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A new decomposition of exact solutions to the scalar wave equation into bidirectional,
backward and forward traveling plane waves is described. These elementary blocks constitute a
natural basis for synthesizing Brittinghamlike solutions. Examples of such sclutions, besides
Brittingham’s original modes, are Ziolkowski’s electromagnetic directed energy pulse trains
(EDEPTs) and Hillion’s spinor modes. A common feature of these solutions is the
incorporation of certain parameters that can be tuned in order to achieve slow energy decay
patterns. The aforementioned decomposition is used first to solve an initial boundary-value
problem involving an infinite waveguide. This is followed by considering a semi-infinite
waveguide excited by a localized initial pulse whose shape is related directly to parameters
similar to those arising in Ziolkowski’'s EDEPT solutions. The far fields outside the semi-
infinite waveguide are computed using Kirchhoff's integral formula with a time-retarded
Green’s function. The resulting approximate solutions are causal, have finite energy, and

exhibit a slow energy decay behavior.

L INTRODUCTION

A few years ago, Brittingham' proposed a search for
packetlike solutions to the homogeneous Maxwell’s equa-
tions with the properties that they (1) are continuous and
nonsingular, (2) have a three-dimensional pulse strocture,
(3) are nondispersive for all time, (4} move at the velocity of
tight in straight lines, and (5) carry finite electromagnetic
energy. Such soclutions have been termed focus wave modes
(FWMs).

Brittingham was successful in proving that the FWMs
satisfy the homogenecus Maxwell’s equations together with
the first four of the aforementioned properties. The original
FWM integrals were found to be of infinite energy. To rem-
edy that shortcoming, Brittingham introduced two infinitely
extended surfaces of discontinuities that travel along the di-
rection of propagation of the FWMs and divide space into
three regions. The fields in the central region between these
two surfaces were chosen to be equal to the original FWM
integrals, while the fields cutside were identically set equal to
ZEero.

Difficulties arose immediately with the FWMs, espe-
ciaily with respect to their energy content. Wu and King?
showed that Maxwell’s equations cannot be satisfied across
the discontinuities introduced by Brittingham. Conseguent-
iy, it was established that the FWMs are characterized by
infinite energy. That assertion was corroborated by the work
of Sezginer,’ followed by that of Wu and Lehman* who
proved that any finite energy solution will involve the
spreading of energy.

The work of Belanger,™® Sezginer,? and Ziolkowski’
showed that the original FWMs can be related to exact solu-
tions of the three-dimensional scalar wave equation. Such
solutions, which are expressed as products of a plane wave

805 J Appl. Phys. 85 {2), 15 January 1988

0021-8872/89/020805-08$02.40

moving in the negative z direction with velocity ¢ and an
envelope function depending on x, y, and z-c?, will be termed
the scalar FWMs in the sequel. All three authors indicated
that the envelope function itself obeys exactly a complex
parabolic equation, and demonsirated the intimate rejation
of the FWMs to the solutions arising from the paraxial ap-
proximation to the wave equation. Belanger® and Sezginer®
showed that the FWMs can easily be written in terms of
Gaussian-Laguerre and Gaussian-Hermite packetlike solu-
tions. Later, Belanger® demonstrated that a Gaussian mono-
chromatic beam can be observed as a Gaussian packetlike
beam when the observer’s inertial frame is moving at the
same speed as the wave. Meanwhile, Ziclkowski’ made the
significant observation that the scalar FWMs describe fields
that originate from moving complex sources. This observa-
tion linked the FWMs with earlier work by Deschamps® and
Felsen® describing Gaussian beams as fields equivalent par-
axially to spherical waves with centers at stationary complex
locations.

At this stage, the main objection to the FWMSs was their
infinite energy content. It was pointed out by Ziotkowski,”
however, that plane waves share with the FWMs their infi-
nite energy property, and it was demonstrated that a super-
position of these modes can produce finite energy. Ziol-
kowski also pointed out that since these modes are localized
in space, a superposition of the FWMs might have an advan-
tage over plane waves when it comes to describing the trans-
fer of directed pulses in free space. Such pulses, character-
ized by high directionality and slow energy decay, were
called electromagnetic directed energy pulse trains
{EDEPTs), and it was argued by Ziolkowski'® that they
could be launched from a finite size antenna array.

EDEPTsshare their high directionality and slow energy
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decay properties with the electromagnetic missile solutions
introduced by Wu,'" who argued that the electromagnetic
energy density transmiited by a finite aperture under tran-
sient excitation does not have to decrease as R ~2 when
R — . The energy reaching the receiver has to decay even-
tually to zero. Wu demonstrated that one can make the prod-
uct of the missile’s cross-sectional area and the average ener-
gy per unit area approach zero as slowly as one wishes by
choosing suitable frequency components of the exciting cur-
rent. Wu deduced his results using the total received electro-
magnetic energy. Lee,'” on the other hand, used the Mellin
transform to derive asymptotic expressions for the E and H
field components of an instantaneously excited missile field.
Later, Lee"” rederived the field components for a source with
a finite excitation time. An interesting account of the laun-
chability of electromagnetic missiles from a point source was
given by Wu, King, and Shen' using a spherical dielectric
lens. They found that such electromagnetic missiles can be
classified into strong and weak ones according to the corre-
sponding critical points of differentiable maps in two dimen-
sions.

