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Abstract 

In Young's two slit interference experiment, a single light particle or "~photon'" imparts its energy onto a dot on one of the light 
fringes of the diffracted field. In this work, it will be shown that a pulse solution of the scalar wave equation, or Maxwell's 
equations, going through a two slit screen reproduces the aforementioned single event interference effect. This solution, called 
the focus wave mode, is one of a class of solutions capable of accommodating both the wave and corpuscular aspects of light. 

The formal interpretat ion of quan tum mechanics, known as the Copenhagen interpretat ion [ 1 ], is based on 
probabilistic notions. Given  an initial  state, it can only give a probabili ty for the system to exist in some final 
state. This probabili ty is derived from a wave function which is a solution of a wave equation, e.g., the Schrr- 
dinger equation. The Copenhagen interpretat ion asserts that, as long as no measurements are carried out, no 
knowledge is possible concerning the intermediate states linking the final and the initial ones. Once a measure- 
ment  is performed, the wave funct ion collapses into one of  the probable final states. Consequently, the concept 
of a trajectory disappears and complementary notions defining a trajectory like position and m o m e n t u m  cannot 
be specified exactly, but  are l imited by the uncertainty principle. In the same spirit, complementary concepts 
like those of particle and  wave properties of matter  are considered as two manifestations of reality that cannot 
be observed simultaneously,  but  can only reveal themselves in different situations. For example, the corpuscular 
nature of light is revealed in the photoelectric and Compton  effects. On the other hand, the wave nature of light 
reveals itself in interference experiments,  the first one of which was Young's two slit experiment. 

In a typical setting for a two slit experiment,  light is shone on a screen containing two narrow slits and is 
observed on a photographic plate placed behind the screen. The wave nature of light is directly observed since 
waves going through either slit will interfere constructively or destructively upon reaching the photographic 
plate, thus, forming interference fringes. The localized and compact nature of particles, on the other hand, makes 
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it more difficult to explain the existence of the interference pattern. One way to circumvent such a difficulty is 
to assume that a large number of  light particles or "photons" interact with each other, so that most of  them end 
up on the light fringes. This was proved to be incorrect when very low intensity beams of light were used [2 ]. In 
such a case, single photons go through the screen one at a time and always end up on one of the light fringes. A 
single photon with transverse dimensions much less then the width of the slits, thus, senses both openings and 
produces interference effects. This raises the crucial question: how can a compact light particle, passing through 
one of the slits, feel the existence of the other one? Several interpretations of  the quantum theory attempted to 
answer this question. The most accepted among these is the probabilistic Copenhagen interpretation [ 1 ]. Other 
interesting, but less accepted, interpretations were introduced, including the Broglie's "double solution" theory 
[ 3 ], Bohm's causal interpretation [ 4 ], which makes use of  the notion of a "quantum potential", and the atem- 
poral transactional interpretation [ 5 ] due to Cramer. These theories make use of a "pilot wave", a "quantum 
potential", or an "advanced wave" to guide the particle through the screen and onto one of the light fringes of 
the interference pattern. 

Recently, there has been a rising interest in nondispersive wave packet solutions to linear equations, and their 
possible use to represent stable particles undergoing single events [ 6-8 ]. Whereas Barut [ 6 ] has attempted to 
formulate a quantum theory of single events based on a general representation of localized lump wave solutions, 
Hillion [ 7 ] and the current authors [ 8 ] have chosen to work with a specific class of solutions. Nevertheless, any 
wave packet that has strictly finite dimensions should fail in reproducing the interference pattern of  Young's 
two slit experiment. Such a claim should be qualified by the reasonable assumption that the dimension of the 
wave packet is much smaller than the distance between the two slits. It is our aim in this paper to point out the 
existence of an exact pulse solution to MaxweU's equations that can accommodate both the wave and corpus- 
cular aspects of  light [ 7,8 ], and that such a pulse can produce single-event interference effects in the presence 
of a diffracting object. This pulse solution is known as the focus wave mode (FWM) [ 9 ]. In the sequel we shall 
consider only the scalar form of the FWM [ 10 ]. An extension to the vector-valued case follows immediately 
from the results of  this paper. 

