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A systematic approach to the derivation of exact nondispersive packet solutions to equations
modeling relativistic massive particles is introduced. It is based on a novel bidirectional
representation used to synthesize localized Brittingham-like solutions to the wave and
Maxwell’s equations. The theory is applied first to the Klein—-Gordon equation; the resulting
nondispersive solutions can be used as de Broglie wave packets representing localized massive
scalar particles. The resemblance of such solutions to previously reported nondispersive wave

packets is discussed and certain subtle aspects of the latter, especially those arising in
connection to the correct choice of dispersion relationships and the definition of group
velocity, are clarified. The results obtained for the Klein-Gordon equation are also used to
provide nondispersive solutions to the Dirac equation which models spin 1/2 massive

fermions.

I. INTRODUCTION

A large body of work has been inspired recently by Brit-
tingham’s focus wave mode (FWM) solutions' to Max-
well’s equations. Such solutions are built up of a Gaussian
envelope, traveling in one direction, multiplied by a plane
wave traveling in the opposite direction. The FWMs have
the appealing features that they undergo only local varia-
tions, they do not spread out as they propagate in free space,
and they travel with the speed of light in straight lines. The
vector FWMs were derived by Brittingham' in a heuristic
way. More motivated derivations were carried out by Sez-
giner,” Belanger,® and Ziolkowski* who obtained FWM so-
lutions to the scalar wave equation and used them as Hert-
zian potentials to determine the corresponding vector
solutions to Maxwell’s equations. Although the FWMs have
an infinite total energy content, they still have a finite energy
density, a property they share with sinusoidal plane-wave
solutions.

The popular use of plane waves to represent moving
particles defies our intuitive notion of particles as localized
solutions to field equations. Other, localized solutions, e.g.,
Gaussian pulses, tend to spread out as they propagate in free
space. In contradistinction, the FWM solutions have the at-
tractive property of staying localized for all time; as a conse-
quence, they are more suitable for representing light parti-
cles (photons). The importance of this property is quite
clear in view of the fact that particle localization is the only
phenomenon that links us to the microphysical world. For
example, a track left by a particle in a cloud chamber or a dot
left by a photon on a photographic plate are just manifesta-
tions of the localization of particles, a concept that has been
undermined in the current interpretation of quantum me-
chanics.
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These ideas concerning particle localization are not
completely new; they reflect a position that was advocated
by Einstein and de Broglie,>® among others. In their view, a
particle is perceived as a high concentration of a field gov-
erned by a partial differential equation, e.g., Maxwell’s equa-
tions, the Klein—-Gordon equation, etc. This highly concen-
trated field, or “bunch field,” must remain localized and
must not spread out as the particle travels in space-time. In
this picture, the bunch field is incorporated in an extended
wave field, thus combining the wave and the corpuscular
aspects of matter. As in the case of massless particles, this
interpretation of the wave-particle duality should be con-
trasted with Bohr’s complementarity principle, whereby a
particle manifests itself either in the form of a wave or in the
form of a corpuscle, with both characters never being ob-
served simultaneously.

If the idea of the bunch field is adopted, a representation
of a particle in the form of a wave packet is one possibility.
Until recently, however, it was believed that linear field
equations cannot support continuous nonsingular wave
packets that do not spread in free motion. (This is not the
case for the massless FWMs and the massive nondispersive
wave packets derived by MacKinnon.”® ) The other possi-
bility is to use a “singularity solution” for representing the
physical reality of a localized particle. Such a singular solu-
tion to a linear field equation is an approximation to a more
general solution of a corresponding nonlinear equation. The
nonlinearity has a larger effect near the vicinity of the singu-
larity, where it keeps the field amplitude large but finite. One
of the first attempts to incorporate such ideas was de Brog-
lie’s in connection with his theory of the “double solution.””®
Other attempts include Madelung’s hydrodynamical mod-
el'® and de Broglie’s “pilot wave” theory,® both of which
inspired Bohm'"'? to develop the idea of the quantum po-
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tential and to use it to give a causal interpretation of quan-
tum mechanics. A common feature of these theories is that
the particle kinematics can be derived from the information
incorporated in the phase of a quantum mechanical wave
function ¥ = |¥|e”, where both |¥| and ¢ are real and the
velocity of the particle can be given as

u=(1/m)vg, (D)

a relationship known as the “guidance formula.”® More re-
cent developments, along the same lines, include the intro-
duction of solitons into field theories,’* through the study of
fields modeled by nonlinear equations, e.g., the cubic Schro-
dinger equation, the cubic Klein-Gordon equation, the sine-
Gordon equation, etc. A rather broad class of such equations
has been proposed for modeling localized particles. It is not
very clear, however, whether a unique set of equations could
be agreed upon to represent massive particles.