The unusual finite energy pulse solutions introduced by
Wu'! and Ziolkowski” " seem to have been predicted on the
basis of theoretical investigations that differ substantially
from each other. In both cases, however, the directionality
aspects of the solutions depend greatly on the appropriate
choice of their spectral components. Similar ideas were con-
templated by Durnin'® when he introduced the diffracting-
free “Bessel beams,” and he was able to demonstrate that
such beams have a larger depth compared to Gaussian
beams, even if their central spots have the same radii. This
behavior, which has been verified experimentally by Durgin,
Miceli, and Eberly,'® can be attributed mainly to differences
in the energy distribution over identical apertures, Durnin’s
monochromatic beams are composed of different spatial
spectral components. Similarly to the EDEPTs and the elec-
tromagnetic missiies, the depth of moncchromatic beams
can be controlled by varying only their spatial spectral con-
tent or changing their energy distribution over the aperture.
On the other hand, both temporal and spatial spectral com-
ponents are required in synthesizing highly directional time-
limited pulses.

Another development along these lines is the use of Brit-
tingham’s modes by Hillion"” to provide solutions to the ho-
mogeneous spinor wave equation. These solutions are called
spinor focus wave modes. A weighted superposition of such
modes results in finite energy pulses. Hillion studied in detail
the particular case of Bessel weight functions. We mention,
finally, that a similarity reduction technique utilizing the
Lorentz invariance of the scalar wave equation has been used
by Sockell’® to generate novel classes of Brittinghamlike
modes, and to provide a group-theoretic explanation for the
existence of the scalar FWMs.

It is clear that the various attempts to study and synthe-
size highly directional pulses and beams aim at the same
goal. This leads one to wonder whether there is a deeper
underlying reality. It is our aim in this work to uniformize
some of these attempts and to address some of the unan-
swered questions concerning the physical realizability of
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such wave solutions. One major concern is the limited un-
derstanding of the energy decay patterns of pulses. This is
highly reflected in the current literature which is mainly
concerned with the propagation of monochromatic signals,
or modulated cw signals. Such wave solutions, with a very
narrow bandwidth, tend to obscure some of the physical
properties of the propagation of pulses with finite time dura-
tions. Unlike narrow bandwidth signals, such pulses have
infinite bandwidths which make a concept like the “far field
region”” totally ambiguous. This situation led Ziolkowski’ to
suggest that a superposition of Brittingham’s FWMs is more
appropriate for the synthesis of highly directional pulses,
and that the nonlocality of piane waves contradicts the spirit
of composing highly localized wave solutions.

The Brittingham-Ziolkowski formalism has been a
more radical approach than any other, mainly because it
calls upon a superposition method that differs significantly
from a regular superposition of sinusoidal plane waves. This
might prove to be very hard to handle mathematically, but at
the same time it provides a fresh procedure with which new
ideas might be introduced into the problem of propagation of
nonsinusoidal pulses, and can point out some physical impli-
cations that may be concealed by formal procedures, e.g., the
Fourier synthesis. Moreover, EDEPTs contain certain pa-
rameters that can be adjusted to increase their slow energy
decaying range. If these parameters could be related to phy-
sically meaningful quantities, a systematic procedure could
be established to synthesize highly directional pulses that
propagate in free space with very littie spreading. In the spir-
it of this discussion, it seems worthwhile to pursue a better
understanding of the Brittingham-Ziolkowski formalism
and to study the physical realizability of highly directional
wave solutions.

To achieve these goals, a novel approach to the synthesis
of wave signals is used. This method was introduced by Be-
sieris (Ref. 19) in order to understand the salient features of
the Brittingham—Ziclkowski formalism. Its scope is
broader, however, and encompasses classes of problems al-
together different from wave propagation in vacue. Within
the framework of tkis new approach, exact solutions of the
scalar wave equation are decomposed into bidirectional,
backward and forward, plane waves traveling along a pre-
ferred direction z, viz., exp| — ia(z — c¢t) Jexplif{z + ct) ].
These bilinear expressions can be elementary solutions to the
Fourier-transformed (with respect to x and y) three-dimen-
sional wave equation provided that a constraint relationship
involving a, B, and the Fourier variables dual to x and y is
satisfied. Such elementary blocks constitute a natural basis
for synthesizing Brittingbamlike solutions, such as Ziol-
kowski’s EDEPTs and splash pulses, Hillion’s spinor modes,
and the Ziolkowski-Belanger-Sezginer scalar FWMs.

in Sec. II, we shall provide a short introduction to the
aforementioned new decomposition, together with a com-
parison to the well-established Fourier decomposition. For
the sake of simplicity, the discussion will be restricted to the
case of the three-dimensional scalar wave equation. It wiil be
demonstrated, next, that all the known Brittinghamlike so-
lutions can be reproduced by choosing fairly simple spectra
for the novel synthesis, in contradistinction to the more com-