The three-dimensional, zeroth order, FWM pulse 

~(fl) ( fl~2 ~ e x p [ i ( z + c t ) ]  (1) 
~U(r, t ) =  4~[at + i ( z - c t )  ] exp - a~ + i ( z - c t ) J  

is an exact solution to the scalar wave equation [ 10 ]. Here, z is the direction of propagation, t is the time, c is 
the speed of light, p is the transverse radial variable, fl is a characteristic wave number and a~ is a parameter 
determining the width of the pulse. The FWM solution does not disperse for all time, it travels in straight lines 
with velocity c, it is continuous and it is nonsingular for all points of space-time. The energy density of the field 
of  the FWM, proportional to I 7t(r, t) f2, has a Gaussian profile moving in the positive z-direction. At the center 
of  the pulse (z = ct, p = 0 ), the waist of  the profile w is equal to (a J r )  ~/2. For at very small (i.e., for a pulse of  a 
small waist), the solution given in ( 1 ) behaves like a localized Gaussian pulse moving in the positive z-direction 
[ 11 ], while for large at, such that flal >> 1, the solution looks more like a plane wave moving in the negative z- 
direction. Under the more stringent condition fla~ << I, the pulse has a large amplitude proportional to 1/at 
around its center, where z -  ct < at and p < (a t / f l )  t/2. Outside this portion of the pulse the amplitude falls off as 
1 / ( z -  ct)  along the direction of propagation. At the same time the Gaussian envelope stretches out in the trans- 
verse direction, with a waist ( z - c t ) / ( f l a t  )~/2 that increases as we move away from the central part of the field. 
Far from the center, i.e. for I z - c t l  >> al, the Gaussian envelope stretches out significantly such that its ampli- 
tude decreases and the energy density of  that portion of the field becomes very small. Such a weak and extended 
field structure provides the localized central particle-like bump with its nonlocal wave-like attributes. 

The FWM, with the appropriate choice of  at << I m, thus looks like a localized bump field with a large ampli- 
tude around the center, incorporated in an extended nonlocal field of  very low amplitude. This pulse is only 
localized around z =  ct within the waist w, while the rest of  its field fans out to cover relatively larger distances 
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in the transverse direction away from the center. It is this property that allows the field of  the FWM to feel the 
two slits in Young's experiment, even though the central bump field is fairly localized. For such a field one can 
associate the corpuscular aspects o f  light with its central portion of  large amplitude. This localized bump is a 
part of  an extended wave structure of  much lower field intensities. Thus, the wave and particle aspects of  light 
can be brought together into a single framework. This interpretation agrees with de Broglie's conception of  
wave-particle duality, whereby the wave and the particle aspects of  reality should exist simultaneously. It also 
reflect Einstein's conception of  a particle as a highly concentrated "bunch"  field that remains localized and does 
not disperse in free motion. 

In what follows the FWM pulse will be used as a light particle incident on a screen containing two narrow 
openings. To simplify our calculations, the openings in the screen will be represented by Gaussian slits of  width 
2b, modelled by the following function, 

S ( v ) =  2V ,~ b zt~- / \ ) J  

The length of  the slits is assumed to be much larger than their width; thus, the problem is basically two-dimen- 
sional. The screen is placed at z = 0  along the transverse y-axis and the centers of  the slits are situated at y =  ± d. 
The corresponding 2-D FWM can be derived from a slight modification of  the spectrum of the 3-D FWM and 
by making use o f  the following synthesis [ 11 ], 

~,,cO', z, t)  

- (2rt)~ dk,. dk: doJq )m~(k , . , k~ . co )exp[ - i ( k , . y+k , z ) l e xp ( io ) t )d (~o -<v ' k~+/ , ' ~ ) .  3a) 
- -  , ~  - - s  0 

The spectrum 

~A(fl) d(v/k~-t_k ~ _ k _ _ 2 f l )  exp( ik ,v ,~ )cxp l_½( \ ,k~+ / , . _ ,+k . ) a , ]  I~bi  qGc(k,. ,  k:,  o ) ) -  \ , ~  . . . . .  