It is our purpose in this exposition to investigate the
possibility of using Brittingham-like linear structures to rep-
resent massive particles. There are two options that we
would like to examine. The first one is to think of these non-
dispersive wave packets as classical billiard-like solutions. In
this case the velocity of the particle is the same as the velocity
of the wave packet’s envelope. The other choice is to follow
de Broglie and consider such solutions as quantum mechani-
cal objects whose kinematics can be derived from their
phases as in Eq. (1). Since the original FWMs are solutions
to the scalar wave equation or Maxwell’s equations, they
represent massless particles and their envelopes travel in free
space with the speed of light. In the case of a massive particle,
one should find for the Klein—-Gordon equation or the Dirac
equation solutions analogous to the FWMs, but with their
envelopes traveling at some group velocity v, smaller than
the speed of light c. A previous attempt'* was made to find
localized solutions to the Klein—-Gordon equation. These so-
lutions were approximate, with an envelope moving at a
group velocity v, very close to the speed of light c, or exact
ones with an envelope traveling at the speed of light, a fea-
ture that makes them physically unattractive. A Brit-
tingham-like solution to the massive Dirac equation has nev-
er been published before. However, Brittingham-like
solutions to the massless Dirac equation and the spinor wave
equation have been derived by Hillion.'>'® Again, all these
solutions have dealt with massless fields and, consequently,
they have envelopes that move in straight lines with the
speed of light. It is our aim in this paper to introduce a meth-
od for obtaining Brittingham-like solutions to massive fields,
in particular, the massive scalar field modeled by the Klein-
Gordon equation and the massive spinor field modeled by
the Dirac equation. The work is based on an embedding
technique that has been utilized to derive a natural basis for
the synthesis of Brittingham-like solutions. This novel basis
has been termed the bidirectional representation'’ because it
is a superposition of elementary solutions built up of a prod-
uct of two plane waves, one traveling to the left and the other
to the right. Our plan is to give a brief introduction to the
bidirectional representation in the next section and use it to
derive the scalar FWMs. This method will be applied to the
Klein—-Gordon equation in Sec. II1, where solutions analo-
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gous to the FWMs, but moving with a group velocity v,, will
be derived. It will be shown that a special case of such solu-
tions is the nondispersive wave packet derived by MacKin-
non.”* A comparison of MacKinnon’s work to ours will be
carried out in Sec. IV. Nondispersive localized solutions to
the Dirac equation will be derived in Sec. V and a general
discussion of the results will be given in Sec. VL.

Il. THE BIDIRECTIONAL REPRESENTATION

The bidirectional representation'’ was originally devel-
oped in order to provide a natural basis for synthesizing Brit-
tingham-like solutions. In this section, we shall outline the
salient features of this technique and use it to derive the sca-
lar FWMs.

Consider the general equation

[0+ 8(—¥)|¥(r,) =0, reR?, >0,  (2)

where ﬁ( — iV) is a positive, self-adjoint, possibly pseudo-
differential operator, which can be decomposed as follows:

QW) =4(—id,) + [Q(— V) —d(—id,)]

=A(—id,) + B( — ¥, —id,). (3)
The manner in which the operators 4 (—id,) and
B( — iV, — iV,) are chosen provides a great deal of flexibil-
ity; the operator 4( — id, ) may or may not be a natural part
of (}( —iV) and the choice of the preferred variable z is
arbitrary. A splitting of the type given in (3) changes Eq.
(2) to the form

92¥(r,1)
+A(—id)V(r,t) + B(— ¥y, —id,)¥(r,t) = 0.
(4)

We introduce, next, the Fourier transform with respect to
the transverse (with respect to z) variables, viz.,

1

Y(r,t) =
(2m)?

f dx P(k,z,t)e ™ P, (5)
RZ

The spectrum 1,7/(K,z,t) is governed by the equation
32h(x,z,t) + A( —id,) P(wz.0)

+B(—«, —id,)P(x,z,t) = 0. (6)
In terms of new variables

=z—tsgn(a)a ‘4 (a), (7a)

n=2z4+tsgn(B)B ~'4*(p), (7b)

an elementary solution to Eq. (6) is given by

b, (zLB,a) = e~ BD g+ BrBD (8)
provided that the following constraint is satisfied:
— [4(a) + 4(B) + 2 sgn(a)4 *(a) sgn(B)4 '*(B)

—A(B—-a)] + B(x,(B—a))=K(apxk) =0. (9)
The elementary solution given in Eq. (8) consists of a prod-
uct of two plane waves traveling in opposite directions, with
wave-number-dependent  phase  speeds equal to
sgn(a)a~'4'*(a) and sgn(B) B ~'4 *(B), respectively.
A general solution to Eq. (2) can be constructed from the
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elementary solutions of the type given in (8) by a linear
superposition; specifically,

W(rt) = 1 f dxe"‘"’f daf dp C(a,B,x)
27)? Jr? R! R'
X et ez ~B1BLOS K (a,Bk) ]. (10)

A detailed analysis of this representation and its relation to a
Fourier superposition can be found in Ref. 17, where it was
applied to various classes of equations, e.g., the 3-D scalar
wave equation, the 3-D Klein-Gordon equation, and the
telegraph equation. As mentioned earlier, the resulting solu-
tions had envelopes moving with the speed of light, a proper-
ty we would like to avoid in the next section.

