroscopy, and packaging interconnects. A time-
domain interpretation is emphasized here rather than the
stepped-frequency approach used in [12]-[18]. The follow-
ing discussion also highlights multiple time derivative
transmitter—receiver systems. It is a known [26]-[33], but
not well-appreciated fact that transmission and reception
systems have individual responses (e.g., frequency depen-
dent impedances) that must be taken into account when
the overall behavior of a UWB pulsed system is analyzed.
This issue was addressed briefly in [18] where signals were
constructed to optimize the target response for a (one-time
derivative) linear dipole antenna transmitter-target-
receiver system. Rather than optimizing the performance
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of a specific quantity associated with a specific system, a
variety of performance criteria are derived here for generic
classes of these multiple time derivative transmitter—re-
ceiver systems. They are not restricted to the far-field
zone of the transmitter or receiver, but are valid even in
their Fresnel regions. Moreover, the bounds establish at
what distances the corresponding near-to-far-field bound-
aries occur. They thus provide a useful set of rules of
thumb for the evaluation of general UWB systems. The
following results could be easily extended to include scat-
tering phenomena in a fashion analogous to [18].

1. PULSED BEAM PERFORMANCE BOUNDS

Analytical bounds on the properties of a beam gener-
ated by an arbitrary, pulse-driven array are now derived.
In our model system the transmitting array consists of N
radiating elements, the nth element being driven with the
signal f, over an effective area A,. The only constraint
on the driving functions is that they be continuous. The
associated frequency spectra will be labeled F,(w). The
total area associated with the array is

ey

The receiving array will be a single receiving element with
an effective area Ap. The arguments are readily extended
to a multi-element receiving array. This transmitter—re-
ceiver system is depicted in Fig. 1.

In general the time domain radiated or received signals
in any transmitter—receiver system are not faithful repli-
cas of the input waveforms [23]-[33]. Each component of
the transmitting (source, electronics, transmission line,
antenna) and receiving (antenna, transmission line, elec-
tronics) systems has its own characteristic frequency re-
sponse. Consequently, the frequency responses of the
components of the transmitting and receiving systems,
hence the corresponding time domain effects, must be
taken into account to model the response of the overall
system. This issue is general; each of the system compo-
nents has the potential to modify any signal it encounters.
For instance, the output signal of a transmitter system
whose antenna is not large in comparison to the shortest
wavelength of significance contained in the time signal
driving it, is a time derivative of that input driving func-
tion. This time derivative can be understood physically on
the basis of energy conversion,; it results from the conver-
sion of the electrical energy fed to the antenna into field
energy near it. It can also be interpreted as resulting from
an effect of the assumption of electrical smallness, i.e., the
driving signal will be reflected from the edges of the
antenna before the entire pulse shape is radiated from it.
This behavior is also represented by a linear dependence
in frequency of the transmitter system impedance. By
reciprocity, the output of a matched receiver system will
also be a time derivative of the signal input into it. The
conversion of the field energy into electrical energy im-
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Fig. 1. The signal at the receiver is a lincar superposmon of the fields
generated by driving each transmitting element in the array with a
specified time signal.

poses a time derivative on the signal. The radiation pro-
cess itself also introduces a time derivative onto the
transmitted signal, i.e., as the signal propagates into the
far field of the radiating element, it evolves into a wave-
form that is the time derivative of the signal created near
that element. The time derivative that is associated with
the radiation process is expected from the fact that the
vector potential Ais proportional to an integral of the
current density at the source points: AF D) = po [ It

—|F=7/c)d*F /(4=|F — 7)) and the electric field is
proportional to the time derivative of the vector potential:
E « -4, A. This behavior reflects the fact that an an-
tenna does not radiate any dc components. Accounting
for all of these effects, one finds that the output signal of
this pair of electrically small transmitting and receiving
elements is related to the input driving functions by three
time derivatives. On the other hand, if the frequency
response of either the transmitter or the receiver is con-
stant over the band of interest, that component has no
effect on the signal. This would occur if the antenna is not
electrically small. Other behaviors, even integrations, are,
of course, possible. The model systems to be considered
here will be characterized simply by a one-, two-, or
three-time derivative output response. They are repre-
sented in block-diagram form in Fig. 2.

To aid in the discussion, several concepts must be
introduced. The set of driving functions {f;};_; y will be
said to constitute the input field. This situation is analo-
gous to driving the array with a space-time beam, hence
the name. The radiating elements take this input field and
create the radiated field. This is the “field” present when
the electrical energy is converted to the field energy to be
launched into the medium (free space) by the transmitting
dipole array. The measured field is the field which has
been propagated from the array and measured at the
“output” of the receiving antenna. Note that these propa-
gation and measurement processes occur at the end of the
propagation phase and in no way influence the behavior
of the transmitting antennas or the input field or the
radiated field.



ZIOLKOWSKI: PROPERTIES OF ELECTROMAGNETIC BEAMS

Radiation
Process
I
I I 1
I 1

input O O bt 'e) Measured

Transmitting
System
t

Receiving
System
I

Field Field
(a)
Input Measured
o= O O Measu
Field at at Field

Input
e S S 2, 2, O mMeasured
Field Fleld
Input 0 O Measured
Field 9y ; 9y 94 Field
i
Radiated
Field
©

Fig. 2. The output signal of the transmission /reception system model
is proportional to multiple time derivatives of the input signals. (a)
One-time derivative case. (b) Two-time derivative case. (c) Three-time
derivative case.

A. Beam Energy

The input field energy is the energy distributed over the
array, the nth element receiving & joules:

gin=Caf 110 ar @

The factor C, is a real constant with dimensions consis-
tent with the input field and transmitter system that
makes &;, an energy quantity. If f, is a voltage, then this
factor would have units of inverse impedance. The exact
value of C;, is model dependent, being defined explicitly
by the transmitter associated with the nth radiating ele-
ment. The total, array-weighted input energy is then taken
to be:

g def Z A gm
=1

3

This form of the input energy is chosen to account for the
amount of the array “real estate” dedicated to each of the
driving functions.

An individual (extended) radiating element looks like a
point source when the energy it radiates reaches its far
field. The time signal measured in the far field at the
point 7, which resulted from the radiating element at 7, is
thus characterized by an amplitude decay factor, 1/R,,,
where R, = |[F—F,| is the distance from the center of the
nth element to the observation point, and by j-time
derivatives (j =1, 2, or 3) of its driving function f,
evaluated at the retarded time ¢’ =¢ — R, /c. The spe-
cific number of time derivatives depends upon the as-
sumed transmitter—receiver configuration of Fig. 2. It is
readily shown by a number of methods that the measured
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far-field amplitude can be represented in the form
N
§A0) =G X S dl [Tt~ Rafe) ()
n 1

which means the measured far-field beam energy is

meas 2
&N =€ Z_:l X_:l 27rcR 27rcR f at
—-R,/c).

: al]fm(rnwt - Rm/c)alj fn(rrﬂt

The real constant C; has dimensions consistent with the
input field and the transmitter—receiver system to make
&n an energy quantity. Like C,, the exact value of C; is
model dependent. Since bounds are being derived, the
constraints on the system are for a maximum response so
that it is assumed in (5) that there are no losses or
mismatches in the system.
Introducing the terms

(6)

and the associated correlations measured by the quantity
Ameas

j.mn
dﬁf foim dt&,jfm(?m,t Rm/c) ‘9rjfn(F;t t Rn/c)
[/ dt13] f(Fos )] [ 12 el £(7, 1))
(7)

one can rewrite the measured energy expression (5) as

= A, o] £,(7,.1)P

2 N N

o-olsH] £ &

A1/2A1/2

RR ) @) @)
Without any loss of generality, it is assumed the array is a
plane perpendicular to the z-axis, e.g., the plane z = 0,
and that the observation point is along the z-axis, i.e.,
7= (0,0, z). This simplifies the notations in the following
arguments. In particular, one then has for any radiating
element that R, > z. Applying the Schwartz inequality

[34], one finds a bound on the correlation functions:
Ameas

jmn—

&)

and, hence, a bound on the measured energy:

CIE

2@c | |, 2

C 2
( 277jC
N %

:A(zic ) L

2
an

(7/}) A1/2 2

gjmeaS(?) R

A

£

C2 A )2 %meas )
<7 |—
- T\ 27mez A )

(10)

Ny/nj

)

2
n=1 Rn

IA

where the quantity %™ = LY

n—l
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We are interested in the energy efficiency of the trans-
mitter-receiver system, a quantity usually quoted as its
performance rating. This efficiency is the ratio of the
measured energy &™°**(7) to the input field energy &;, at
the observation point:

def gmeas(?)
I () & 2.