gives the 2-D pulse 

_ lsO'-.l'o)" / ,4 (//) - - - e x p  a ] ; l ~ _ _ 7 7 / e x p l i ( - + c l ) ] .  3ci ~nc(y,  z, t) = 4 x / ~ [ a  ' + i ( z - c t )  ] 

where Y0 is the center of  the incident pulse and we have assumed that the pulsc and we have assumed that the 
pulse reaches the screen at time t=0 ,  The spectrum q~out (kj,, k:, e)) of  the pulse beyond the screen is obtained b~ 
convolving the spectrum of the incident pulse (3b) with the transverse spectral distribution of  the two slits 
resulting from the Fourier transformation of  S(y) .  The field gXout(y, z, l) beyond the two slits can be obtained 
by substituting the spectrum 4)out (kj,, k,, co) into a synthesis similar to that given in Eq. (3a).  After carrying out 
the integrations over kz and co it follows that 

gaou,(Y, Z, l ) -  16~2w/~/7 _oo dk, ' _-,, d k " ' e x p [ - ½ b 2 ( k " - k " ) ' ~ ] ' ~ e x p [ i d ( k " - k l ) ] + e x p l - i d ( k " - ] " " ] l  

×exp( - i k~ ,y )  exp(ik;,yo) exp[ - (k;Z/4,8)aj ] exp{ - i z ( k ;? - /4 f l - f l )  1 expl ic tx / ' (k;?/4/ l - ,8)2+k~i  . 
(4) 

The waist of  the pulse is expected to be much less than the width of  the slits; i.e.. w<< 2b. For a typical optical 
interference experiment we can have 2b=  10 -5 m, 2d=  10 -4 m and/7= l07 m-~. The parameter a~ can be cho- 
sen to be equal to 10 r s m. In this case the pulse width w equals 10- ~ ~ m, which is much smaller than 2b. The 
integration given in Eq. (4) is very difficult to evaluate exactly because of  the square root argument of  the last 
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exponential term in the integrand. A paraxial approximation is not possible since there are no restrictions on 
the values of k, and kk. To overcome such a difficulty the change of variables 

ky=r, k;- &k,,=u, 

is utilized; it reduces Eq. (4) to the following form, 

d7 exp( - ta2b2) exp( - tt’w’) 

x{exp[i(dw2/2b2)7] exp( -i&)+exp[ -i(dw2/2b2)7] exp(idu)} 

xexp[ -iz(y-y,)] exp(iqy,) exp[ -iz(a2+2ss+r2)/4/I] 

Xexp[i(ct/4~)J(4~2+72)2-2a2(4~2-372)-407(4~2-72)+4~3~+~4]. (6) 

In this expression we have neglected w2 compared to b*. With 2b= 10 -’ m, the integration over u has a band- 
width of 4 x IO5 m-i, so Q-C /3= IO’ for all values of B contributing to the integral. For a photographic plate 
placed at z= L, our goal is to find the shape of the FWM pulse upon its arrival at z= ct, = L. Using the property 
that a//?< 1, together with a binomial expansion of the square root, neglecting terms of order o4 and 70’ and 
carrying out the integration over a, we obtain 

u,“,(Y, 4 h) = 
A(B) w(WL) 

16x 3/2/3 
exp( - f7’w’) exp[ -is(y-y,)] 

x(exp{-[d-y,+2L/i(7)]2/2dj+exp{-[d+y~-2L/1(7)]2/24}), 

where terms of order w2 dt/2b2 have been set equal to zero, 

(7) 

d=bZ+iL’ 1-72’4P 
B 1+7*/4/I 

Although the integral in (7) seems to be quite difficult to evaluate, general features of the solution can be ob- 
tained. First, it should be noted that the integrand has a large bandwidth (w-’ N 10” m-‘) determined by the 
term exp( - f ~‘7~). The rest of the terms contribute to a depression in the amplitude of the integrand that 
decays to zero at 7= 2p. The center of the depression at 28 is much smaller than w-l; as a consequence, most of 
the contributions to the integral come from the high frequency components, while the low frequency compo- 
nents contributions are relatively small and are only significant at the tails. We seek to estimate the order of the 
error introduced when the low frequency components are neglected and only the high frequency portion is re- 
tained, for which drrd’= b* - i(L/j?) and _4 (7) 2: ~/I/T. Pulling the term 1 /Jd’ out of the integration, the inte- 
grand has a maximum value of one. For LB d, e.g., L = 0.2 m, the amplitude of the integrand is exponentially 
small for 7~ 2/3 and increases to a maximum of unity for 7~ 1 O$b= 5 x 1 O9 m- ‘. The amplitude stays at this 
value until it decays to zero for 7> 4w-’ =4x IO” m-‘. Hence, neglecting the quantity 4L/?/7 compared to 
d+ y, sets the amplitude for 7~ 5 x lo9 m-l equal to unity and introduces an error of order of magnitude less 
than lo-’ times the peak value of the pulse around its center. This factor contributes significantly only to the 
tails of the pulse. If such an approximation is adopted, the integration over 7 can be easily carried out to give 