As an example, we shall apply the bidirectional repre-
sentation to the 3-D scalar wave equation, viz.,

2 (r,t) — AV (r,t) =0, (1

where ﬁ( — iV) is now defined as
Q(— V) = — V2 (12)

We can choose the 4 ( —1id,) and 3‘( — iV, —id,) opera-
tors as follows:

A(—id,) = — 232, (13a)

B(—iV,, —id,) = — V2, (13b)
This decomposition results in the characteristic variables

f=z—ct and n=2z+ct, (14)
and the constraint relationship

K(afBk)= —4af + x> =0. (15)

Specializing the representation given in Eq. (10), an azi-
muthally symmetric solution to the scalar wave equation can
be written explicitly as

Y(r,t)
1 * ® * Kz)
dx KJ, d dadlap— L
(217)2£ KK"(KP)JO BJ; ¢ (aﬁ 4

XC(G,B,K)G_ ia(z~ct)ei/3(z+cl) (16)
or
W(r) = —! F dxr dB £ 7, (xp)
’ 2m)? Jo o B 0
xC (% ,B,K)e — /4B i (17)

upon carrying out the integration over « in Eq. (16).
Let us choose the spectrum
CUC/ABBK) = (JT/2)oe= BB e/ (18)

Carrying out the integration over « and /3 in Eq. (17) and
taking the limit as 0 — <, we obtain the zeroth order FWM
solution;'” specifically,

W(rt) = [4m(a, +i5)] ~le PR (19)

It has been demonstrated by the authors'’ that for very
small values of @, this function behaves like a localized pulse
that moves in the positive z direction with speed c. Since a, is
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not dimensionless, we can use the more stringent condition
B'a; €1. A good estimate of the waist of such a pulse
is (a,/B")"* as a consequence, the condition
(a,/B’)"*<1/B’ has to be satisfied. If 8 is assumed to be a
characteristic wave number, with a corresponding wave-
length A =2#/B’, the condition given earlier becomes
(a,/B’)'* <A, and for W(r,?) to represent a localized light
pulse, its waist must be much less than the characteristic
wavelength of an extended wave structure associated with it.
If, on the other hand, B’'a, > 1, the plane-wave term
exp(iBn) takes over and ¥(r,t) degenerates into a nonloca-
lized sinusoidal function traveling in the negative z direction.
Solutions such as the one in Eq. (19) can be very inter-
esting when it comes to modeling the microphysical world,;
they are characterized, however, by infinite total energies. A
superposition of FWMs, suggested by Ziolkowski,* yields
finite energy, highly localized pulses of unusual decay pat-
terns. These slow energy decay patterns have been con-
firmed experimentally,'® and it has been shown that specific
pulses, e.g., the modified power spectrum (MPS) pulse,'®
hold together for longer distances than Gaussian pulses.

lll. THE KLEIN-GORDON EQUATION

In this section, we shall apply the bidirectional represen-
tation to the 3-D Klein—-Gordon equation given by

AN (r,t) — VW (r,t) + ©’c*V(r,t) =0, (20)

where = mgyc/#, m, being the rest mass and # is Planck’s
constant divided by 27. A comparison of this equation with
(2) shows that

Q(— V)= — V2 + pic®. (21)

In our previous work'* the operator ﬁ( — iV) was split
as follows:

O(—iV)=A(—id,) +B(— N7 —id,),  (22)

A(—id,) = —c'd?, (23a)

B(— iV, —id,) = — V2 + 2. (23b)
This decomposition led to the characteristic variables

(=z—ct, =z+ct, (24)

and, upon superposition, to a wave packet with an envelope
moving with the speed of light, exactly as in the case of mass-
less particles.

. In the following, we propose to split the operator
Q( — iV) in a more physical way so that we can obtain enve-
lopes that move with a group velocity smaller than c; specifi-
cally,

Q(—iV) =A(—id,) + B(— V,, —id,), (25)
A(—id,) = — 2% + u’c?, (26a)
B(—iVp —id,) = — V2. (26b)

A A
This choice of the operators 4 and B gives rise to the charac-
teristic variables

&=z —ct[sgn(a)/al(a® +p*)"?, (27a)
n=z+ct[sgn(B)/B 1(B*+ ") (27b)

and the constraint relationship
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K(aBx) =K — [u? + 2aB + 2 sgn(a) (a&® + p*)'"?

Xsgn(B)(B*+u*)?] =0. (28)

Following the recipe given in Sec. II, a general solution
to Eq. (20) can be written as follows:

1 f dxe-"*'Pf daJ- dB
(2m)? Jr2 R! R!

