
Designing Localized Waves

Rod Donnelly; Richard W. Ziolkowski

Proceedings: Mathematical and Physical Sciences, Vol. 440, No. 1910. (Mar. 8, 1993), pp.
541-565.

Stable URL:

http://links.jstor.org/sici?sici=0962-8444%2819930308%29440%3A1910%3C541%3ADLW%3E2.0.CO%3B2-J

Proceedings: Mathematical and Physical Sciences is currently published by The Royal Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rsl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Mar 19 13:44:04 2008

http://links.jstor.org/sici?sici=0962-8444%2819930308%29440%3A1910%3C541%3ADLW%3E2.0.CO%3B2-J
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rsl.html


Designing localized waves 
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I n  this paper we re-interpret a recently introduced method for obtaining non-
separable, localized solutions of homogeneous partial differential equations. This re- 
interpretation is in the form of a geometrical consideration of the algebraic 
constraint that  the Fourier transforms of such solutions must satisfy in the 
transform domain (phase space). With this approach we link two classes of localized, 
non-separable solutions of the homogeneous wave equation, and examine the 
t.ransform domain characteristic that determines the space-time localization 
properties of these classes. This characterization allo~7s us to design classes of 
solutions with better localization properties. In  particular, we design and discuss 
the properties of several novel subluminal and superluminal solutions of the 
homogeneous wave equation. We also design families of non-separable, localized, 
subluminal and superluminal solutions of the Klein-Gordon equation by using the 
same technique. 

1. Introduction 

I n  a recent paper (Donnelly & Ziolkowski 1992) we introduced a technique for 
obtaining interesting solutions of constant coefficient homogeneous partial dif-
ferential equations. The equation m7as solved in the Fourier transform domain in 
essentially an algebraic manner: we manipulated the transform of the candidate for 
a solution so that it became a generalized function which, when multiplied by the 
Fourier transform of the differential operator, gave zero in the sense of generalized 
functions. In  particular. m7e showed how straightforward it was to obtain non- 
separable 'localized wave' (LW) solutions of the wave equation (Ziolkowski 1985, 
1989). the damped wave equation. and the Klein-Gordon equation. These LW 

solutions propagate with speed c along the z-axis (arbitrarily) and exhibit a degree 
of localization transverse to the propagation axis (in the p variable) that is dependent 
on an arbitrarily positive parameter. The solutions are particle-like or plane wave- 
like depending on whether the parameter is large or small. respectively. 

I n  this paper we re-interpret the 'algebraic ' method we introduced in a 'geometric ' 
way. This geometric interpretation extends the previous method. and offers a 
powerful way of designing families of solutions of homogeneous partial differential 
equations that have desirable localization properties (about the propagation axis). 

In  $ 2 we compare two know11 localized solution families of the homogeneous \vasTe 
equation (HWE) : the fundamental gaussian (focus wave mode) solutions (Ziolkowski 
1885. 1989) and the Bessel-Gauss (BG) pulses introduced recently by Overfelt (1991) 
The Fourier transforms of both solution families share the property that their 
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542 R. Donnelly and R. Ziolkowski 

support lies on the same line. What causes the families to differ is the weighting 
function associated with this support line. Overfelt demonstrates, in the space-time 
domain, that the BG pulses have better focusing properties than do the fundamental 
gaussian pulses, and we demonstrate why this must be so by comparing the 
weightings associated with the supports of the transform domain representations of 
both families. This observation allows us to design related families (in the sense of 
sharing the same support lines) of HWE solutions with esTen better focusing properties 
than either the LW or BG pulses. 

I n  $ 3  u7e present some neu7 and old solutions of the HWE from this geometrical 
standpoint. Specifically. u7e consider the projections of the support lines of the 
Fourier transforms of HWE solutions onto a plane in the three-dimensional transform 
space. The projections of the support lines of the transforms of the fundamental 
gaussian (or BG) pulses. for different values of the arbitrary parameter, span a wedge 
shaped region of this plane; plane wave HWE solutions are readily seen as limiting 
cases of these families. Csing this concept of projection of the transform domain 
support line we design particular families of both sub- and superluminal, non- 
separable, localized HWE solutions (i.e. localized HWE solutions with components 
travelling less than or greater than speed c, respectively). 