Shaarawi, Besieris, and Ziclkowski 806




plicated spectra that would have to be utilized in the case of a
Fourier synthesis. Other choices of spectra can result in oth-
er types of solutions that can be of some value. In Sec. 111, a
specific demonstration will be given in connection with an
infinitely long circular cylinder excited by a localized initial
pulse whose size is related directly to parameters similar to
those arising in the EDEPT solutions. The case of 2 semi-
infinite waveguide excited by the same initial pulse will be
considered in Sec. IV. The radiation field from the open end
of the waveguide is computed using Kirchhoff's integral for-
mula with a time-retarded Green’s function. An approxi-
mate evaluation of Kirchhoff's integral gives solutions that
are causal, have finite energy and exhibit an unusual decay
behavior. Like the EDEPTs, these approximate solutions
contain certain parameters that can be adjusted in order to
controi the shape of the puises as they propagate in free
space. These parameters are related to meaningful physical
quantities, e.g., the shape of the initial puise, the cross-sec-
tional area of the waveguide and its cutoff frequencies. These
aspects will be discussed in detail, together with the range of
validity of the approximate solutions.

il. A NOVEL BILINEAR DECOMPQOSITION

A new decomposition principle for partial differential
equations will be introduced in this section. The discussion
will be limited (cf. Ref. 20 for a more general exposition) to
the scalar wave equation, viz.,

(V= ah¥(rn =0, (1)
where V? is the 3D Laplacian, and the velocity of light is
normalized to unity. In cylindrical coordinates,

Vi=3l+p'd,+p 7735+,

The operator L in (1) can be divided into two parts, namely

Ly =38)+p"'8, +p 3% +3? (2a)
and

L,= —3%. (Z5)
The eigenfunctions of L, are J,{xple*™e** and
N,(kpyet™® et where J,(xp) and N, (xp) are Bessel
functions of the first and second kind, respectively, and the
eigenvalues equal — («* 4+ k?). The operator L, has eigen-

functions e * “' with eigenvalues w”. An elementary sclution
to equation (1) is given by

\yc,(f,f) — {A”JH(K‘O’) + B,,A ‘(Kp)} + ing iU\z i) ,

(3a}
with the constraint
W4+ kP—w?=0. (3b)

Neglecting N, («p) because of its infinite vaiue at p =0, a
solution to {1} can be expressed, in general, in terms of the
superposition
1 o Pl + = ~+ o
. ! d;cj dw f dk A, (w,kk)
(2737 o Jo - e
XKJ,,(Kp)EJ("Mé’i‘kZ‘“”)5((1)2—1(‘2wkz), (4)

which is the familiar Fourier synthesis.

W(r,t) =
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To introduce the new decomposition, the following
change of variables is used:

z+t=n, z—t=_. (3}
The operator L then can be partitioned into two parts, viz.,

L;::(?i +p_‘(?p +p'_“3§; (6a)
and

L,=43%, . (6b)

The eigenfunctions of L, are J, (kpye * P and N, («p)e * "¢
and its eigenvalues equal — «°. The operator L, has eigen-
functions e ~ ¢ with eigenvalues 4af. An elementary so-
lution to (1) has the form

¥, (r)=Y, (0.5

=[C,J,(xp) + D, N, (kp) et " e~ "¢ P (7a)
with the constraint
aff = k/4 . (7o)

If N, (xp) is neglected, a general solution to (1) can be writ-
fen as

Y(p,Ln) =

i j- j‘ f
d d{la) dl
(2m)* ’—;241 nZo o o a (B
X C" (Ia,fﬁ,K)KJ” (Kp)e + i

X e o 5,5/5"16(aﬁ — K2/4‘) ° (8)

It should be noted that the limits of a and 2 are chosen to
range from zero to infinity because the constraint (7b) re-
stricts ¢ and Z to the same sign. As a consequence, the pa-
rameter / takes the valuesof — lor + 1.

The two representations (4) and (8) may not ook the
same, but there is a one-to-one correspondence between
them through the change of variables

k=F—a, vo=F+c. (9)

Any distinct advantages of these representations depends on
the kind of soluticns they represent. For certain types of
solutions, (4) might be more suitable than (8), and vice-
versa. The situation is more like choosing between cylindri-
cal and Cartesian coordinates. For some problems it is more
appropriate to use Cartesian coordinates, while for others
cylindrical coordinates can be more suitable.