1

)

The ratio I} can be related to an effective frequency
of the radiated field w,q and the effective frequency of
the measured field far from the array w,,,, as follows.

With (3) and (10) the desired ratio (11) becomes

2

T meas Cf (

) < —

j,enrg = 2
Cin

A ZW‘meas
) . (12)

U,

m

2mcz

Recall that we are assuming that the array is driven with a
set of UWB signals. To provide a quantitative measure of
the frequencies involved in these signals, we introduce the
“effective frequency” of the radiated field:

o2 o T 147w dtlo, fu(7 )
w TN AL dtl (7 )
nN= lAnfciw dﬂ) wlen(F;,, W)lz

= 13
oA delE ) )

and the “effective frequency” wp,,, Of the measured field
which for j=1 is set equal to w,y and for j#1 is
defined to be

2(j -1y 9¢f Ta 1 Aa 7w dtld] (7 1)
ZnN=1/1n[Di°Ddtlal fn(’_':nt)lz

meas
1 2
Z“nN= 1Anf°i°° dw wzlen(?n’ (‘))‘

= 14
ZHN=1Anf°imdwwlen(?;,,w)|2 (0
so that
%'meas .
L~ g0l (15)

in

Recall that the term F, is the Fourier transform of the
driving signal f,. The effective frequency w4 is a mea-
sure of the spectral energies launched into the medium in
our model. It is a ratio of the array-weighted accumula-
tion of the contributions to the energy spectrum of the
field near the array face and the array-weighted accumu-
lation of the energy spectra of the signals driven into the
array. On the other hand, the measured frequency wp,,;
accounts for the spectral energies measured in the re-
ceiver of our model. It replaces the energy spectrum of
the field near the array face with the energy spectrum of
the measured field far from the array. Note that the
effective frequencies are quantities that characterize by a
single frequency value all of the UWB components con-
tained in all of the signals involved in the radiation and
measurement processes.
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The bound (12) on the energy efficiency (11) now be-
comes

2 2 C~2 2
pmeas o < (A“’rad) Wiz D = —L (___A ) 02J=D
j.enrg — 2 meas

Ci\ 2mez Ci \ Aaz

meas

(16)

where A4 = 27c/ 4. Introducing the Rayleigh dis-
tance based upon the effective frequency of the radiated
field:

def Aw,qy A

= = 17
rad 2arc Amd ( )
this means
C? (Log\ .
r_mears < _J_ (__"‘_) wZ(]—l)' (18)
J,enrg Cl%l z meas
It is advantageous to renormalize the efficiency I'J¢ 5 by

the term (C?/C2)wX{™ V. This represents a weighting of
the time derivatives, which result from the transmitting
and receiving arrays, by the physical constants associated
with those arrays and by the effective frequency associ-
ated with their conversion of the input energy to the
radiated field energy or reciprocally, from the radiated to
the measured field energy. With this renormalization one
obtains

meas 2(j-1 2
= def l-“",enrg Weas ! Lrad
[\meas = < _rad
jrenrg 2 2\, 201 = .
(C/' /Cin)wra(é @ z

rad

(19

This is the desired bound on the measured energy effi-
ciency of a pulse-driven array. It suggests that for the
UWB signal case we introduce the Rayleigh distance

Wheas G-v
Lt = (—w ] ) Ly (20)
which allows us to rewrite (19) as
meas 2
fmess < (—L) 1)
j.enrg = 7 .

The diffraction length L7¢, given by (20) can be
designed for a multiple derivative system to be substan-
tially greater than L4 by a suitable choice of the UWB
signals driving the array, e.g., the LW signals. In particu-
lar, for a one time derivative system, (20) indicates that

Tomg = Lrag: In contrast, for a three time derivative

system it gives LT3 = (@peqe/@raa)’Lrag- Since the
higher order moments of an ultra-wide bandwidth spec-
trum can be designed to occur higher in frequency than
the lower order ones, a higher derivative system provides
an extended near-field region; and, hence, the energy
efficiency of the beam will be maintained in that region
and will be enhanced beyond it. This means that diffrac-
tion affects the higher order coherence properties of a
beam more slowly than its lower orders. This result is
depicted graphically in Fig. 3.
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Fig. 3. Diffraction affects the higher order coherence properties of a
beam generated by a UWB pulse-driven array more slowly than its lower
orders. The envelopes of the measured energy of a beam generated by
an optimal one, two, and three time derivative UWB transmitter—
receiver system are defined by their diffraction lengths and the rate of
spread of the beam in the region beyond their diffraction lengths.

In a CW or narrow-band case each element in the
transmitter array of this system is driven with the same
CW signal having the angular frequency wcy, so that
fdt19] fI* = w¥y [ dt|fI*. Therefore, in the CW case one
has

cw _ —
Wpeas = wlgg/ = ey (22)

and the diffraction lengths associated with the CW mea-
sured field are (for all j)

CwW — JCW _
Lj,enrg - Lrad - A .
(o)

(23)

If each of the radiating elements have the same area
A, = A, so that A = NA,, (19) gives

cw 2 2
f-cw < Lrad =N2 AO .
z Aewz ]’

(24

j,enrg —

i.e., the CW energy efficiency is bounded by the coherent
superposition of all of the radiating elements. For j = 1
this result also recovers the antenna theorem [35).

These results indicate that when a multiple time deriva-
tive system is used, the measured energy of the beam
generated by a UWB pulse-driven array has a diffraction
length that can be made substantially larger than the
beam generated by the same array driven with a set of
CW or narrow-band signals at the frequency o,,. For
instance, consider a transmitter—receiver system with a
three time derivative (j = 3) behavior. The renormalized
energy efficiency of such a system satisfies the bound:

4 2
';neas < [ wmeas] (Lrad )
,enrg — -
& Wrag z
The ratio of the measured energy efficiencies of beams
generated by such CW and UWB pulse-driven arrays can

(25)
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therefore be written as
~ 2
UWB UWB UWB 2 4
F},em‘g _ l—‘S,em'g L3.enrg _ ( Wrag ) I:wmeas]
= ~ = — lindaid
=Cw = Tow .
r},emg F3,em’g Lrad Wew Wew
(26)

Consequently, the condition for a UWB pulse-driven ar-
ray to be more energy efficient than the CW pulse-driven
array is simply

2 3
Wmeas Wrad > Wcw -

(27)

If, for example, one sets wcy = w4, the condition for
the UWB array to be more efficient than the CW array is
simply @, > @4 Thus, the energy efficiency of an
UWRB system increases over the comparable CW system
at wcw = w4 as the square of the diffraction length
ratio or, equivalently, as the fourth power of the fre-
quency ratio (wpye,/wcw)- As has been demonstrated
theoretically [11] and experimentally [10], this improve-
ment is readily achieved using a variety of LW solutions
as the UWB driving signals. In fact, more than an order of
magnitude increase in the measured field energies can be
achieved. These issues will be discussed further in Section
Iv.

The issues to be reemphasized at this point are that 1)
one has a choice of the type of transmitter—receiver
system, and 2) for that system one can design input
driving functions that maximize the differences between
the performance of a UWB input field and the corre-
sponding CW one. The LW solutions are just one means
to this end. Optimization routines can be developed to
further enhance the UWB results [36].

B. Beam Intensity

In many applications it is not the signal energy that is
the quantity of interest, but rather the intensity delivered
to a point in space-time. This is particularly true in the
case of a scattering application such as radar. Many radar
systems rely simply on the detection of the peak intensity
scattered by the target. Another example deals with a
microscopic situation. The force a charged particle experi-
ences is related to the instantaneous field strength it
experiences, not the average over time. Furthermore, in
many weapons applications, the power delivered by the
beam is the important quantity, not its energy. For exam-
ple, in many high power microwave effects applications it
is the maximum intensity of a pulse that causes an upset
in the state of a computer chip, whereas the pulse energy
can lead to a thermal mode burnout of the device. It will
be shown below that the bandwidth of the signal on the
“target” is the quantity that determines the maximum
intensity there. This property gives a significant advantage
to a UWB pulse-driven array over a CW array because of
the inherent broad bandwidths of its input signals.