Xc(a’ﬂ,K)B[K(a,ﬁ,K)]
Xexp[ — iafz — ct sgn(a) (a® + p*)"*/a)]

XexpliBlz + ct sgn(B) (B> + u>)*/B)]. (29)

Analogously to the FWMs, we choose the spectrum entering
into (29) as

Cla,Bx) = C(a,k)8(8 —By).
It follows, then, that
‘I’(l‘,t) = G( p,Z,t)

Xexp[iBo(z + ct sgn(Bo) (B 5 +1*)'*/Bo)],
(31)

Y(r,t) =

(30)

where

G(p,z,t)
1
C@n)?

f dx e"‘"’J da C(a,x)8[K(a,By.k) ]
R? R'

Xexplia(z — ct sgn(a) (a® + u*)*/a)]. (32)

We can find explicit FWM-like solutions to Eq. (20) by
choosing a spectrum C(a,k) and carrying out the integra-
tions in Eq. (32). This is a very tedious task, however, espe-
cially when dealing with a complicated constraint relation-
ship such as the one given in Eq. (28). Alternatively, we can
find the differential equation governing G(p,z,7) by substi-
tuting (31) into the 3-D Klein—-Gordon equation. If this pro-
cedure is implemented, we obtain

28,(8, — vy '9,)G(p,z,t) + (32 —c~%3?)

X G(p,zt) + V7G(p,zt) =0, (33)
where v, is a group velocity given by
U =Cﬁo/Sgn(ﬁo)(ﬁé +#2)V2- (34)

It should be noted that v, can be derived by differentiating
the angular frequency characterizing the left-going plane
wave with respect to the wave number 3,,.

Motivated by the ansatz leading to the FWMs in the
case of the scalar wave equation and by the existence of the
convection term (4, — v, '9)G (p,z,t) in Eq. (33), we seek
solutions of the form

G(p.z,t) =G (p,7), (35a)
T=y(z —v,t), (35b)
y=>0=uv/c?) "' (35¢)

Equation (33) becomes, then, a hyperbolized Schrédinger-
like equation, viz.,

i4B,vd.G(p,7) + 32G(p,7) + V3G(p,7) =0. (36)

It is now clear that v, is the group velocity associated with a
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classical billiard-like particle represented by the enveloped
of G(p,7). In our previous work,'* we obtained solutions to
(36) for > 1, or, equivalently, for v, =c.To obtain an exact
solution to Eq. (36), we express G(p,7) in the form

— 2ByyT

G(p,7) =g(p,7)e (37)

A substitution of (37) into (36) results in the Helmholtz
equation:

Vig(p,7) + 32g(p,7) + 4B37Yg(p,7) =0. (38)

The steps leading to (38) are interesting by themselves
since they reduce the 3-D Klein—Gordon equation, which is
hyperbolic, to a 3-D Helmbholtz equation, which is elliptic.
More importantly, however, a solution to Eq. (38) repre-
sents an envelope that travels with a velocity v, and retains
its shape for all time. As a consequence, a large class of exact
nondispersive solutions to the 3-D Klein—-Gordon equation
can be derived from exact solutions to the Helmholtz equa-
tion. One possible solution can be expressed in terms of the
spherical Bessel functions, viz.,

g(p,7) =j, (2B, yR)P [ (7/R)cos(m¢),

where R = yp® + 77, j, is the spherical Bessel function of
order / and P} is the associated Legendre function. Now,
exact solutions to the Klein-Gordon equation can be written
as follows:

Vi (1,8) =, (2B, YR)P ' (7/R)

X cos(meg)e  2PTghm, (39)

For azimuthally symmetric solutions (m = 0), the ze-
roth order mode is given by

W, (r,1) = ji, (2B, ¥R)e ™ 2P77gPom, (40)

Its amplitude decreases as p ' in the transverse direction
and as 7~ ' in the direction of propagation. This is a property
shared by all even modes (/ = even integer). On the other
hand, odd modes are more localized in the transverse direc-
tion. To see this, consider the first-order mode, viz.,

\Pm (r,t) =j1 (2/307/R)(T/R)e_izﬁ‘)rreiﬁ”ﬂ- (41)

For large arguments, j, (z) ~sin(z — 7/2)/z; consequently,
W, (r,1) decays as p ~ * in the transverse direction, but still
decays as 7~ ' in the z direction. These decay properties indi-
cate that the solutions given in Eq. (39) have infinite total
energy content, a feature they share with plane-wave solu-
tions and Brittingham’s FWMSs. In analogy to the FWMs,
localized slowly decaying solutions to the Klein-Gordon
equation, with a finite energy content, can be synthesized as
a superposition of the wave packets given in Eq. (39).