The families of non-separable, localized HWE solutions mentioned above all contain 
(at  least) a free parameter, and so a weighted superposition over this parameter will 
still be a HWE solution. An important consideration is that the weighting, or 
'spectrum', of the superposition be chosen so that the total energy of such a 
superposition is finite. I n  the case of a superposition of LW pulses. a bound on the 
spectrum has been derived in order that the superposition have finite total energy 
(Ziolkowski (1989) and Donnelly & Ziolkowski (1992) give different derivations). In  
$ 4we modify the method derived in the latter reference to obtain an exact expression 
for the total energy that is applicable to a wide range of HWE solution families. Using 
this energy expression we investigate bounds on the spectra in the cases of 
superpositions of the superluminal pulses previously derived, and of the BG pulses 
introduced by Overfelt (1991) (who did not consider the energy of any associated 
superpositions). 

I n  $5 u7e apply the above geometrical method to the Klein-Gordon equation. 
Rather than catalogue several different solution families. u7e dwell on two in 
particular. By choosing the projections of the support lines of the transforms of a 
particular class of solutions to be a families of straight lines having the same slope 
in the projection plane, u7e arrive a t  families of either superluminal or subluminal 
non-separable, localized solutions of the Klein-Gordon equation. We comment on 
the similarity between the Klein-Gordon and HWE localized subluminal pulse 
solutions: the two solutions provide a link between massless (HWE) and massive 
(Klein-Gordon equation) localized pulses. 

Finally. in § 6 we discuss the merits of the work presented, and suggest asTenues for 
further investigation. 

2. Known localized solutions of the HWE 

I n  a recent paper (Donnelly & Ziolkou7ski 1992) we introduced a technique for 
ohtaining interesting solutions of constant constant coefficient homogeneous linear 
partial differential equations. In  particular, u7e obtained the non-separable LW 

solutions of the u7ave equation (Ziolkowski 1985, 1989). the damped wave equation, 
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and the Klein-Gordon equation. These solutions propagate with speed c along the z 
axis (arbitrarily) and exhibit a degree of localization transverse to the propagation 
axis (the p axis) that is dependent on an arbitrary positive parameter. 

As in our previous paper: here we shall address most of our detailed remarks to the 
free space homogeneous wave equation (HWE): 

the analysis here is readily extended to other homogeneous partial differential 
equations in subsequent sections. We introduce the multidimensional Fourier 
transform pair 

I n  (2) we denote the vector whose cartesian components are (k,: k,, k,), the spatial 
transform variables: by k ,  and w is the temporal transform variable. Taking the 
Fourier transform of (1)gives 

(k2-w2/c2) qjt{$} = 0. (3)(k,o) 

In  the sense of generalized functions, we have the result 

for a suitably well-behaved function f, where v is an n-dimensional vector variable, 
v, a constant vector, and 6 denotes the n-dimensional delta function. With the use 
of (4) we showed how to construct readily solutions $ of (1) which represent weighted 
superpositions of either plane waves or spherical waves. If we rewrite (3) 

( K ~+k; -w2/c2)q,t($1 ( k ,w) = 0, (5) 

where K~ = ki+ k i , then it is straightforward to verify that any solution of the form 

where the weighting S is an arbitrary function, will satisfy ( 5 ) .This is because the 
delta functions in (6) will constrain the term K ~ +k,2-w2/c2 to be identically zero. 