894

Consider now the measured far-field beam intensity

2 N

2 N
gy == L L

R m=1n=1

A

m A
2mcR,,

2mwcR,

) 0llfm(?m’t - Rm/c)alj fn(F;l’t - Rn/c)
(28)

where Ay is an area associated with the receiving an-
tenna. This expression represents the power density
(W/m?) at the receiver located at a given point in space
at a given time. Proceeding as in the energy case, one
obtains the following bound for the measured intensity
normalized by the array weighted input energy:

‘fjmeaS(?’t) - C]_Z ( A )2
En T CiLAg \2mez
SN A 6] fu(Fort = R, /)

A S dtlf (T 1)

Note that this expression represents many time values. To
reduce it to a more meaningful quantity, we will consider
only the maximum of the intensity time history at a given
spatial location %m%(7). This operation will be denoted
by max,, i.e., FTX(F) = max, S, (7 t). This allows one
to define an intensity pattern and to discuss the associated
side-lobe levels even in the broad bandwidth case. Intro-
ducing the term

n=1

measdﬁf max, Z"1\']=1f1n|‘?tj fn(F;wt)lz
" Aﬂfiwdtlarj fn(’_.;ut)lz

n=1
and noticing that the maximum of a time shifted time
signal is bounded by the maximum of that signal without
the time shift, one can obtain the maximum field intensity
normalized by the array weighted input energy from 29
as

(30)

J

2
¢

~ CaAg

(ijmeas)max( ?)
z.

1

A 2
2(j-1) Tmeas' 31
(Arad Z) Wméas j ( )

The renormalized version of this quantity produces a
bound on the efficiency of the measured beam intensity:
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z

where the diffraction length associated with the measured
beam intensity is

def

"meas
j,int

A
)‘rad z

w

2(j—1) nmeas
meas rI‘j
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This diffraction length is generally different from the one
associated with the measured beam energy. It can be
made [T,%°* / w,,]'/* times larger with a proper design of
the input field.

The term T;™*** is simply the ratio of the maximum of a
function to its time-averaged value. In a CW tone burst
case (finite, time-windowed CW signal), the maximum of
the jth time derivative of the driving function squared is
%, and the energy of that signal is wd, times half its
time record length T, . Thus the desired ratio in this CW
case becomes
2

mTcy

Wcew

(34)
mr

where the last expression assumes there are m CW cycles
in the record length time: Ty, = mTcy . Therefore, if one
drives the array with a CW signal for a long time (m is
large), the value of Ty, is large and, hence, that of T, eas
is small. In contrast, for example, the LW driving signals
all have broad bandwidths, so that one can achieve a very
large instantaneous value of the square of the signals with
a small average value over a time period comparable to
the CW case. The entire bandwidth controls the behavior
of the measured beam intensity rather than, as in the
energy efficiency case, a particular frequency value. Note
that even for comparable levels of the derivatives of the
input signals, narrow-bandwidth signals must necessarily
have larger time record lengths than broad-bandwidth
signals. Thus one can design the LW driving functions to

obtain for any j =1, 2, or 3, the condition: Tje >

T ... Therefore, since
“UWB UwB \2G-D  UwB \2[ mUWB
Fj,int Weas Wrad ’I\j,meas (35)
~
“CW W
rj, int Dcw Wew /Tj, meas

one can obtain a much larger instantaneous field intensity
with a properly designed UWB input field, such as a LW
solution, than in the corresponding CW case.

Note that an energy expression represents an average
of the signal intensity over time. Because they contain a
broad set of frequencies, the peak intensities in a UWB,
hence LW, beam can be made quite high as noted above.
However, because the drive functions defined, for exam-
ple, by a LW solution and, hence, the input field are
generally unipolar and because they can persist with low
amplitude “tails” over several time periods of the corre-
sponding effective frequency CW signal, this characteris-
tic becomes diminished when the time average is applied.
Thus low average energies result in the UWB case, in
contrast to high peak intensities. Consequently, the per-
formance characteristics of a CW or narrow-bandwidth
beam are favored by energy arguments; and those of a
UWB, hence LW, beam are favored in intensity compar-
isons.

C. Beam Width

The rate of divergence of the beam generated by a

ot [ @ (j= D[ mmeas 1/2 [ meas 1/2
Lmeas = meas J L . = J [ meas
j,int rad j.enrg”
Wy Wrag Wrag
(33)

pulse-driven array can now be obtained as well. The rate



T

ZIOLKOWSKI: PROPERTIES OF ELECTROMAGNETIC BEAMS 1S

of expansion of a beam can be quantified by measuring
the radius at which its energy profile has decreased to half
its maximum value in the plane z = const away from the
aperture. This radius value, the half-width at half-maxi-
mum (HWHM) of the energy profile, is a good measure of
the transverse localization of the beam.

Consider again the measured field energy expression
(8). The terms AT:(F)/(R,, R,) clearly control the ob-
servation point dependence of the beam. Since the convo-
lutions

[w dta,j fm(?m’t - Rm/c)‘;tifn(;;’t - Rn/c)

= [ a1 3] fo(7u7) 3l f(Furm — [R, — R, 1/c)

= [ 4 4,2 2] A7), (36)
the beam energy decreases as the array driving functions
become uncorrelated. In the far-field the distance factor
(R,, R,)"" ~z7? and the time factor [R, — R, 1/c ~ (7,
—1,)-7/cz. Thus the off-axis behavior rests solely with
the convolution terms AT3(7) in (36). Those terms de-
crease to half their value when their arguments experi-
ence a time shift approximately equal to a quarter of their
characteristic time period. This occurs when: [R, —
R, 1/c ~ Tpens/d = (w/20,,.,,). Accounting for the vari-
ations in the driving time signals across a planar array, the
HWHM of the far-field measured energy profile occurs at
the radius: pfWiim, enrg = (Ameas/4 dmax)2> Where A, =
2TC/ Wyeqs and d,,, Is the largest distance between the
significant, distinct time signals in the array, usually the
maximum radius of an element in the array. The rate of
divergence of the beam then is simply

mecas
PHWHM, enrg . A

z T (4d

meas

meas _
oenrg -

(37)

max)

The beam generated by a CW pulse-driven array of diam-
eter D = 2d,, will then diverge for j = 1, 2, or 3 at the
rate:

A

miecw = 57 (38)
Because one can control by design the correlation proper-
ties of the constituent time signals as well as satisfaction
of the effective frequency condition (27) (i.e., the relative
arrival times and the amounts of the various frequency
components), the energy profile of the beam generated by
a UWB pulse-driven array can be made more localized
than the corresponding CW beam:

meas

enrg, UWB _ Wew
g meas - UwB <L (39)
enrg, CW @peas

The CW “antenna theorem” [35] can now be extended
to a general UWB system. With (39), the product of the
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source area and the far-field beam angular spread (solid
angle) is on the order of the measured wavelength squared.
In particular, if the effective area of the array 4 = m d2_,,
then
A
A X m oelllllfas 2 = —_A%neas
[ ( g ) ] (4 d 2

max )

R

T 2
(Z) ’\ieas ~ )‘Eneas' (403)

This relation can also be rewritten in the form

j-2
Ly ¥ (AA—) X [7(835°)"] = Aoy (400)
rad

which connects the measured beam energy diffraction
length and beam spread with the measured effective wave-
length. Thus the beam created by any transmitter—re-
ceiver system will be constrained to satisfy (40a) and
(40b).

It must be remembered that the intensity and the
energy profiles of a beam behave differently in the gen-
eral UWB case. They are controlled by different, but
related properties of the spectra of the input field. This
difference between the measured intensity and energy
beam profiles has been observed experimentally [10], [11].
Thus, one can also introduce a beam width for the inten-
sity as was done with the diffraction length. In general this

maximum intensity (in time) beam width 675> will be
narrower than the energy beam width 6,,5%, i.e.,
Oine ™ < Oenrg - (41)

The equality occurs for any CW case. This is again a
result of the intensity being a point quantity rather than
an average one as is the energy. As the field expands, the
off-axis field values become more spread out in time
giving a wider, more uniform energy profile. However, this
expansion also causes the maximum intensity in time to
decrease more for any spatial point further off-axis in any
given plane transverse to the propagation direction since
the wavefront must travel further to reach it. Accounting
for this difference to determine the spread of the profile
of the beam’s maximum intensity (in time), one finds
approximately that LT3 X (A .00/ Arg)’ ~ 2 X [mw(006%)]

int
= Ameas/2 SO that 67°% ~ [41,7% /o ]71/4 gmeas The

rad enrg
resulting narrower intensity profiles of a UWB system
may have significant implications for several potential

applications.