One class of problems for which the representation (8)
can be very advantageous deals with Brittinghamlike solu-
tions. Limiting the discussion to cases where # = 0, the fol-
fowing choices of C(a.Bx) result in a number of known
solutions of this type:

(1) The singular spectrum

Colo,Bix) = (m/2)0(F — B")e ™" (10)

gives the scalar FWMs introduced by Belanger,” Sezginer,®
and Zicikowski”:

1 2
N o7 R S— — '_L.__:_;)}.
(perm) dr(a, + ig) exp[ d ((a, + i) K

(11)

(ii} The spectrum
Colafr) = (w/2)e ~ (@0 + fa) (12)
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yields Ziolkowski’s’ “*splash pulse”
Y(p,5m) ={4r((a, — in)(a, + ) +p°13 7.
(iii) The shifted spectrum

(13)

- laa; + {pf — b)a,]
s

CO(an’K) (p:B - Ie

ZF( )
B>b/p,
=0, b/p>p5>0, (14)

results in Ziolkowski’s modified power spectrum (MPS)
pulse’®

Vip.ln) =e "¢/ dm(a, + il)(a, + s/p)},  (15)
where
s=p/a; + i)y —
J

Fn+ LN—a+ LL —p%/(a, + i) (a, —

(iv}) The Bessel spectrum

ColaBuc)y = (w/2), (Bbye (16)
gives rise to the wave function
i b (FEbT )"
W(pLm) = W tb"=5)" (49

7(a, + i) FEET
which is the scalar analog of Hillion’s solution to the spinor
wave equation.'’

Other types of solutions can be synthesized by choosmg
different spectra. An interesting spectrum is the following:

ColaBuw) = (a+ B {18)

The corresponding wave function can be written out expli-
citly as

~A{aa, + [fay)

¥(p,Lm) =— E TW+ 1)

B0 (az

where F(,f3;7;8) is the hypergeometric function.

The solutions cited above are of great interest because
they can be designed to have a slow energy decay as they
propagate in free space. Due to the simplicity of the corre-
sponding spectra, the representation (8) provides the most
natural basis for the synthesis of these classes of solutions
(see Ref. 20 for more details). This aspect can be clarified
further by using {9) to transform (8) into a Fourier repre-
sentation. The corresponding Fourier spectra will prove to
be very complex compared to those given above.

It is of interest to mention that the representation (8)
has an inversion formula analogous to the Fourier one. If the
integration over e in (8) is carried out with [ = {, ¥(p,{,7)
assumes the following form:

1 ® = 1 i
—— — Cyf — , B i,
W{p,Ln) (Zﬁ)sz dﬁj; di 2 0( " ,6’;();( o(k0)

xXe '~ i< /48)6 eiﬁ"l . (20)

The inversion formula, which incorporates an exponential
measure, is given explicitly as follows:

> = +w
Toi sty ,\_W’T d —A/lb,lj‘f J j 4
0( 4[3, 13 / ) L §€ b/ f7

XplolapY ¥ (p,Ln)e /P e= B (21)

Itis straightforward to check its validity by using the explicit
solutions ¥ (p,£,n) given earlier and checking whether one
can derive the corresponding spectra.

i, THE INFINITE WAVEGUIDE

It will be demonstrated in this section that the represen-
tation (8) can be used to solve an initial boundary-value
problem. A specific problem will be solved involving an infi-
nite cylindrical waveguide. Towards this goal, consider the
three-dimensional wave Eq. (1), viz,,

(V- 39¥(r,) =0

with the initial conditions
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— )"t e, + YT

m 1} ’ (19)
¢
W(r0) =Flpz), (22a)
¥, (r,0) = Gpz), (22b)
and the boundary condition
Y(R,zt) =0, (22¢)

where F{p,z) and G(p,z) are real functions and R is the
radius of the cross section of an infinitely long circular cylin-
der.

In analogy 1o the free space solution {8), one can write
directly the corresponding superposition for the bounded
problem under consideration by replacing the integration
over « in (8) by a summation over the discrete values «,,,;
specifically,

o0

E-E;E)“:; E f daf dBC()(aﬁka
I; O

o 1

K mp e Kém
><J< 2 )e g e'ﬂﬂé(a - ) 23
o\ % B n (23)

where i, are the zeros of the zero-order Bessel function. It
should be noted that the positive branch of @ and £ has been
chosen; furthermore, without any loss of generality
¥(p,5,m) has been assumed to be azimuthally symmetric
(i.e., n = 0).

A choice of spectrum analogous to that related to Ziol-
kowski’s “splash pulse,” namely,

Col@, Bk ) = (w/2)e ~ (et Ba
leads to the solution

von e 5 [ ()

m o= |

Wip.lm) =

><K< :{1 V(e + i€)(a, — m)_)] ; (24)

where K, is the zero-order modified Bessel function of the
second kind. Our subsequent discussion will be restricted to
a single mode with no loss of generality.
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The sclution (24), for a characteristic modal number m,
is of some interest because it can model a fairly localized
pulse propagating in a waveguide, where at £ = 9,

1 KOmp
¥(r,0 :mJ( )
(r0) 47 °\ R

% RCEK( ( O
L R

Jo( KOrma )
8 R R

XRe{zK,( 2 [{a, + iz){a, — zz))

iz)}°

The initial pulse can be extremely localized for large a,. This
can be demonstrated by using the asymptotic expansion of
K, for iarge arguments,”' viz.,

i g
K= | —2(1«— ) 26
o(2) \/;e 82+ 2(82)? * (26)

in order to rewrite the initial condition (25a) approximately
as follows:

Via, + iz} {a, — izy)] {25a)

and

¥, (r0) =

4, + a
viay + iz} (a, —

(25b)

¥ (p,Z,O) z_}__ €]0< KompP ) 77'4R;_H — kg @22/2/R
47;’ R 2K0m '\/ @z
X cos( o %Z z—\i 27
R X 8/

The initial pulse ¥(r,0) falls off exponentially along the z
direction as exp{ — &,,+@,2/2/R ). This approximate form
is valic away from the pulse’s center. To determine the shape
of the initial pulse around z = 0, one can use the small argu-
ment approximation of the modified Bessel function K,
namely,*!