The choice of weighting 

E(K,p) = (n2/ip) exp ( -K ~ z , / ~ P ) ,  (7)  

where we assume that /3 > 0 and z, > 0 are arbitrary, leads to the focus wave mode 
(FWM) solution (Ziolkowski 1985: 1989) of (1) :  

(, ,.p) = eiP(z+ct)-exp ( -pe/3/[zo4- i(z-ct)]) 
FWM 7 , 4ni[z0+i(z-ct)] 

Any weighted superposition over the parameter P, for example, 
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Figure 1. Support line of the transform domain function given in (6). The support line. which is 
shown lying on a portion of the surface K"+II.: -(w/cj2 = 0. is described by the two equations 
in (12). 

ill also be a localized HWE solution. The superposition (9) car1 be shown (Ziolko~~ski  
1989: Donnelly & Ziolkox ski 1992) to ha re  finite energy provided 

The key to understanding the non-separability and the locallzed natures of the 
FW;I.;~Isolutions (8) is to examine. respectively, the delta function constraints and the 
weighting term. 5'.in the transform domain representation. (6). 

The two delta functions i~ (6) have the effect of forcing any function of the 
transform domain variables K, L,. and w to lie on the surface 

I n  particular. the support of the delta functions is the line described by the two 
equations 

k,  = P- K"/4P. W / C  = - (Ps-KvILdD). (la) 

This line is shown on the surface (1 1) in figure 1. We realize that any solution of (5) 
can be considered as a generalized function which, when multiplied by K" kk,2 - ( u / c ) ~ .  
equals zero in the sense of generalized functions. As such, the support of any solution 
of (5) will lie on the surface ( I f ) .  

I t  is convenient to consider the projection of the support of the solutioris of (5) onto 
the k,. w/c plane. The projection of the support curve of the Fwnr solution, given in 
(12). is shown in figure 2 for arbitrary P. It consists of a straight line, of slope one. 
ending a t  the point (P,P). \Then P = 0 the projection of the 'solution line' on the 
surface (11) coincides with the solution line itself, it is the line given by o/c = k,, 
K = 0. and corresponds to a superposition of plane n a\-es. each with frequency w and 
speed c, travelling in the positive x direction. This gives a 'geometric' justification for 
the 'algebraic' notion implied preriouslp by us. that the p w x  solutions represent the 
next generalization of HIVE solutions from plane waves: in the transform domain 
the FW;\I solutions represent a parallel translation of the straight support line from 
the k,, w/c plane onto the elevated surface given in (11) dnd shown in figure 1. 

The particular form (8) of the L ~ Vsolutions is due not only to  the support line. 
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Figure 2. Projection of the support line of the transform of the H\TTEsolution. given in (12) and 
shown in figure 1,onto the Ic,, w / c  plane. 

described by (12). on the surface ( l l) ,but  also to the choice of the weighting function 
along the support line. Clearly, there are many possible weightings leading to  other 
LW solutions. As another example. consider 

B(K. h,  /3) = (2, 47T3//3)IO(hz0 K/2/3) exp ( -h2%,/4/3)exp ( -2, K2/4/3). (1 3) 

where x, > 0. /I > 0, and h > 0 are arbitrary parameters. I n  fact. this choice of 
weighting in (6) can be shown to lead to the so-called zero-order 'Bessel-Gauss' (BG) 

pulse, introduced recently by Overfelt (1991) : 

20 
$ ~ c + , o ( ~ :t) = J ,  ( 'jzO )exp [ip(x +ct)]x, +i(z-ct) z, +i(x-ct) 

x exp [-/3p2/[zo + i(z-ct)]] exp [ - ih2xo(x-ct)/4/3[zo+i(x-ct)]]. (14) 

As pointed out by Overfelt (1991). taking the limit lim,,, $,,,,(r. t) leaves us with 
the LW pulse; (8))with parameter /3. One can show tha t  the general nth-order BG 

pulse again has a Fourier transform as given by (6). but  this time with the weighting 
function 

E B G , n ( K ,  A ,  /I) = (2, 47T3 e'in(n'2+q'//3) In(hzo K/2/I) exp ( -h2x0/4/3) exp ( -z, ~ ~ / 4 / 3 ) ;  
(15) 

where g, is the angular variable in a conventional cylindrical [K, g,,Ic,] decomposition 
of k-space. As stated by Overfelt, the zero-order BG pulse can be shown to  be 'more 
highly localized' than the fundamental F W ~ Iof Ziolkowski. 'because of its extra 
spectral degree of freedom'. as  evidenced by the arbitrary parameter h in (13). 