yb”,(X L, &I= 
A (8) exp ( WL 1 

877/3w expI- (~-h>*/w~l 

Xexp[ - (d2+v3/2(b2-WP)l 
Jb’-iL/jl [exp(b2f&j)+exp( - ,*f$j)] * (8) 
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It should be pointed out that what we really measure is the field's energy density which is proportional to 1 5rout I :- 
For L 2 / f l  z >> b 4, the square of  the amplitude of  the pulse is approximately given by 

L ~out(Y, L, tL)I 2= A2(fl) e x p [ - - 2 ( y - - y o ) Z / w  2] exp[ --/~?2f12(d2+)'o)/L 21 c o s Z ( f l d v o / l , )  . 
167~2LZw2 

(9) 

This is the main result of  this paper, where the field intensity is proportional to that o f a  Gaussian pulse of  width 
w centered around y = Yo, multiplied by the interference term cos 2 (dyo~/L)  exp ( - b 2B2y~ / L ~ ). For 3 = 2x/),, 
the distance between two zeroes of  the interference term is 2 L / 2 d  which is the distance separating the fringes. 
As the pulse approaches the screen (for z >> c t ) ,  its precursor extended field is symmetrically distributed over 
the two slits. This symmetry o f  the field with respect to the slits produces an interference effect. The resulting 
interference pattern, for a single pulse, will have such an extremely low energy density that it cannot be detected, 
except around its central bump. As the central portion of  the pulse goes through the screen, it will be guided by 
its precursor extended field onto a point on the photographic plate. When the center of  the pulse does not 
coincide with a zero of  the interference pattern, the energy of  the central portion will be delivered to an atom 
(or an electron in an a tom)  of  the photosensitive emulsion. This will induce a reaction that will appear as a dot 
on the plate. Such a blackened dot occurs on one of  the light fringes of  the unfolding interference pattern. Since 
the field is much weaker at the tails, its energy will be too small to be detected. A light beam containing a large 
number  o f  such wave packets or light particles would ultimately produce enough blackened dots to form the 
whole interference pattern. When the centers o f  the pulses end up on the zeroes of  the interference pattern, the 
amplitudes of  the pulses will be multiplied by zero and no atoms of  the emulsion will be excited, resulting in 
dark fringes. Furthermore, it should be pointed out that just behind the screen, i.e., for b 4 >> L2/ ]~  2, the square 
of  the amplitude will be proportional to exp [ - 2 ( y -  Yo ) 2 / W 2 ] multiplied by exp [ - ( d +_ y ) 2 / b 2 ]. This will give 
exponentially small values for Y0-+ d >  2b. Thus, detectors placed behind the screen will only detect photons 
going through one of  the two slits. 

For a large number  of  photons hitting the photographic plate simultaneously, tails that have been neglected in 
the case of  a single photon might add up and disrupt the interference pattern. This is not the case, however, 
because not all the photons will have the same center Yo- So, we have to integrate the square of  the amplitude o f  
the pulse given in (9) over all possible values ofyo. For example, we can assume that the centers o f  the photons 
in the incident beam have a Gaussian distribution 

N 
~(Yo) = - - ~  e x p ( - y Z / X 2 ) ,  

where S>> w represents the width o f  the beam and N is a factor related to the number  of  photons. An integration 
over Yo of  the individual intensities I 7Jout (Y, L, tL)l 2 in Eq. (9) multiplied by the distribution ~ (Yo) will result 
in a total square amplitude [ --outtu(a') (y, L, tL) I 2 independent of  the transverse variable Y0- Specifically, for typical 
values of  the parameters involved one obtains the total field intensity 

A 2 ( ] ~ )  N , 2 - - 2  
I ~o~,)(Y, L, tL)12= ~ e x p t - y  /25 ) e x p [ - b 2 f l 2 ( d 2 + y : ) / L  2 ] c o s 2 ( 3 d y / L )  , (lO) 