Ky(2) = —In(2). {(28)

At z = 0, the amplitude of the initial polse ¥(r,0) has the
value
. K,
k[f(p,() 0) ._j'._KO( Kom \/ala2> J()( Omp> . (29)
4m R R

If the product of a,a, is very small so that k,,,va,4,/R <1,
Eq. {28) yieids

1 143 K”T
W(0,00) = — —In ( 0 \/ala2>Jo< "R”>.

4I

This expression shows that smail values of Ja,a, correspond
to large amplitudes of the initial pulse. Noting, also, that the
oscillatory term cosf 7/8 + (x,,,/R)a,2/2 } in Eq. (27
depends on a,, it is clear that the parameters @, and @, can
now be related to physicaily meaningful quantities, such as
the width of the initial pulse and its amplitude. A similar
discussion applies to the second initial condition (25b) but
will not be carried out here.
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The behavior of the pulse solution (24) is very sensitive
to the values of the parameters ¢, and a,. If these parameters
are equal, the solution (24) models a pulse that splits into
two halves traveling in opposite directions. This situation is
not optimal for the transmission of energy in the waveguide.
A pulse traveling primarily in the positive z direction re-
guires that a@,>1 and a,<1, with the product
Ko a1,/ R € 1. Tosee this, one can look at the pulse centers
atz=tand z= — f, where

¥ipae) = Re| (xSt )

b R
{30)
and
Y(pz, —2) = Re{—L Jo( Fonl? )&(ﬁi’-«@? &ﬁ'i?z)_)] g
4o R R

(3t}

As long as 2z <4, ¥(p,z.2) in Eq. (30) remains constant
with

Komt? )K(><———\/a,aq) .
R

This expression is identical to the amplitude of the initial

pulse. We conclude that the parameter @, determines the

range through which the pulse can travel before it starts de-

caying. Beyond this range the pulse starts decaying logarith-

mically, viz.,
[{Gm I,
[2a z) ,
R A i

- 1 Kﬁmp) (
¥ {(p,2,2) = g ( In
(pr2) 47 "\ R

as long as &g, v, 2a,z/R <. Thus, the pulse traveling in the
positive z direction stays almost unchanged as long as
2z €a,, decays logarithmically for «,,,2a,z/R <1, beyond
which it dies off exponentially as exp{ — ko, v2a,2/R). As
for the pulse traveling in the negative z direction, it can be
easily seen that for @, € 1 the expression (31) can be simpli-
fied as follows:

i K()mp Qm 1
Y{p,z, —z2) = Re{——J( )K ( ‘zzanz)
e ) 47 "\ R JUR I

But for a,> 10 the center of the pulse in {31) will decay
exponerntially as exp{ — &g,,, J2a,z/R) and the pulse will die
off within a very short distance from the origin.

With an appropriate choice of the parameters ¢, and a,,
one is capable of launching a pulse in one direction down an
infinite cylinder. Another interesting aspect of this solution
isits ability to resist the dispersive effects of the waveguide. It
has been demonstrated that the pulse can trave! with almost
no decay in its center for a distance ~a,/2, beyond which
the decay in the center of the pulse is only logarithmic for
a,/2 <z<€{R?*/%c¢,a;). For example, if one chooses
a2, =10""m,a, = 10®mand,, /R = 1000m™’, then the
pulse can travel down the waveguide a distance of approxi-
mately 500 m without any decay in the pulse center, and will
spread very little for the following 5 10* m. To see how
little it does decay, consider the amplitude of the center of
the initial pulse, which is proportional to K, (#,,,Jaa,/R)
or, asymptotically, to — In(107?)~2In(10). The pulse

W(p,2,2) e J(,< (32)
4

(33}
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center after traveling a distance of 50 km will have an ampli-
tude proportional to In{10). Thus, over a distance of 50 km,
the pulse’s center decays only to half its original value.

One would hope that such pulses could still hold them-
selves together when launched in free space from an open
end of the waveguide, and that they could still exhibit a slow
decay behavior. In this case the pulses would be analogous to
Ziolkowski’s EDEPTs and the open waveguide could act as
their source. This scheme will be pursued in the next section
where it will be shown that a semi-infinite waveguide can be
used as a source for slowly decaying pulses.