As long as W(r,?) is treated as a classical field, the kine-
matics of a particle represented by it can be derived from the
energy and the momentum densities of a Klein-Gordon
field, viz.,

H(r,t) =c 29,Y(r,0)d,V*(r,1)

4+ VW (r,2) - V¥*(r,t)
+ 1P (r,)¥Y*(r,0),

P(rt) = —c ™ *[3,¥(r,))VI*(r,2)

+ 3, Y*(r,)) V¥ (r,0)].
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As mentioned earlier, solutions of infinite energy content,
such as those given in Eq. (39), can be superimposed to
obtain finite energy ones. In this case, the integration of
H(r,t) and P(r,t) over all space will give the energy and the
momentum of the particle represented by such solutions.
Another possibility is to search for nondispersive bump solu-
tions of finite energy densities. For a solution of this kind the
central portion of the field has a larger energy content and
small oscillations compared to the tails. The relatively large
oscillations of the tails cancel out on the average when such a
field interacts with a large scale measuring instrument.
Space will appear to be empty except for the large amplitude,
oscillation-free central portion. In this case, the energy and
the momentum of the particle can be calculated by integrat-
ing the energy and momentum densities over the central part
of the field. A crude example of what we mean is the integra-
tion of the one-dimensional function sin(x)/x over all values
of x from — o to + . This will give a value of 7 which is
approximately equal to the area under the first lobe of the
function between its first two zeroes. In an interaction of
such a field with another bump field (e.g., the FWM pulse),
the interaction will be very large when the central parts of
both fields overlap; at the same time the tails will be averaged
out. In such a case the large amplitude central portions of the
fields are the only parts that really contribute to the interac-
tion and can be measured. An interaction theory is needed to
provide a more rigorous and complete discussion of this pos-
sibility; the development of such a theory is out of the scope
of this work.

Solutions describing nondispersive wave packets are not
restricted to the form given in Eq. (39); as mentioned ear-
lier, any solution to Eq. (36) will give a wave packet that will
keep its form as it travels in free space. A special case of these
solutions has been derived by MacKinnon,”®* who demon-
strated that a de Broglie wave packet can be formed by as-
suming that the phase of a particle’s internal vibration is
independent of the choice of a reference frame. MacKin-
non’s solution is almost identical to the ¥, mode, especially
when the terms in the exponent are rearranged so that

W, (1) =j, (2B, ¥R)e ™ B+ e [z~ (e 1 (42)

Because of the close resemblance of the two solutions, it is of
interest to compare more closely the methods leading to
them. This comparison will be carried out in the next sec-
tion, where the difference between the interpretations of the
solution in (39) as a classical wave function and as a quan-
tum mechanical wave packet will be investigated. A discus-
sion will also be provided of the dispersion relationships in-
volved and their effect on the kinematics of a free particle
represented by a wave packet such as the one in Eq. (42).
Before we proceed to the next section, it is worthwhile to
point out that the de Broglie relationship between the group
velocity v, of the envelope and the phase velocity v, of the
associated plane wave (i.e., v, v, = ¢?) is embodied auto-
matically in Eq. (42) by simply imposing the requirement
that W (r,¢) should be a nonsingular continuous wave packet
that does not disperse with time. It is quite interesting that
the localization requirement alone can lead to such a rela-
tionship, without any reference to an “internal clock” of the
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particle, or the need for the assumption that the phase of the
internal clock of the particle be equal to the phase of the
associated wave, two concepts utilized by de Broglie to de-
rive the relationship v, v, = ¢* in his attempt to maintain
the invariance of the relationship mc* = Av for all frames of
reference. The particle-wave velocity equation v,,v, = ¢’
has been considered®® to be a generalization of the more
limited velocity relation v, = v, =¢? which is true for
massless particles only. Moreover, it has been argued by
MacGregor® that the relationship v, v, = ¢ should be
taken as a basic postulate of special relativity, replacing the
popular postulate that the speed of light in free space has the
value c in all inertial frames.

IV. NONDISPERSIVE WAVE PACKETS AND
DISPERSION RELATIONSHIPS

The similarity between MacKinnon’s solution and the
Yo mode 1is very clear when we recall that
Jo(x) =sin(x)/x. In order to examine these two results
more carefully, we first write MacKinnon’s 3-D wave pack-
et® as

W, (r,t) = [sin(kR)/kR ]e1°"' ~*1, (43)
where

k=p, (44)

R =\p* + 7 (z—ur). (45)

The parameter &, was defined by MacKinnon in the case of
the 1-D solution’ as

ko = yulu/c). (46)
In the 3-D case, it is only correct up to a numerical factor of

v2, as will be shown later. The frequency w(k, ) entering into
Eq. (43) was defined as

wlk)) —w(ky) =ulk, —ky), 47)
with the provision that
9, (ky) =u and 33 w(ky) =0. (48)

These conditions were claimed by MacKinnon to be neces-
sary for the wave packet to retain its form for all time. The
velocity u of the particle is derived from the derivative of
(kg ) with respect to k,. However, the explicit dependence
of w(k,) on k, is not very obvious, and the adequacy of the
definition given by (47) is questionable.