D. Discussion

The results for the measured beam intensity and energy
are clearly dependent on the system model since the latter
controls the number of time derivatives involved in the
representations of the beam quantities. From an engineer-
ing point of view they indicate that one can use broad-
bandwidth systems to advantage if they are designed prop-
erly. It is also now apparent that in any comparisons
between a CW case and a UWB, hence LW, case, the
choice of the CW frequency is a crucial factor. Note again
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that in the CW case, the input, radiated, and measured
fields are simply related by powers of the frequency, wcw,
a single constant. There is essentially no difference be-
tween the radiated, propagated, and measured fields even
if there is a spatial variation in the ficld. However, in the
UWB case, there are large differences; and all of these
effects must be taken into account. The arriving time
signals are spatially distributed, each bringing to the re-
ceiver a different broad-bandwidth spectrum. Because of
the different time derivatives involved, different portions
of the frequency spectra of those signals will control the
associated beam characteristics. The actual trans-
mitter /receiver system configuration then becomes ex-
tremely important if enhanced performances are desired,
and it must be tailored to the particular beam parameter
of interest to realize those enhancements.

The effective frequency value w4 is an appealing
quantity for comparison purposes since it is defined in
terms of the variance of the spectra of the input field.
When the transmitter imposes a time derivative on the
radiated signal, it measures the frequency content near
the array (after the array has modified the signals). More-
over, for the systems whose far-field signals involves only
one time derivative, it has removed the dc components
which are not present there. On the other hand, w,,4 does
not address an essential difference between the input field
and the radiated field. Consider the input set of driving
functions. These functions deliver the energy to the array.
The electronics driving the array will expend this energy
to create these signals, to pass them to the radiating
elements, and to radiate them. The driving function spec-
tra have an upper frequency w,,, above which they con-
tain very little energy. If the driving functions are time-
limited, these tails extend out to an infinite frequency.
Moreover, these signals will generally have dc components
that carry a great deal of the input energy which will
remain in the very near field of the transmitting array.
The standard engineering criterion would be the “3 dB”
point of the composite energy spectrum delivered to the
array (provided that the spectrum is low-pass beyond this
point); i.e., one usually choses the value o,,, = ®; 4g, the
frequency at which the total energy spectrum has de-
creased to half its value. This frequency value is a mea-
sure of how much energy is actually used to drive the
transmitter system. The frequency value w4 may be too
high for a “fair” CW comparison case since it has elimi-
nated the lower frequency components. As the value of
wey decreases from o4, the relative enhancements of
the UWB system increase for any number of time deriva-
tives. For instance, if one were to choose wcy = @3 gp,
then from (26) one finds

= 2j 2j-1D
UWB UWB J UWB J
l-‘j, enrg Wrag @eas
w

I"_CW UWB

j.enrg W3 4B rad

2

, (42)

UwB \2U-Df ruws
Wrad L3, enrg
L3 dB

W3 4p

where L.,z = Awyqs/(27c). Substantial enhancements
over the CW case would then be observed even for a
j =1 UWB system. Note that in [9] and [10], the second
e-folding point of the LW array-weighted energy spectrum
was chosen for the frequency value w,,; it coincided with
®,,4- In contrast to the 3 dB value, this choice was much
higher in frequency: w4 ~ 3.59 w3 4p.

The effective frequency of the radiated field must be
altered somewhat when the observation point is in the
near field of an individual radiating element. One must
then take into account all of the near-field terms (static
and induction terms as well as the radiation term). Includ-
ing these lowest frequency components of the fields near
each radiating element in the calculation of the effective
frequency of the radiated field, one is led to a value {4
rather than 4. This value €,,4 would be a better choice
for the comparison CW frequency instead of w,,q4 since it
represents all of the energy delivered initially to the beam
in the medium. Unfortunately, it is more difficult to
calculate in practice. However, because energy is lost to
these near-field components as the beam forms and prop-
agates away from the array clements, one knows that
Qrad < Wrag [11]

What does happen if the transmitting and receiving
antennas are designed only to reproduce the fields inci-
dent on them? From (19) and (24) the ratio of the CW
and UWB beam energy and intensity efficiencies in this

case is
2

UWB UWB - 2

Fl,enrg Ll,cnrg _ ( Wrag ) (43)
cw CcwW =

F],enrg Ll,enrg Dcw
UWB 2 UWB

Fl,im ( Wrag ) x Tl,meas (44)
cw cw |

I im Wy T, meas

Thus, the energy efficiency for the two types of beams is
comparable for a one derivative system with the choice of
Wew = @,g- On the other hand, one can achieve a
diffraction length for the beam intensity and a beam
intensity enhancement which is (Tne, /T w.,,) times
larger than those associated with the CW beam. The
rise-times of the input field signals control the beam
energy diffraction length; the bandwidth of those signals
controls the diffraction length of the beam intensity. Note
that if the near-field behavior is included and one chooses
wcw = (g, One then finds that the UWB beams can be
more energy efficient than their CW counterpart even for
a one time derivative transmitter-receiver system, i.c.,
Flt,J::’]Pg/Flc,gu = (“‘)rad/(lrad)2 = 1.

Equation 543) explains immediately one approach that
one could take to design a set of driving functions to
maximize the beam energy efficiency for this system. One
would try to design functions with as fast a rise time as
possible, thereby maximizing their first derivatives, hence,
the corresponding 4. This is, in essence, the basis of
the EM missile concept [37]. It is trivial to design a set of
driving functions that have finite energy but have a dis-
continuity in their first derivative. Driving an array with
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such an infinite bandwidth signal can result in a beam that
remains localized to infinity. In fact, as was shown re-
cently [38], the energy decay of such a beam is 1/7 rather
than 1/r2. On the other hand, an infinite bandwidth array
is not available because of hardware (electronics, etc.)
limitations, so that such a case cannot be realized physi-
cally. One then returns immediately to having to make a
choice as to what frequency one uses for quantitative
comparisons. In a practical application, if there were a
frequency cut-off intrinsic to the system that could not be
avoided, one would have to determine if this cut-off would
affect the effective frequency values or not. Any CW
comparisons should then be made with a CW frequency
value which fairly represents the frequencies contained in
the UWB driving signals.

The difference between the one, two, and three time
derivative behaviors of the fields in the far-zone also
points out another characteristic of pulse-driven arrays.
Because of these time derivative differences, one gener-
ally has w,,, > w,,q, Which represents a difference be-
tween the frequency content of the fields launched from
the array into the medium near that array and the spectra
reaching the far-field region. This property of the near-
field and far-field frequency spectra is associated with the
fact that the lower frequency components are radiated
less efficiently into the far-field and require more energy
to excite them. The beam, in essence, can shed its lower
frequencies as it propagates. If the input signals and the
radiating elements are not designed properly to account
for this frequency shedding property, the beam generated
by the array will quickly lose its lower frequency compo-
nents as it propagates, resulting in a degradation of the
shape of the beam and an ensuing increase in cost of its
energy efficiency.

This frequency shedding property is intrinsically associ-
ated with the diffraction process. The measured energy
bound for the one-derivative system indicates that the
diffraction length is associated with the second moment of
the power spectra of the input signals. On the other hand,
the measured energy bound for the three-derivative sys-
tem indicates that the corresponding diffraction length is
associated with the sixth moment of the power spectra of
the input signals. In either case, the diffraction length is a
measure of the coherence of the measured beam energy.
The difference in these diffraction lengths implies that
the diffraction process affects the coherence of the higher
order moments of the spectra more slowly than lower
orders, as noted in Section II-A.