V. THE SEMI-INFINITE WAVEGUIDE

A natural extension of the previous section is to consider
the case of a semi-infinite waveguide. The initial pulse is the
same as that given by Eq. (24) and the waveguide is open at
the position z = L, where L is large enough so that the ampli-
tude of the tail of the initial pulse is extremely small, and for
all practical purposes can be taken equal to zero, while the
waveguide appears to be practically infinite. It is assumed,
furthermore, that the radius of the cylinder is large com-
pared to the wavelengths of the excited modes. In this case,
upon reaching the guide’s opening, the pulse is basically
launched in the forward direction and the reflected fieid
from the edges of the cylinder can be neglected.

Under the assumptions made above, one can use Kirch-
hofP’s diffraction formula to find an expression for the far
field in terms of the field illuminating the aperture or the
cylinder’s opening. Kirchhofl’s formulz has the form?*

-~ for

@ X'y, 2 w)= ——1—-] da[—é— @(x,y,z,w) i
47 Js Jz r

- i(e )@(x,y,z,w)] s
az\ r

where (x',)',2'} is the point of observation, the integration is
carried over the area of the aperture, and the normal to the
apertureis in the z direction. W (x,y,2,@) is the Fourier trans-
form of W(x,y,2,1) with respect to time, and is defined as
follows:

(34)

The variable » appearing in (34) is the distance between the
aperture and the observation point; it is given explicitly as
follows:

r=p+p7 + 200 cos(6—6") +(Z — L) . (36)
Only the amplitude of the pulse along the line of sight

(p" = 0) will be considered in the sequel. In this case, Kirch-
hoff’s formuia can be rewritten as

~ 1 27 R (} ~
¥(0,0,z,0) = — f de Jf dp p[-—» Y (xyz,0)
4'7T 0 (4] C?Z

><e_— : - i(e— l )(I}(-xsyyz’w)ii 3
r dz\ r 21

(37)
with

r=Ap" + (¢ L D (38)
From Kirchhoff's integrals (34) and (37}, together wiih the
definition of the Fourier transform {35), it can be seen that
the time-retarded Green’s function has been used. As a con-
sequence, the resulting pulse is causal and it propagates
away from the aperture into free space.

As mentioned earlier, the initial pulse given in (24} will
be used, with L large enough so that the waveguide appears
to be infinitely long. For all practical purposes, the basic
solution derived in Sec. II can be used to illuminate the open
end of the waveguide. This solution is rewritten here for con-
venience, viz.,

K n K L T O Y A SN
wcmmz—mafo( ORP)K( ; Jla, + i (a,—m)).

(39)

This pulse is located initially at the origin and with an appro-
priate choice of ¢, and @, it can be made to travel in the
positive z direction. All the discussion pertaining to the ini-
tial conditions and the conditions required for localization
are the same as in Sec. 111

Substituting (39) into Eqgs. (34) and (37), Kirchhoff’s

N R i integral formula (37) assumes the following form after an
W{x,y,z,0) = J‘* ; dr¥W(x,pzte . (33) mntegration over ¢:
]
sl o ) R o . L. .
$(0,0.2.0) = fz(w)j pe J()(KL p)_ﬁ(w j dpp((z L) . iz L))e"'"”. (40)
8 0 s R 8 0 \ r ?’Z
Here, fi(@) and f;(w) are defined as follows:
te i L3 m 7 ry . =
fn(w)zf d?e““"'Ko( ; [a;+l(2=—t)]{az—t(2+t)]) , (41)
- \, z—- L
+ o . a
f2(a))=f dte""”"a ( la, +iz—0)1a, —ul(zv{mz‘)])‘ {42)
— z=1L
For (z' — L) »p, the guantity » can be approximated by
r=(z' — L} +p*/2(zZ — L), (43
and Eq. (40) can be rewritten as
— iwr] f2(@) fl(w)< tw)}j ( Gmp)
‘II(G 0 2’ D) =& IOZ{ 7/ £ — iwp* /21
)= 872 8 \2? St R (44)
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where % = z' — L. An evaluation of the integral

R
:J dppJo(K“ p)e"fﬂr 2
(o)

is needed. This integral can be related to Lommel’s function
of two variables. Making use of the relations (3) and (4) on
page 543 of Watson,” it is easy to show that

a 22 5

z e iR 222 ZKom Kﬂm
F=e Y z[ - Uz("«wgg s Ko § UG R’ s Kom

w - w

z 2K2m "Km
w2 G0 a0

w wR?’
At this stage, one can go back to Eq. (44), find
W (0,0,7,w), carry out the inverse transform, and find
¥(0,0,2,1). The integrations become quite involved, how-
ever, and it will be a very tedious task to find a closed form
solution. To simplify the integrals involved in the Fourier
inversion, one can use the asymptotic expansion of U, (g,4)
for large p, while v and A are kept constant. The quantity
2, /oR * entering into Eq. (46) must be large. A reasona-
ble limit can be chosen as

5, /oR*>1000. (47}
One can use the asymptotic expansions given in Egs. (3) and
(4) on page 550 of Watson® to write
U, (1,0) =cos{u/2 — vi/2)