Our aim in this section is to clarify these issues through a
detailed analysis of the properties of the solutions given in
Eqgs. (42) and (43). The main difference between the two
solutions is that ¥, has been treated, until now, as a classi-
cal nondispersive wave packet with an envelope that moves
with a velocity v, defined in Eq. (34). This is not, however, a
unique velocity as will be shown in this section. The wave
function ¥,,, on the other hand, is considered to be a quan-
tum mechanical entity moving with a velocity # derived
from a dispersion relationship as in Eq. (48). In order to
compare the two wave functions, we will consider ¥, for
the rest of this section, to be a quantum mechanical wave
packet. In this case, the group velocity v, might not be con-
sistent with the fact that the kinematics of a particle should
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be derived from its phase factor. To check such an inconsis-
tency we can refer to the particle’s energy and momentum
relationships. As stated earlier, the energy and the momen-
tum can be calculated by taking the derivatives of the phase
of W, with respect to time and space, respectively, viz.,

E=1fid,¢, p= —#iVe. (49)
Using Wy, (1,¢) in Eq. (42) together with definition of v,

given by Eq. (34), we obtain the following expressions for
the energy and the z component of the momentum:

¢ [1+ /]

= Mo —, (502)
[1—-v./c%] [1—vz/c?]
2

P, = Vs g L1+ ¥/ ] (50b)

z

[1—2/] " [1—2/e]

These are incorrect expressions unless we use an apparent
rest mass

[1+ vi/e?]

My =my —2 =,
R P2

(51)

which is identical to the “apparent mass” introduced by de
Broglie® in order to guarantee the consistency of the equa-
tions of motion of particles represented by such wave pack-
ets. The apparent mass is defined as

M, =\JmZ + 6m2, (52a)
§m3 = (#/¢®) (1/¢) (¢33 — V). (52b)

The quantity ¥ in Eq. (52b) is defined through the relation-
ship W (r,t) = ¢[R(r,t) 1f(z,1). To arrive at the definition of
M, given in (52), one should take into account that
R = \[p* + ¥*(z — v,1)* and that B, is related to v, through
Eq. (34), from which one has
Bi=u W2/ /(1 —vi/cP).

The redefinition of the mass M,, as given in (51), pro-
duces the expected energy and momentum relations. The
results are physically unattractive, however, because of the
dependence of M, on v,. On the other hand, MacKinnon®
has indicated that his solution cannot suffer from such a
problem because, for |¢| = sin(#R)/¥R, it follows that
S&my,, = u#i/c and the apparent mass reduces to

M0=\/§mo. (53)

To overcome the difficulty associated with the solution
W, (r,¢) obtained by utilizing the bidirectional representa-
tion, we can start with the ansatz

W(r,1) = G(p,z, )™+ /™9, (54)

where, now, the particle velocity, designated by u, is left
undefined. Substitution of (54) into Eq. (20) gives a gener-
alization of the partial differential Eq. (33), viz,,

IZBO(az —u- lax)G(pyz,t) + (az - C_za%)G(p,z,t)

+ V3G(p,zt) + B3y~ 2(%/u?) — u)G(p,zt) =0,
(55)

where

y=(1—u/c?)" "
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Motivated by the convection term on the left-hand side of
Eq. (55), we can choose

— 2ByyT

G(p,z,t) =g(p,7)e , (56)
which reduces (55) into a Helmholtz equation; specifically,

Vig(p,m) +328(p,7) + x’g(p,7) =0, (57a)

7= y(z — ut),

=487+ B3/ (/) — . (57b)

A solution to the Klein—-Gordon equation can be written
now as follows:

Y(r,t) = [sin(yR)/yR ]

X exp[iBo (1 + /)P (z — (*/w)1)].
(58)

It should be noted that y is identical to MacKinnon’s k. The
value of u = u(3, ) can be deduced from the algebraic rela-
tionship (57b). Instead, we introduce the change of vari-
ables

ky =Bo'}’2(l + /), (59)

which yields, upon substitution into Eq. (57b), the follow-
ing expression for the velocity:

u= +cky/Jk3+x* +u1*. (60)

In the case of MacKinnon’s wave packet, ¥ was treated as a
parameter independent of k,. However, such an assumption
does not make sense because the relationship p, = #ik, for
the momentum implies that p, depends on k,, and one ex-
pects the velocity to change as the momentum varies.

The definition of k, given in (59) changes the wave
packet into the form

W(r,t) = [sin(yR)/yR 1“5, (61)
where
wlky) = (/u)k,. (62)

An explicit dispersion relationship for @(%,) can be found
by combining Eqgs. (60) and (62); specifically,

olky) = + ek +x*+1°. (63)

The positive and negative signs correspond to positive and
negative energies, respectively. It is tempting to think of y
and k, as transverse and longitudinal wave numbers, respec-
tively. This is not the case, however, and for the wave packet
to represent a quantum mechanical particle moving in free
space, we need to introduce the notion of an apparent mass
M,, as defined in Eq. (52). Itis straightforward to show that
M, = (y* + p*)""*#/c, and using Eq. (63) we arrive at the
familiar energy momentum relationship

E= fcp*+ ML, (64)

where we have made use of the relationships p = #ik, and
E =fiw(ky).
If we choose y = u, the velocity relationship reduces to

u=cky/\ ki +2u°, (63)

which resembles the group velocity of a 1-D wave packet

with an apparent mass M, = \2u#/c. Furthermore, using
Eq. (65), an expression for k, can be easily derived, viz.,
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ko =\2yp(u/c), (66)
which is the correct definition of k, for the 3-D wave packet.