Even if there were not a gain in efficiency of the
radiated field in the UWB case, the increase in the
distance over which localization can be maintained may
be more significant. Any performance comparison clearly
depends on the intended application of the beam. If one
is interested in secure communications, for example, the
maintenance of beam quality with low sidelobe levels is of
the utmost importance. If one is simply interested in
weapons applications, then one would expect that the
more efficiency one has, the better. This is not true if the
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trade-off for large efficiencies is large sidelobe levels.
Fratricide issues can become extremely important. In par-
ticular, why not attempt to drive the array with a CwW
frequency corresponding to the absolute bandwidth (i.e.,
at the highest frequency handled by the system)? The
bound (19) would suggest such a choice if the largest
beam energy efficiency is desired. One finds that for a
given set of radiating elements, going to higher frequency
values in the CW case maintains the on-axis efficiency at
the cost of very large sidelobes, the so-called grating
lobes. These grating lobes appear when the wavelength of
the CW signal becomes smaller than the element spac-
ings. They do not appear when the proper broad band-
width driving functions are used. For communication and
remote sensing applications, this cost of maintaining the
beam brightness may be too high. As shown in [36] and
below, a UWB signal set can be designed to drive an array
and produce a beam with high efficiency and very low
sidelobe levels. Another possibility would be to drive each
element in an array with the same broad-bandwidth signal
fo(t). If the resulting input energy is identical to the UWB
case: Af* |folPdt=XN_1A4,/". dt|f,%, the correspond-
ing frequency spectrum Fy(w) satisfies the relation:
wH|Fy(w)? = TV_ (A, /A)wY|F(w) for any integer j.
Thus the effective frequency w,,,,, hence the diffraction
length associated with the measured energy of the beam,
would be the same in both cases. Although this approach
seems straightforward, it has two drawbacks. The first is
the loss in localization that occurs when the spatial degree
of freedom is not utilized. To achieve the entire spectrum
associated with the set of UWB driving functions, the
time f,(¢) must necessarily be longer in time than any of
those UWB signals. Thus the convolutions will persist for
a longer time giving a larger transverse distance, hence,
faster rate of divergence than with the UWB beam. This
faster rate of divergence for a beam generated by an array
driven with a single broad-bandwidth time signal having
the same frequency content as the UWB case has been
confirmed experimentally. The second drawback is one of
practicality. The requisite signal f,(¢) will be much more
complicated than any of the individual UWB driving sig-
nals; and hence, more complex waveform generators and
radiators would be required to produce it. This increase in
complexity combined with the decrease in localization
would severely limit the usefulness of such an input field
scheme.

The extension of the near field and the narrowing of
the beam spread for the UWB, multiple derivative sys-
tems has potentially several interesting applications. The
value of the correlation function AT, can be made to
increase as the range increases within the near field. This
allows the beam launched from a properly designed UWB
driven array to maintain its shape as it propagates away
from the array. As a result, the efficiency of this beam
remains relatively unchanged in the near field. This pro-
vides immediate benefits to any application requiring lo-
calized fields. For directed energy or radar applications,
the derivative transmitter system would also produce an
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immediate benefit. It would produce a two-derivative field
at the target. Equation (32) indicates that by a proper
design of the input field, more intensity would then reach
a target than by the corresponding CW system. This
behavior is reflected in the enhanced diffraction length
given by (33) and the more narrow beamwidth indicated
by (41). Depending on how the higher order coherence
properties behave under scattering events, one might also
be able to reap some further benefit from a derivative
receiver system. Recent acoustic LW experiments have
shown that those coherence properties are, in fact, main-
tained in specular reflection events. For a secure commu-
nications application, the possibility of encoding informa-
tion onto the higher order derivatives of the signals exist.
Transmitting and receiving such information, for instance,
with a three-derivative system, one can design an input
field to create a beam which has a substantially narrower
profile than the corresponding CW environment. More-
over, since many frequencies are involved, more informa-
tion could be transmitted with such a system. Similarly,
for remote sensing applications, systems with increased
depth-of-focus (enhanced diffraction lengths) and beam
localization would provide a more accurate probe of a
particular medium. Additionally, since a UWB signal con-
tains both high and low wavelengths, the longer wave-
lengths of the field scattered from an object will contain
information about the body resonances of that object and
the shorter wavelengths will relay information about its
diffraction sites. Because each of its beam characteristics
has its own dependence, the advantages of an UWB
system will ultimately depend on its specific application.

ITI. ELECTRICALLY SHORT DIPOLE
TRANSMITTER—RECEIVER SYSTEM

We will consider an electromagnetic beam generated by
an array of electrically short and thin, center-fed, linear
dipole antennas and measured in the far-field of each
radiator by an electrically short and thin, linear dipole
antenna. Because this system is linear, we can first deter-
mine the measured signal due to a single pair of radiating
elements and then obtain the total response by superposi-
tion. This requires a time domain model of the interaction
of two center-fed linear dipoles.

A. Elemental Radiator and Receiver

Consider the elemental system shown in Fig. 4. By
treating this well-known transmit/receive system in the
frequency domain, the corresponding time domain results
are then realized by a Fourier transformation. The trans-
mitter system is conveniently divided into two parts: the
source and the antenna, which are connected by a trans-
mission line. The voltage source produces the signal
V,(») = F(w) at the angular frequency o = kc. This
voltage signal leads to the driving point current I,(w) and
the driving point voltage V(@) at the center of the dipole.
The transmitting dipole has length L, and the orientation
p;- The characteristic impedance of the source is Z;, a
frequency independent constant over the frequency band

Azil)

Tl v, 0

Receiver

Fig. 4. The basic unit of the transmission/reception system model is a
pair of interacting center-fed linear dipole antennas.

of interest. At frequencies well below any antenna reso-
nance, the source impedance Z; is assumed to be much
larger than the antenna impedance and the characteristic
impedance of the transmission line. This causes the volt-
age source to act like a current source. In particular, it
causes I(w) = F(w)/Z;. The case where the character-
istic impedance Z; is much smaller than the antenna
impedance (an ideal voltage source case) [39] also leads to
the results presented below; the current source version is
notationally simpler and is treated most often in standard
texts.

Similarly, the length of the receiving dipole is L,. The
orientation of this dipole is p, and is chosen to maximize
the coupling between the two antennas. The induced
driving point current and voltage on the receiving antenna
are, respectively, I,(w) and V,(w). The output signal
V(w) is measured across the receiver impedance Zg, a
frequency independent constant over the frequency band
of interest. This impedance is matched to the transmission
line impedance and is much smaller than the antenna
impedance so that V{w) = L(w)Z;.

It is assumed that the transmitting and receiving dipoles
are short in comparison to the shortest wavelength of
significance contained in the time domain signal driving
them, i.e., kL,, <1 for m = 1, 2. Both of these dipoles
are also assumed to be very thin electrically, ie., if the
radius of each dipole is a, then @ < L,, for m =1, 2. As
discussed, for example, by Franceschetti and Papas [26] or
Sengupta and Tai [27], the radiated electric field of such
electrically short, center-fed linear dipole antennas in the
far zone is proportional to the second time derivative of
the input voltage signal. Assuming that the transmitting
dipole is oriented along the x-axis and is driven with the
(voltage) signal f(1), the electric field in the far zone has
the time-domain response

Zy L3 1

r R
a(?’[)le_TTEr—raj (t——g)sm v (45)

where the angle ¢ is measured from the positive x-axis,
ie, y=m/2~0 and §= -0, r=[l=0(*+y>+

2z2)!/? is the distance from the center of the transmitting
dipole to the observation point (i.e., to the center of the
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receiving dipole), and the term Z; is the free-space
impedance. This result is a very good approximation for
the main beam direction (where  ~ 7/2); the approxi-
mation begins to break down for k-values satisfying kL,
> 2 far away from the main-beam direction. Since the
pattern is negligible there and since we are interested in
maximal coupling of the dipole antennas, (45) is quite
suitable for the following discussions. Note that this result
follows quite naturally from a spectrally weighted form of
the well-known far-field frequency domain expressions of
the field generated by an electrically short, center-fed
dipole antenna driven with a sinusoidal current distribu-
tion.

The signal measured with an electrically short dipole
antenna is the first time derivative of the field incident on
it [32], [33]. Consequently, if the receive antenna is as-
sumed to be oriented for maximal coupling, the measured
voltage response is

2

L
U(t) = lT sin ‘/J ct mc(t)

which combined with (45) yields the overall response of
this elemental, dipole transmitter—receiver system

Z, 1212 1
Z, 4 4 4nmr

This system then has a cumulative three time derivative
response. A three time derivative response is also realized
with electrically small conical [28], cylindrical [29], and
loop antennas [30].