For any HWE solution whose transform domain representation is of the form (6)) 
the degree of localization in the p direction (perpendicular to the z propagation axis) 
is determined by the choice of weighting function of K ,  6 .  One can demonstrate the 
following inequality with standard Fourier transform results : 

The inequality (16) corresponds to the so-called 'uncertainty relation', in 
communications. for the duration-bandwidth product of time signals. The first 
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546 R.  Donnelly and R. Ziolkowski 

quotient on the left in (16) can be interpreted as a 'waist' of the HWE solution about 
the x-axis, with the second as a 'spatial bandwidth' of the solution with respect to 
the transverse distance transform variable. 

If we compare the weighting functions 6 for the FWM and BG pulses, given 
respectively in (7) and (13), we see that the BG pulses have an extra term Io(hxo ~ /2 /3 )  
included. The decay of the transform domain representation (on the line of support 
of the two delta functions in (6)) of the BG pulse due to the exp ( -z, ~ ~ / 4 / 3 )term will 
be tempered by the modified Bessel function. which behaves asymptotically like 
exp (Axo ~ /2/3) /2/ (2nhz~~/2/3) .  One would thus intuitively expect that the second, 
bandwidth, term on the left side of (16) would be greater for the BG pulses than for 
the FWM pulses; indeed. this effect should be evident the larger h becomes. But. in 
order that the inequality in (16) be satisfied, this is exactly the effect we should 
expect to see if we were to 'pinch' our FWM solution (i.e. decrease its waist): a 
corresponding increase in its spatial bandwidth. These intuitive notions are made 
more exact in Appendix A. 

3. New and old solutions of the HWE 

As mentioned in $2, both the FWM and BG pulses are similar in that their temporal 
and spatial Fourier transform domain representations consist of lines (the support of 
the product of delta functions in (6)) lying on the surface K~ -tk: - ( w / c ) ~= 0, as 
shown in figure 1. They differ in the weighting (3" in (6)) along this line. I t  is easy to 
see that every rotationally invariant (with respect to the z propagation axis) solution 
of the HWE corresponds to some subset of this surface (whether it be a point, line. or 
patch, for example), accompanied by a suitable weighting. Actually, even more 
general LW solutions (varying with q5 in a (p, q5, z)  spatial cylindrical coordinate 
system) may be accommodated in this way, if along with the transform domain 
weighting we include a function of cp, where we have decomposed the spatial 
transform domain into a conventional ( ~ , c p ,k,) cylindrical coordinate system. 
Furthermore, because of the obvious bijection, to consider I ~ W Esolution subsets of 
the surface K' +ki- ( w / c ) ~= 0, it suffices to consider their projection on to the k,, w/c 
plane. We shall now consider examples of projections of various HWE solution lines, 
some possible weightings, and the localized HWE solutions to which they correspond. 

(a) Plane waves 

As discussed previously (Donnelly & Ziolkowski 1992); the choice of the transform 
domain solution 

E,t{$)(K, JC,, 01 = P(u) (S(K)/K) 8% f(~J/c) (17) 

corresponds in space-time to a superposition (over o)of plane waves travelling in the 
negative/positive x direction. In  this case the solution line in (17) is either 'edge' of 
the surface K' +ki - ( W / C ) ~  = 0 ;  the projection of the line is itself. As K = 0 on this 
solution line, the weighting function, P, is a function of the single (arbitrary) 
parameter w ;  this lack of variation with K on the solution line also leads to 
separability of the solution. 