It should be pointed out that the velocity expression
given in Eq. (60) satisfies neither (47) nor the second provi-
sion in Eq. (48), i.e., the conditions claimed by MacKinnon
as necessary for the construction of nondispersive wave
packets. The similarity between the definitions of 4 and v,
should, also, be noted. Beside the factor of v2, which appears
in the apparent mass, i.e., u?—2u® = (M, /#c)? the main
difference between the expressions (34) and (65) is that 3,
is replaced by &, . The velocity u, on the other hand, leads to
the correct kinematics only because the momentum and en-
ergy operators are specified as in Eq. (49). If these operators
are defined differently, we need a velocity different from u to
get the correct kinematics.

It can be deduced from the comparison carried out in
this section that the velocity # and the wave numbers 8, or
k, enter as parameters that can be defined freely within the
limits set up by the dispersion condition (57b). The transfor-
mation (59) was introduced in order to demonstrate that
one can arrive at MacKinnon’s solution as a special case for
the choice of ¥ and 3. It is very important to emphasize this
freedom and to point out that different choices can lead to
various kinematics depending on the manner in which the
quantum mechanical operators are specified.

V. THE DIRAC EQUATION

The exposition given in Sec. II might give one the
impression that the bidirectional representation is only ap-
plicable to second-order equations that are quadratic in the
time derivative. This is not the case, since it can be applied to
the Schrodinger equation as well as the Dirac equation. In
this section, the de Broglie wave packet derived in the case of
a scalar Klein—-Gordon field will be used to find nondisper-
sive wave packets for the vector fields representing massive
spin 1/2 fermions. Such particles are naturally represented
by the Dirac equation. It is well known, however, that fer-
mions can be represented rather satisfactorily by a spinorial
form of the Klein-Gordon equation.?'

We begin with the second-order equation:

(ic='3, + V) (ic '3, — oV)d(r,t) = Ph(r,t),  (67)
where ¢ are Pauli matrices, viz.,
0 1 0 —i 1 0
U"z[l o]’ ”yz[i o]’ ”zz[o —1]’
(68)

and ¢(r,t) is a two-component spinor. Making use of the
properties of the Pauli matrices it can be shown that Eq.
(67) can be reduced to the two-component spinorial Klein—
Gordon equation:

(¢7297 — V)P(r,t) + pd(r,t) = 0. (69)

To find a nondispersive packet solution representing a
massive spin 1/2 field, we can choose a solution to Eq. (69)
similar to that given in Eq. (61); namely,

¢(l‘,t) — [Za]jo (XR)ei(m(ko)l—koz)' (70)
b
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This spinor field can be used to derive solutions to the Dirac
equation:

J
(7’,, o, +,u)\l’D(r,t) =0,

(71

The definitions of the gamma matrices entering into this
equation are given in Ref. 21; ¥, (r,7) is a four-component
spinor defined as follows:

g () + ¢5(r,1)
#R(r,) —g*(r,n)]"
The two-component spinors ¢*(r,z) and ¢*(r,t) are related
to ¢(r,t) given in Eq. (70) as follows:

¢t (r,t) = $(r,1),

Yy (rt) = (72)

(73a)

R (r,0) = (i/u)(c™ '3, — V) P(r,1). (73b)
Carrying out the operations indicated in (73b), we find that
2
(2

V() = (74)

where

o = {1+ Ly oo L
¢ uR

k,
+ (1 —i——")io (xR)]
pe p

+ ig,xj, (YR) _(x___ﬂ)_,

74
R (74a)

u

= i R EERL g i1 L)y
UR c

Xy (R Z—H1).
uR

~(1_/“‘:’—6Jr'l‘l—")jo()(k)], (74b)

¥s =4, [f(l + %)x/, R ————(";R“”

k
X —(1+—“’—+—° 'O(XR)]
pe  p

(x—i)

s L
7 (T4c)

+ i, ) (XR)

Ys = i$, xj1 (YR) L) és {i(l - —))(
UR c

XJi (XR)f(_z:l‘L)_
MR

k
+(1 +%—7O)io(XR)]-
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The four independent solutions to the Dirac equation
can be directly obtained from Eq. (74) using the negative
and positive energy values of @ (%, ), in addition to choosing
#, and ¢, so that two independent solutions for ¢(r,?) can be
obtained, e.g., ¢, =0,¢, = land ¢, = 1, ¢, = 0. These so-
lutions seem to be quite complicated; nevertheless, they rep-
resent a field peaked around the origin that travels in a
straight line in free space and does not disperse for all time.
Despite the complicated form of the solutions, still some
physical results can be obtained. For example, the four inde-
pendent solutions given in Egs. (74) are not eigenspinors of
the helicity operator 3, defined as

s [0, 0]
1o g,

Moreover, if we choose ¢, = 1 and ¢, = 0, the solution giv-
enin (74) is still not an eigenstate. We are mainly interested,
however, in the large amplitude portion of the field around
the center of the pulse (x = 0, y = 0, z = ut). In this portion,
J1 (xR) =0, while j, (YR) = 1. Therefore, the components of
the spinor given in Eq. (74) can be approximated around the
center of the pulse as