Note, however, that care must be exercised to achieve
the same results when dealing with standard frequency
domain power arguments. The latter are frequently used
to analyze UWB radar systems. Consider the Friis far-field
transmission /reception power balance formula

AZGR(‘/’7 (b, w)GT(‘lﬂa ¢’9 w)
(4mr)’

which relates the power Pr(w) transmitted to the power
Pi(7, w) received. One must treat Gr(y, ¢, ») and
Gr(¢, ¢, ®) not simply as the gains of the transmitting
and the receiving antennas themselves, but of the entire
transmitting system and the receiving system, respectively.
The transmitted power must then be considered as the
power input into the transmitting system: Pr(w) = P,
const. Then taking into account not only the intrinsic gain
of the antenna, but also the capacitive behavior of the
electrically short dipoles in their conversion of the input
voltage to the driving current (linear dependence of the
impedance on the frequency), the gains G,(¢, ¢, ) ~

and Gx(i, ¢, ®) ~ k*. One then obtains Pr(7, ®) ~
from (48) and, hence, by accounting for the driving 51gna1
the received energy:

Eeco [ 10311 dr

which recovers the three-derivative behavior. This argu-
ment again points out the need to incorporate the effect

(46)

jf(t - g)sinz . (47)

Pp(7, 0) =

Pr(w) (48)

(49)

Fneas(T51) =
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of the transmitting and measuring systems on the overall
response of the total system, particularly when UWB
signals are involved. If only the gains of the antennas
themselves had been used, this argument would have led
to the incorrect conclusion that the received signal would
only be proportional to the first time derivative of the
driving signal rather than the third derivative.

B. Transmitting Array and Receiver Model

Consider now an array of N independently addressible,
center-fed linear dipoles driven with an arbitrary set of
UWRB signals. The dipoles in the transmitting array are
assumed to be located at the points 7} in space in such a
manner that the array has a well- deﬁned axis broadside to
the array along which the observation point lies. Every
dipole in the array is assumed to have the same orienta-
tion along the x-axis. The jth element in the array has the
radiating area 4, = (1/ 2)L2 /4; the total physical area of
the array is A = Z _14; Smce the transmitting dipole is
omni-directional, the factor of (1/2) is associated with the
radiating area here to account for the energy lost to the
half-sphere pointing into the region z < 0. The jth ele-
ment is excited with the driving function f,(¢). The only
constraint on the driving functions will be that they be
continuous. The associated frequency spectra will be la-
beled F,(w). Mutual coupling effects between the dipoles
are assumed to be small. More detailed models such as
those used in [13]-[18] could be constructed which would
incorporate those effects for the end-fire case.

The receiver is then assumed to be a single dipole of
length L, whose center is located at the point 7= 0,0, z)
on the axis of the array and whose orientation is perpen-
dicular to that axis and parallel to that of the transmitting
dipoles. The radiating area Ay = L}/4 is associated with
the receiver. Measurements of the field off-axis are taken
in the plane perpendicular to the array axis. This allows
for a mapping of the pulse shape as it passes by the
observation points.

With the assumed configuration and the result (47), the
total measured response is

ZOAR
zZ, ‘T om R

fn( R"/C).

(50)

Since the electric field in the far zone of each dipole has a
particular orientation, it has been assumed here that the
resulting angular factors lead to a secondary effect. The
accuracy of this assumption increases as the observation
point is moved further from the array. If the dipoles are
symmemcally distributed about the axis of the array, this
result is exact. Thus, the measured power density (W/m?)
is

Umeas( ?’ t) =

vmzeas(t) - Z(%AR
ZiAg 227,

N 2
' Z dc3fn ’_';ut R,/c
n=12 R 4 ( n )

(51)
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and the measured field energy (Joules) has the form:

gmeas( ;)
‘fmeas( ?’ t) dt

=

22 2
OZ f

R,/c)
(52)

05 fu(Fost =

The bounds on these beam quantities are obtained imme-
diately from the results given in Section II.

C. Dipole Transmitter—Receiver System Performance Bounds

In our model system the input field is the set of input
voltage waveforms v;, (t) = f(¢). The measured field is
the voltage signal v,,(t). The input field energy at the
nth element is then:

Uneas

&= f fu() . (53)

Z;/ o
Comparing this expression with (2), the constant CZ =
1/Z;. The total, array-weighted input energy is then
given by (3). With (52) and proceeding as in Section II, the
bound on the beam energy is found to be

2
Lrad 4
z @meas -

Comparing with (18), one finds the constant term C3;/C2
= Z2A%/Z; Zyc*. Similarly, from (31) the bound on the
maximum beam intensity is obtained:

(‘ﬂmeas)max(’?) < ZgAR ( A
Aradz

& T ZpZgct
Thus one can achieve the enhancements described in
Section II for this type of UWB transmitter—receiver
system in comparison to its CW counterparts. In particu-
lar, they can be obtained with photoconductive systems
such as those discussed in [19]-[25].

In order to make a comparison with the intensity bound
presented in [12], for instance, the transmitter-receiver
system must be restricted to the one time derivative case.
Equation (55) can not be used. The quantity considered in
[12] is simply the electric field reaching the far field from
a planar, finite-sized radiator driven with a frequency
bandlimited signal F(w) = 1 for v € [wy — w;, wy + w;]
and F(w) =0 for w ¢ [w; — w;, wy + w;s], whose band-
width is BW = 2 w;. The maximum value of the received
intensity normalized by the energy dissipated in the radia-
tor is given by [12, eq. (13)] as

2 42
[[meas ZOA

= -7 3 54
3,enrg ZT ZR ( )

2
) measT e (55)

max,|EI*/Z, A\ 1 ,
i <(2m) E'I’wa dw], (56)

where expllcltly fpwoldw = Zwé(wo + w/3). Since wlq
= [pwo’ do/[py do = 0} + ©7/3 and T = w,/7,
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one has

1 2 2 N
—/ 0w’ do = o} T
2w /pw

(57

so that with the identification C2 = 1/Z, and C} =
Ag/A, one can recover the one-time derivative form of
(31) from (56), i.e., (56) becomes

(A ) max(7) < ct
&, C2A

m

A 2/1\ meas 58
/\radz ! . ( )

This intensity bound is readily extended to the one time
derivative transmitter—receiver dipole antenna systems
considered in {13]-[18] and to the driving waveforms ob-
tained by the optimization methods considered there. The
energy bound (18) can also be used to recover the bounds
on the signal energy measured within a restricted time
window derived in those later references.

IV. NUMERICAL RESULTS

The simulation results for the acoustics case reported in
[11] can be transferred immediately to the present electro-
magnetics case. One need only adjust the wave speed and
some constant coefficients. Typical results will be pre-
sented below to illustrate the performance enhancements
possible with a properly designed ultra-wide bandwidth
system. In particular, the LW results will be compared to
the CW signal whose frequency coincides with the effec-
tive frequency of the LW radiated field: wcw = 0,4
Results associated with CW signals defined by a spectral
point criterion such as the 3 dB frequency value of the
LW input field will also be reported. These results have
been verified experimentally in the acoustics case. A simi-
lar electromagnetics experiment will be suggested in the
next section. The singular (infinite derivative) cases dis-
cussed in Section II will be avoided since they are not
physically realizable.

Note that a true CW signal theoretically has an infinite
duration and is thus not physically realizable. It has been
shown [19] that an array driven with a time windowed CW
signal (a CW tone burst) is slightly less efficient than one
driven with a pure, infinite duration CW signal because
more energy will leak into its sidelobes. The bounds
derived in Section III are thus the most stringent possible.
The numerical comparisons made below will deal with
finite duration CW tone bursts. Since the tone bursts
needs about four or five cycles to establish its CW nature,
each CW case will deal with several periods.

Given the assumed dipole array, one has only the
freedom of choosing the input signals to impact the result-
ing beam. In the CW input field case the radiated and
measured values of the beam energy and intensity will
essentially be the same. However, the quality of the
near-field beam of a uniformly driven CW array is poor
because large constructive and destructive interference
regions are formed. The efficiency of the CW beam in its
near field will then exhibit the characteristic Fresnel zone
peaks and valleys. In contrast, the beam launched from an
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LW driven array maintains its shape as it propagates away
from the array. The moving interference pattern behavior
of the LW beam governs its near-field properties. As a
result, the efficiency of this beam remains relatively un-
changed in the near field of that array.