(43)

(46)

* (48)
mgo C(v—1—2m)(u/2y>m v 32
and
2 S
Uv(#,/{)zcos<'l _§._;___, _ "7")
2 lu 2
- /"! 20 — v o+ 2
+ (— 1)m< Fo_ s amld).
FVZU Iu) v ~ 2 (
(49}

Using these expansions in Eq. (46), it follows that

- iR /22 i (m I)m

mo=0

(UR 2\2m + 1
X [ —— (n } J P --2m (Kﬂm )

2K, O

2N\ 2m 42
fwR :
+ "<A ) j— 2 - 2m (K()m )} N
ZKClm

For small values of o R 2/3:;(0,,1 (e.g., <0.1}, the first term in
the above expression can be retained, while the rest of the
terms are neglected. Thus, 7 can be approximated by

j: ‘]l (Kﬂm ) (R 2/'K()m )e“ iwR*/22 + 0( 1/2) . (50)

This approximate result is valid for large  or, more general-
ly, for large 2x,,,, /oR *. This requirement follows from the
condition (47) as long as «,,, <30, i.e., for the lowest ten
modes. As a result, the approximate expression (350) is valid
for the following value of 3:

2> 1000(aR 2/x3,,) .

Since w >k, /R for the waveguide, the above inequality can
be rewritten as

2> 1000(R /x,,,) . (sH)

Substituting (50) into (44), the wave function
‘P(O 0,2,e) along the line of sight can be found to be equal to

4\ (0, )R
= Mj—m expi uo(z + ————\]
87K, 2 /

.z
fi=Ze¢
[

F(0,0,2,0)

X [ flw) —iofi(w) ], (52)

where all terms proportional to 277 have been neglected.
This approximate result is quite accurate for the range deter-
mined by (31). Itis not hard, now, to find the inverse Four-
ier transform of the expression {52); it can be expressed as

Fy(t') = 3. Ko (o, /JRWTa, + iz — 7'V ian — iz + E)] F s

Fi(1") = Kol (kom/ ROV Ta, + (2 —
and
RZ/25.

t'=f—~%—

Using the identity K { (2) =

i (Kom )R K

¥(0,05,) = — -
87z

— K ,(2), the result (53) can be reduced to the following form:

817’;((\,,,2
where
T T i"’T‘) LA ) (s
Ve, + H(L — ¢y Ha, — (L + 7]

At the center of the pulse (i.e., 2 — ¢ + L = 0), the wave amplitude becomes

iJ R 2
9005 = — L1 lom) K1{K°’" (“&z&){ "f(
87z R 2z
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@, — (2L — R?/2%)

el
25750 Ta ¥ AR T35 [ [a, — 2L < RTPHT
(55)
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As discussed in Sec. III, one can choose the condition
Kom(a, + iR?/223a,/R <1. ¥, furthermore, a,>L, an
asymptotic expansion for small arguments yields
K (zy=~z ' (cf, Ref. 21). Under these restrictions, (55)
becomes

— id | (i, YR ? .
P(0,0.2,0) w21 on) L 56
4arxcy,,, (24,24 iR")
or, after rearranging the terms,
| S P 2 - i
w0050~ on) R (57)

Ak, (208 + RT

with ¢ = tan™ "(R ?/2a,z) + 7/2. This result is interesting
because, for a, < 1, the part of the solution given by (57) does
not decay for 2a,2 <R 7, and is given approximately by

W(0,0,5,8) = [ J, (K0 )/ 4750,, ] € ¥ (58)

for
2<R?/2a,. (59)

Combining Egs. (59) and (51), the range of validity of the
approximate solution (57) can be stated as follows:

1000(R /x,,,) <2< R?/2a, . (60)

Note that the lower bound in Eq. (60) may not be strong
enough to ensure the validity of the condition
oV (@, + iR 7/22)e,/R < 1. This can occur when 2 is fairly
small, in that case we can set the limit

and for @, € 1, the range given by Eq. (60) has to be modified
to

K @,/0.02 <2< R?/2a; . (61)

The values of the different parametiers will determine the
correct range. Choose, for example, «,,,/R=~0(1}, @, =35
m, and @, € 1. This choice of parameters is typical for a wave-
guide a few meters long, with an opening of radius equal to 1
m and with mainly the first mode excited. In this case,
1000R /K, = Kgpm @,/ 0.02 = 1000 and both ranges are iden-
tical, On the other hand, if higher modes are excited, the
range (61) is valid, while the range (69) is correct if a wave-
guide of a larger radius is used.

'The solution given in (57} has the unusual feature of
hiding the  parameter within the (22,2)? + R * term since,
for a small @, the effect of Z does not appear untii 2a,Z takes
over the R * term. This feature is shared by the EDEPT solu-
tions of Ziolkowski.”'° As mentioned earlier, such solutions
contain certain parameters that can be adjusted in order to
siow down their decay. (For the semi-infinite waveguide, the
parameters @, and a, are reiated directly to physical quanti-
ties, e.g., the amplitude of the initial pulse and its band-
width.) Such behavior is not possible for the more conven-
tional solutions. A good example along this direction is the
following solution to the infinite waveguide problem®

Wirg) = J(,( o ) JO( oy ;) ult—2).