(75)

¢1 ~1 —w/,uc— ko/,u, ¢2 =0,
¥y =1+ w/pc+ ky/u, ¥y =0,

and ¥, (r,t) becomes an eigenspinor of the helicity operator
with an eigenvalue + 1. The same argument can be repeated

for ¢, = 0and ¢, = 1 in order to obtain an eigenspinor with
an eigenvalue equal to — 1. Similarly, we can get two inde-
pendent eigenspinors for negative energies with eigenvalues
+1land — 1.

VL. CONCLUSIONS

The bidirectional representation has been used to derive
localized, nondispersive solutions to the Klein—-Gordon
equation by reducing it to a Helmholtz equation with its z
coordinate replaced by the translational variable
7 = y(z — ut). The ansatz leading to such a reduction allows
one to derive systematically a large class of nondispersive
wave packets, representing massive particles, by making use
of the known solutions to the Helmholtz equation. In seek-
ing solutions of this type the particle-wave velocity relation-
ship v, v, = ¢? follows automatically from the sole require-
ment of particle localization. The importance of this result
need not be emphasized. It is quite intriguing, however, that
in order to derive a nondispersive localized solution to the
Klein—Gordon equation we arrive at a relationship that
guarantees the Lorentz invariance of the formula v = mc?
and which can be used to generalize the postulates of spectial
relativity.?°

A special case of the solutions derived in connection
with the Klein-Gordon equation was MacKinnon’s nondis-
persive wave packet. A comparison of this packet to our
results helped in clarifying some of the subtleties in MacKin-
non’s solution; his parameters k, k, are now well defined and
an explicit form of the dispersion relationship w(k,) has
been derived. The derivative of w(k,) with respect to k,
gives an expression of the velocity which does not satisfy Eq.
(47); furthermore, w(k, ) is a nonlinear function of k,, thus
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violating MacKinnon’s condition az, w(ky) = 0. The de-
pendence of the velocity on k, is expected if one recalls the
momentum relationship p, = #ik,; as the momentum of the
particle increases, one expects the group velocity of the wave
packet representing the particle to increase also.

It has been shown that the apparent mass introduced by
de Broglie has to be used in order to obtain the correct energy
and momentum describing the motion of massive particles.
For the specific wave packet given in Eq. (58) the apparent
mass has the value #ic ~ ' (y* + ©*) '/%. Choosing y to be pro-
portional to x through a numerical factor independent of v,
it follows that M, is proportional to the rest mass m,. On the
other hand, if y is chosen to depend on v,, the apparent mass
M, depends on the velocity of the particle, a property which
is not very attractive.

The results obtained for the case of the scalar massive
Klein-Gordon ficlds were extended to the spinor massive
fields governed by the Dirac equation giving de Broglie non-
dispersive wave packets representing free massive fermions.
This particular application demonstrates that bidirectional
solutions can also be derived for field equations character-
ized by first-order time derivatives. Similar solutions can be
obtained for the Schrodinger equation; however, we prefer to
publish these results separately because of their relevance to
an interesting class of nondispersive solutions to the Schro-
dinger equation introduced by Berry and Balazs.*?

In summary, localized, nonsingular, and nondispersive
solutions have been derived to linear equations governing
the motion of massive particles; specifically, the Klein-Gor-
don equation and the Dirac equation. Unlike soliton solu-
tions to nonlinear equations, these are solutions to linear
equations that can explain the localization properties of par-
ticles, at least in free motion. If W(r,?) is treated as a quan-
tum mechanical wave packet, the kinematics of a particle
represented by such a field are derived from its phase. On the
other hand, if we consider W(r,#) to be a classical field, the
kinematics are derived from the energy and momentum den-
sities. A linear superposition can be used to construct finite
energy, slowly spreading wave packets. As a consequence,
an integration over all space of the field’s energy and mo-
mentum densities will give the particle’s energy and momen-
tum. Another possibility is to derive nonsingular bump field
solutions (not neccessarily of finite total energy content) of
alarge amplitude at the center and much smaller amplitudes
but high oscillations at the tails. During an interaction these
tails are averaged out and only the central portion of the field
can be felt. The kinematics of a particle are, thus, related to
the momentum and energy content of the central field. Such
localized bump solutions are incorporated in an extended
wave field. Using this property, we have been able to justify
the wave-particle dualism.>* We have also been able to pro-
vide a novel interpretation of Young’s double slit experi-
ment.”*
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