Consider the LW solution known as the modified power
spectrum (MPS) pulse [3]:

1 1
zo +i(z —ct) [(s/B) +a]”

where s( p, z,t) = p*/[zy + i(z — ct)] — i(z + ct) and the
transverse distance p = y/x? + y%. The operator #&
takes the real part of the entire expression to its right.
The parameters that will be used here and that have been
used for all of the ultrasound experiments in water are
a=10m, a=10, b=60x 10> m~}, g =3.0 % 10?,
and z, = 4.5 X 10™* m. The speed of light ¢ = 3.0 x 108
m/s in air is significantly larger than the speed of sound
in water ¢ = 1.50 X 10> m/s. This fact modifies the spec-
tral frequencies in the pulse, but not its wavelengths. The
MPS solution has the maximum frequency f,,, =
c/Q2mzy) = ¢/A,,;, that represents here the 1/e-folding
point of the amplitude of its Fourier spectrum. It also has
the transverse waist w = ( 8z,/b)"/? at z =t = 0 and the
minimum frequency f,;, = bc/Q2wp).

In the following comparisons the broad-bandwidth case
will be the LW folded array introduced in [3]. The folded
array represents an attempt to include more information
about an exact LW solution such as the MPS pulse into
the array driving signals. The conformal mapping used for
the folded array is simply p — R2, /p, which maps an
annulus with its radii greater than the maximum array
radius R_,, into an annulus with its radii smaller than
R

u(r,t) =R e b /B (59)

Because the calculations are not readily tractable
through analysis in this folded array case, numerical simu-
lations will be used to illustrate the major points. The
actual driving signals were chosen from a modified version
of the folded array scheme proposed in [3] and the MPS
pulse (59). Explicitly, a radiating element at (x, y) in the
array is driven with the signal:

f(x,3,8) =w(t) Xu(p,z=0,1),

f(x,3,0) =w(t) X [u(p,z = 0,1)
+(Ronan/P) U(R20 /0,2 = 0,1 = )],
(p+0) (60)

where R,,, = [x2,, + y2..]"/? is the maximum radius of
the source locations in the array and the position depen-
dent delay time ¢, = {[z3 + (R%,/p)*1"/? — [2z2 +
p?1/?}/c, the constant delay distance being z, = 3.0 X
10~% m. If the function

(p=0)

h(t,7) =0.42 — 0.50 X cos [2.07(¢/T)]
+0.08 X cos [4.0m(t/7)] (61)
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the extra window function

0, fort < —t,
h(t,t)), for —t; <t< —t,
w(t) = 1.0, for —¢, <t < +it; (62)
h(t,ty), for +t; <t < +i,
0, for ¢t > +t,

where the constants £, = 3.0 X 107! s, £, = 1.5 x 107!
s, t; =25X107'% 5, and t, = 5.0 X 107! s. The time
window w(¢) is included in the driving signals to remove
the precursor wings characteristic of the regular MPS
driven arrays, hence, to minimize specifically the amount
of wasted energy in those wings. The pulses (60) were
optimized by varying the associated constants and testing
their performance numerically. The desired performance,
a more than ten fold enhancement of the measured
energy diffraction length, was obtained experimentally
with an ultrasound array in water that was driven with
these signals [10].

In order to relate the present results to those in [10]
and [11], consider a 25-element, 5 X 5 square array. The
elements in the array all have the same lengths L = 0.5
mm = 500.0 um. They are separated by 2.5 mm and are
centered in 6.25 X 10”2 cm? areas. The total length of
the array on a side is thus 1.25 cm and the total area is
A = 1.5625 cm?. The small number of elements of radiat-
ing elements limits the number of CW configurations;
there are too few elements to permit effective shading or
focusing.

The LW folded array is driven with six unique signals
defined by (60). The effective frequency of the radiated
far field is f,4 = 66.0 GHz. This value was obtained
numerically with the signal processing code SIG [40]. This
effective frequency value gives the radiated field energy
diffraction length LT%, = L4 = 3.44 cm. Similarly, the
effective frequency associated with the measured far field
i$ freas = 287.0 GHz. This effective frequency value gives
the measured field energy diffraction length L3557, =
(frmeas/fraa)® X L% = 1891 L,y = 65.05 cm. In terms
of point quantities for the effective frequency, it was
found that 50, 63, 87 and 95% of the input energy,
respectively, was below 18.4, 27.0, 66.0, and 100.0 GHz.
Thus, the 1/¢? frequency point coincides with the radi-
ated energy effective frequency. The 3 dB point value for
the effective frequency of the radiated field is f;45 = 18.4
GHz giving ®,4/®;45 = 3.59. At 100 GHz the term
kL ~ 1.0 so that the electrically short approximation is
valid for all of the elements in this array.

For theoretical comparisons, the array was driven uni-
formly with a CW tone burst at the frequency f-y = 66.0
GHz. The tone burst is explicitly defined by the signal
fow(®) = w(t)sin wcyt, where the window function w(t)
= h(|t], 7), 7 = 60.6us. Thus there are approximately six
full cycles in the tone burst. The improvement of the
measured field energy efficient with the LW drive over the
CW drive is then predicted to be an (f.,/fraa)* = 345-
fold enhancement.
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The numerical simulation used here to test these LW
pulse-driven array enhancements was a direct time do-
main implementation of (50). In Fig. 5 the renormalized
measured field energy efficiencies I'J'¢i,(2) for the LW
and CW pulse-driven arrays are compared. There are 33
data points on each curve, every third one being labeled
by the symbols listed in the legends. The ‘“unscaled”
values refer to the numbers resulting directly from (50).
The “scaled” values are obtained by multiplying the un-
scaled values by (1) a factor of two to compensate for the
bipolar nature of the CW signals (the actual input energy
in the CW case is twice the energy in a half-period, hence,
twice its average value) and (2) by the appropriate ratio of
the radiated and measured field effective frequencies and
the 3 dB point-value for the effective frequency to ac-
count for the difference between the energy delivered to
the array elements versus the energy launched into the
medium which, for the measured energy efficiency, is:
(wrziu(i)g’:\eas/wgdB)/(wmeas/wrad)4 = ((“)md/“"’SdB)6 =213
x 10°.

From Fig. 5 one can see that the unscaled and scaled
LW folded array measured field energy efficiencies are
much greater than the corresponding CW values. The
far-field 1/z% decay rate begins between 50 and 60 cm,
roughly 17 L 4, which is in very good agreement with the
predicted value of 18.91 L ;. In the far field the LW
beam efficiencies show, respectively, a 307.3 and 1.31 X
10%-fold improvement over the CW beam. The unscaled
value, 307.3, compares quite favorably with the predicted
345-fold improvement. The scaled value, 1.31 X 108, illus-
trates how large the differences between the LW and the
CW cases can be. Either case clearly demonstrates that
the LW pulse-driven array outperforms its CW counter-
part.

In Fig. 6 the waists of the CW and LW measured field
energy profiles are given. These waists are defined as the
half-widths at half-maximum (HWHM) of the beam pro-
files in a plane perpendicular to the line-of-sight direction.
The slopes of the CW and LW beam waist curves are,
respectively, 6.nrocw = 0.16 and 6572y = 0.022. Thus
the CW measured beam energy profile is expanding 7.26
times faster than the LW profile.

The numerical results clearly demonstrate the improve-
ments that are available from LW pulse-driven arrays.
The measured LW beams can be made to be more effi-
cient and narrower than their CW counterparts. Similarly,
the radiated intensity of the beam generated by the LW
pulse-driven array can be designed to be significantly
higher than its CW counterpart. These beam enhance-
ments have been confirmed experimentally [10].

Consider again the CW pulse-driven array. The ampli-
tudes of these signals are tapered (amplitude tapering or
shading) across the array in practice to achieve a large
reduction in sidelobe levels. This is accomplished with an
acknowledged loss of beam directivity and a broadening of
the main lobe. The main lobe can be made brighter with
an increase in the frequency of the driving signal; how-
ever, without additional amplitude tapering, higher side-

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 40, NO. 8, AUGUST 1992

107 4 LEGEND
E T %~ e o a=CW

1 e o= 1N (u)

¢ T 0=INE

Normalized energy efficiency

R e

.
10 16°

, e
10" 10°
Distance from array (cm )
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CW array is driven with the effective radiated frequency of the LW
signals: fow = fraa = 66.06 GHz. Both the unscaled (u) values of the
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Fig. 6. Comparison of the expansion (half-width at half-maximum)
along the line-of-sight direction of the measured field energy profile of
the beams generated by the LW and CW pulse-driven, three derivative
model, transmitter—receiver systems.