(62)

It consists of a pulse traveling in the positive z direction with
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ampiitude J,{x,,,p/R) at z=1¢ An analysis analogous {0
that followed earlier in this section results in Eq. (53) with

{ o1
Fz(t'):ﬁz[J(,i\K;" Vi «z“) u(z"'—z)}

and

¥ m 3 3 ’ N
F(t") :JO( ;g E ir_—zﬁ) u(t' —zy.

Using the identity J} (5) = — J,(z) and carrying cut the
differentiations, one obtains

Jo(ky, )R ? _—
W(0,0,2,8) = ‘(;O’") [JJ(KO"’ \/z’f_—i“f)

A

Home

Xu(t! — Ly~om F__N,(t_’f_[“)_,,_
R Ju"—Ly(t'+L)

+2JO(K;" iz :?‘)é(t’—L)]. (63)

If the peak of the pulse is taken at ¢ ' == L, and one recalls that
J,(2) behaves as z/2 for small arguments, the above expres-
sion can be approximated around its peak as follows:

J R?. 2
1 (Ko ) {*“Om 2L+2§(0))6

R2

¥(0,0,z,7) = (64)

A

26,2 N

It is seen that the wave amplitude dies off as 27, even for
higher modes. The unusual behavior observed earlier in con-
nection with our original problem does not show up in this
case. It should be pointed out that the 8(0) term appears in
{64} because of the discontinuity in the pulse amplitude at
z=1{

V. DISCUSSION

It was demonstrated in this paper that pulses analogous
to Brittinghamlike solutions can be realized physically. Such
puises were obtained using a novel bidirectional decomposi-
tion, a brief discussion of which was provided. (A more de-
tailed account of this new approach can be found in Ref. 20.)
The aforementioned pulses can be fairly localized in a wave-
guide and the parameters arising within the context of their
solution can be related to physically meaningful guantities.
Traveling down the waveguide, which is highly dispersive,
these pulses have unusual decay patterns. Basically, the
waveguide can be divided into three regions, with the center
of the pulses undergoing no decay in the first, a logarithmic
decay in the second, and an exponential decay in the last
portion. When launched in free space, these pulses were
shown to have finite energy, to be causal and to exhibit an
unusual decay pattern. { A similar behavior is not exhibited
by other, more conventional sclutions even if higher modes
are used.)

Although the decay properties of the pulses studied here
are similar to Wu’s electromagnetic missiles,” the approach
adopted in our work is quite different, mainly because it is of
the Brittingham—Ziolkowski type. There are additional dif-
ferences: (1) the missile solutions are restricted to TE,,
modes only, whereas the solutions presented in this paper
can incorporate a larger number of modes; (2) Wu analyzed
the Poynting vector integrated over time and over the sur-
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face of a receiver located at variable distances, while in our
analysis we dealt with peak field intensities along the line of
sight of the aperture; (3) our pulses are initiated in 2 Cauchy
initial-value fashion, with W(r,0) and ¥, (r,0) specified,
while in Wu'’s work the pulses are initiated with a rising edge
proportional to ¢ “?, with € < 1. The parameter € is related
directly to the slowness of the energy decay of the missiles.
As a consequence, a pulse with a sharper rising edge will give
a missile that decays at a slower rate as the distance to the
receiver increases; in contrast, our solutions pertain to
bounded distances depending primarily on the parameter a,.
In spite of these differences, it seems that the two approaches
are pointing to the same underlying physical reality that
needs to be investigated further.

The usual R ~' decay of a signal in the far field of an
antenna calls upon defining some limit that separates the far
from the near field. A very popular candidate is the Fresnel
limit which is defined as 2532/, where D is a characteristic
dimension of the aperture and A is a characteristic wave
length of the signal. Such a definition has been developed
primarily for monochromatic or modulated signals with a
very narrow bandwidth. In the case of time-limited pulses, a
characteristic wavelength 4 has no meaning since, by defini-
tion, such pulses have virtually an infinite bandwidth. As a
consequence, the notion of a Fresnel limit is very ambiguous,
and a clear distinction between a far and a near field is not
possible. Because of such ambiguities one can only compare
different types of pulses with each other. Our work has
shown that certain types of pulses can spread much more
slowly than others as they propagate in free space. These
results point out to the fact that techniques and ideas used to
handle the transmission of cw signals might not be adequate
in cases where time-limited pulses are involved, and call for
the undertaking of a serious theoretical and experimental

813 J. Appl. Phys,, Vol. 85, No. 2, 15 January 1982

oaded 15.Jan.2010.£0.150.135 222.55. Redistribution subjec

study of the propagation of pulses in free space. The hope is
to establish that one can physically generate certain time-
limited pulses which spread out at a much slower rate than
cw signals. This work is a step towards such a goal.
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