The individual Gaussian pulse o f  width w centered around y = Yo has disappeared, and the macroscopic interfer- 
ence term cos 2 ( t i d y ~ L )  exp ( - b 2 f l 2 y 2 / L  2 ) has replaced the one dependent on the specific center Yo. One should 
notice the difference between the present calculation and an approach based upon an integration over the inci- 
dent amplitudes ~nc(Y, z, t). The analysis leading to Eq. (10) emphasizes the individualistic character of  the 
wave packets used to represent the photons. Here the integration is over the intensities of  such wave packets as 
they arrive at the photographic plate; i.e. we are summing up all the blackened dots on the photographic plate. 
On the other hand, an approach that integrates the fields of  the incident wave packets produces a macroscopic 
incident field which is equivalent to the plane wave case. Thus, the model adopted in this paper can accommo- 
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date the results of  two slit experiments involving single events (occurring sequentially or at the same time) for 
photons having different centers Yo. 

In this paper, we have shown that a special nondispersive wave packet, namely the focus wave mode, can be 
used to explain how a single photon ends up on one of the light fringes in the presence of a screen containing 
two slits. Unlike de Broglie's singular solution [ 3 ], the FWM pulse is continuous and nonsingular with very 
large amplitudes around its center. This field, which does not have a finite total energy content, consists of a 
central "bump"  of very large amplitudes sitting on an extended "background" field of  very small amplitudes. 
The "background" field provides the FWM pulse with a nonlocality that should be contrasted with the locali- 
zation of the central bump. The localized bump can be used to represent a particle while the rest of the field will 
behave as a wave. 

An approach, that adopts nondispersive wave packets to represent stable particles undergoing single events, 
is not just a new interpretation of quantum mechanics, but an entirely new path that ought to be investigated 
[ 6-8 ]. Besides being capable of  explaining the results of ¥oung's  experiment, wave packets such as the FWMs 
can account for the wave-particle duality. Also, the process dealt with in this paper is nonlocal because the field 
exists everywhere, but it is causal in the sense that the central particle-like portion of the field can be traced 
starting with its initial position going through the screen until it ends up on the photographic plate. The use of  
nondispersive wave packets in modelling particles [ 6-8,12 ] (e.g. photons) emphasizes the importance of their 
localization over the finiteness of  their total energy content. Such wave packets can have very large amplitudes 
around their centers compared to their tails. Thus, one can assume that the energies usually observed in experi- 
ments result mainly from interactions of  such central bumps. The waist of  the central portion of the FWM pulse 
w= ~ decreases as the frequency 09 = tic increases. Thus, a photon modelled by such a pulse becomes more 
localized as the frequency is increased. Since the energy of a photon increases with frequency, thus, the field of  
the central bump of the FWM pulse is expected to become more intense as it becomes more localized. It is worth 
mentioning that a similar behavior of the photon field has been suggested by Bacry [ 13 ] within a group-theoretic 
approach to the photon localization problem [ 14 ]. 

One should stress, however, that even though the wave packets we are dealing with have an infinite total 
energy content, finite energy structures could be constructed as a superposition of the FWM pulses around a 
mean wave numberflo. This could be done along the lines of  Barut and Bracken's interesting attempt to construct 
finite energy solutions by superimposing spherical electromagnetic waves exhibiting particle behavior as they 
propagate in free-space [ 15 ]. In particular, such solutions have localized envelopes that travel with a group 
velocity vz< c and a phase velocity vph> c. In the aforementioned work [ 15 ], Barut and Bracken have been able 
to show that a superposition over a narrow spectrum with a mean frequency 090 produces a massive particle-like 
wave packet that has an energy proportional to 090 and a spin varying linearly with the angular momentum 
parameter m. 

Finally, it should be emphasized that the wave function used here is a classical entity that travels in physical 
space, in sharp contrast with the quantum mechanical wave function that exists only in an abstract space. As a 
consequence, there is no collapse of  the wave function, but instead we have the action of the central part of  the 
field which can represent a light particle. Furthermore, the extended wave structure may provide a basis for the 
existence of a "quantum potential" [ 4 ]; or can be linked to the notion of an atemporal transaction [ 5 ]. The 
notions of  a "pilot wave" or a "quantum potential" introduced to guide the particle through the screen are 
replaced in our work by the precursor field of the FWM pulse. 

The authors would like to acknowledge that this work was performed in part at the Lawrence Livermore 
National Laboratory under the auspices of the US Department of Energy under contract W-7405-ENG-48. 
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