lobe levels will result. Eventually, if one were to raise the
frequency of the driving signals to a value where the
corresponding wavelength is smaller than the element
separation, then the resultant CW beam will contain
significant grating lobes. This is a particularly acute prob-
lem when the array is sparsely populated with elements.
As noted above, the broad-bandwidth LW pulse-driven
array can be designed to avoid this problem. This is
illustrated in Fig. 7. The theoretical measured-field beam
intensity profile for the folded MPS pulse-driven array is
compared directly to the measured-field profiles of the
beams generated by driving that array with CW tone
bursts at 100.0 and 400.0 GHz. These curves were ob-
tained in the plane z = 30.0 cm by searching the time
history at a given radius and z = 30.0 cm for its maximum
value and then plotting that value against its p value. The
intensity profiles are all normalized to unity along the
z-axis. There are 101 data points in the profiles; p ranges
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Fig. 7. Comparison of the normalized measured field intensity profiles
at z = 30.0 cm of the beams generated by the LW and 100.0 and 400.0
GHz CW pulse-driven, three derivative model, transmitter—receiver sys-
tems.

from —50.0 to +50.0 cm. The wavelength at 100.0 GHz is
3.0 mm, slightly larger than the element spacing of 2.5
mm. On the other hand, at 400.0 GHz the wavelength is
0.75 mm, much smaller than the element spacing. As
shown in Fig. 7, the broader beam profile of the 100.0
GHz case is traded for the narrower main lobe and large
grating lobes in the 400.0 GHz case. The folded array
beam has a main lobe similar to the higher frequency CW
case and sidelobe levels similar to the lower frequency
CW case. These quantities of the LW beam make it very
appealing for a variety of applications.

V. CONCLUSION

The possibility of generating UWB beams from an
electromagnetic array with diffraction lengths or near-field
distances much larger than anticipated from conventional
CW theory was addressed in this paper. This was accom-
plished by investigating and understanding the physics and
engineering of driving arrays with a spatially distributed
set of UWB pulses. Bounds were derived that refine the
meaning of a diffraction length and a diffraction-limited
beam, particularly for those excitations. It was shown that
one can design a multiple time derivative transmitter—
receiver system and a set of driving signals specifically for
that system which can extend the near field further from
its transmitter with a more localized beam than is possible
with a comparable CW system. The LW source-free solu-
tions introduced in [3] were then used to illustrate such a
set of “designer pulses.”

The utilization of an extended frequency set to drive
the array introduces beam characteristics which result
from different portions of the given frequency set. The
bounds presented in Section II were derived in terms of
average and point quantities that characterize those fre-
quency subsets. The enhanced localization properties and
diffraction lengths of the resulting beams are closely con-
nected with the existence of these additional frequency
subsets which do not exist in the CW or narrow-band-
width cases. They were shown to be particularly important
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when the transmitter—receiver system involves multiple
time derivatives. A pulse-driven transmitter—receiver sys-
tem model constructed from electrically short dipole an-
tennas was introduced in Section III. The diffraction
lengths and bounds for the beam associated with such a
three time derivative system were immediately obtained
from the results given in Section IL It was then clearly
demonstrated in Section IV with numerical results that
the LW beams can be designed to outperform their CW
counterparts.

Diffraction-free beams with finite energy do not exist,
as pointed out in [3] and [41]; and since we are dealing
only with linear phenomena, no new frequency content
can be introduced into the resulting beams either by the
transmitter, the medium, or the receiver than is present in
the signals delivered to the transmitting array. The argu-
ments presented here indicate that there are frequency
values which effectively characterize the properties of a
UWB pulse-driven transmitter—receiver system and that
these specific values represent useful choices for compar-
isons between UWB and CW systems. These arguments
also indicate that performance enhancements of the asso-
ciated beams can be accomplished in the UWB case
through frequency shading as well as amplitude shading of
the pulse-driven arrays. If the transmitting and receiving
arrays behave equally for all driving and received signals,
the only control over the beam characteristics one has is
through the driving functions. One must properly shape
the frequency spectra of the input field to take into
account the frequency responses of the transmitting array
and the measurement process (receiving array). Beams
can be generated by UWB pulse-driven transmitter—re-
ceiver systems that act as moving interference patterns
with extended localization properties. The LW solutions
simply provide an immediate access to these enhance-
ments.

The electromagnetics results presented here are
straightforward extensions of their experimentally verified
acoustic counterparts. Experimental verification of these
electromagnetics results is possible. Recent progress in
sources of ultra-wide bandwidth electromagnetic energy
such as photoconductive /optoelectronic switch technol-
ogy [19]-[25) provides one with the means of generating
0.1-100 ps wide pulses, which correspond to frequencies of
0.01-10.0 THz. The three derivative dipole-dipole interac-
tion behavior of the transmissioon/reception system mod-
eled here is verified by the experimental work of van
Exeter and Grischkowsky [19]. They have been character-
izing an optoelectronic terahertz beam system which con-
sists of two broad-bandwidth dipole antenna structures,
which are 20 um in size. The transmitting antenna is
driven by a photoconductive switch in its gap region, the
switch being excited with a pulsed (70 fs) laser source. The
measured time signal and its spectrum are shown in [19,
figs. 2 and 3. The laser excitation pulse is Gaussian in
shape; the current i,(t) in the photo-conductive switch
obtains a similar but broadened form. The measured
voltage signal is two time derivatives of that current pulse.



904

Since this antenna is electrically small and hence, mainly
capacitive with capacitance C, the input voltage v, (2) is
related to the driving current as C d, v;,(t) = i;,(¢). This
means the measured voltage signal v, (1) & 9; v;(0).
The wavelength at the 1/¢ amplitude roll-off point in that
spectrum is approximately 3.0 X 10~% cm, only an order
of magnitude smaller than the case considered here. The
MPS pulses presented here are easily adjusted to that
frequency regime.

The results presented here also indicate that current
systems employing antennas that attempt to reproduce
the incident signal waveforms could be improved by intro-
ducing (time) derivative detectors, particularly in low sig-
nal-to-noise (S/N) environments. This is also confirmed
by the experimental work of van Exeter, Fattinger, and
Grischkowsky reported in Ref. 20. They significantly im-
proved the measured beam power (~ 15 X increase) by
introducing a time derivative detector in their system, the
ultra-fast dipole antenna later used in the system de-
scribed in [19].

With a properly designed set of optical fiber delay-lines
(to deliver laser pulses to each radiating dipole at the
correct time) and transmitting dipole antennas (to achieve
the requisite variations in the driving signals), a folded
MPS array beam could be generated with an optoelec-
tronic THz dipole array. A scaled version of the results
presented here could then be tested experimentally. Of
particular interest is the cross-talk between radiating ele-
ments in the array. This aspect of the array performance
is difficult to model analytically or numerically, for even
the modest number of elements in the proposed array.
Less than 10 elements are dealt with in [15]-[17]; consid-
erable computer resources would be needed to model in
the same detail an array with 100> = 10,000 elements. In
the acoustics case cross-talk was shown not to be an issue
because the piezoelectric transducers used were not effi-
cient radiators and the distance between the transducers
was large enough, i.e., for pulse width 7, ~ 2 ps, the
associated distance c, 7, ~ 3.0 X 107" cm is approxi-
mately the distance between the radiating elements in the
acoustic array. Thus, most of the energy is radiated away
from the array before any significant interaction between
its elements can occur. Even though the optoelectronic
dipole antennas appear to be much better radiators than
the acoustic transducers are, it is anticipated that cross-
talk will also be a nonissue in the electromagnetics case.
For a pulse width 7, ~1 ps, the associated distance
ComTem ~ 3.0 X 1072 cm, approximately the distance be-
tween the radiating elements in the scaled array. Thus,
most of the electromagnetic energy would be radiated
away from the array before any significant interaction
between the dipole elements could occur. These argu-
ments of course assume a broadside case as was consid-
ered above. As shown, for instance, in [15] and [16], the
end-fire case would have to be treated more carefully.

Significant physics issues remain in regards to LW
pulse-driven arrays and UWB systems in general. These
include analyzing the behavior of UWB beams when they
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are scattered from targets and when they interact with
dielectrics and metals such as radar absorbing materials.
Important engineering issues also remain, particularly with
respect to the physical realization of UWB electromag-
netic beams. These include the need for the design and
the analysis of hardware (sources, couplers, power split-
ters, duplexers, receivers, etc.) that will effectively handle
UWRB signals. Applications-specific investigations into the
ramifications of designing enhanced UWB systems, such
as a LW pulse-driven transmitter—receiver system, in the
areas of remote sensing, communications and directed
energy (sonar, radar) systems are currently in progress.
The preliminary results are very positive and will be
reported elsewhere.
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