(b) Focus wave mode (FWW) OT Bessel-Gauss (BG) pulses 

Q7e reproduce here the transform domain solution (6), for convenience: 


q, t{~>= E(K: - S[U+c(p+ K V ~ P I I ,  (18)(K, k,, 0) p,A)  6 ~ ,(P- K ~ / ~ P ) I  P > 0. 
Proc. R.Soc. Lond. A (1993) 



547 Designing localized waves 

The projection of the solution line corresponding to (18) is the straight line, of slope 
+ 1 (with respect to k,), given by that portion of 

(WIG)k, - (19)= 2P 
for which w <-21. In  figure 2 we have shown the projection of the solution line (that 
portion of (19)) for two values of 1:/?,and 1,> P,, along with the contour lines of 
the surface K~ +ki - (w/c)' = 0. With this representation of solutions of the form (18): 
several properties are apparent. Both the FWM and BG pulses have cut-offs in their 
temporal and z spatial spectra : the spectra are zero for o/c > -P and k, > +,8.The 
result %{$I (w) = (%($*I ( -w))* implies that the temporal Fourier transform of the 
real part of any HWE solution of the form (18) will be zero in the range -cp < w < c/3 
(mentioned in Donnelly & Ziolkowski (1992)). As is increased, the projection of 
the HWE solution line crosses contour lines a t  a greater rate. However, in the case of 
both the FWM and BG pulses, whose transform domain representations contain the 
factor exp ( - ~ ~ ~ , / 4 / 3 ) ,  is increased we see that  the weighting decreases more as 
slowly as K increases. Thus one would expect a greater spatial bandwidth, B, as 
defined through (16). We know that, as /? increases, both the FWM and BG pulses 
become more highly localized (their waists decrease), and so we expect an 
accompanying increase of spectral bandwidth. As P+O the projection line tends to 
that of plane waves, given in example ( I ) ,  and the weighting tends to one. 

(c) Other LW pulses having speed c 
The projections of the solution lines corresponding to the delta function constraint 

in (18) (for /3 > 0 varying) forms but one general family of projections of HWE 

solution lines: /3 > 0, w < 0, slope + 1. There are clearly three other related families : 
/3 > 0, s < 0, slope -1 (corresponding to HWE solutions that propagate in the 
negative z direction with speed c), /3 < 0, w > 0: slope + 1 (solutions propagate in the 
positive z direction with speed c), and /?< 0: w < 0: slope -1 (solutions propagate in 
the negative z direction with speed c). Just  as in the case of FWM or BG pulses, one 
may form new localized HWE solutions from these alternate families by superposing 
weighted solutions with respect to the parameter P. 

(d) Superluminal pulses : varying speed projections 

I n  figure 3 we have shown an arbitrary straight line emanating from the origin in 
the k,, o/c plane, lying in the upper half-plane between the lines w/c =fk,. We take 
this line to be the projection line of a typical member of a new family of HWE solution 
lines, again lying on the surface K' +k,2- (w/c)' = 0. With y any real number lying in 
the range ( - 1, I ) ,  we see that on the projection line shown E,/(w/c) = y: and w/c > 0 
(i.e. y is the reciprocal slope). 

From this characterization of the projection line it is straightforward to determine 
the corresponding HWE solution line. This solution line will, in turn, correspond to the 
HWE solution whose Fourier transform is given by 

%,tC$,> (K,  k,, E(K,Y) -y2)) S(w-cK/d(l -y2)),  (20)= ~ ( k , - y ~ / d ( l  
where, again, E(K,y)  is an arbitrary weighting function to be associated with the 
solution line. 

If we now choose as weighting 

Proc. R.Soc. Lond. A (1993) 
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Figure 3. Projection of the support line of the transform of the superluminal HWE solution 
given through (20) .onto the k,, w / c  plane. 

Figure 4 Figure 5 

'igure 4. Xormalized surface plot of the superluminal HIVE solution pulse Re{$,(r, t ) ) ,where $, is 
given in (23) ,fr,r the ralues t = 0 . z ,  = 0.1 .  /z-ct ly l  d 1 em. 0 Q p d 0.5 em. and y = 0.5. The pulse 
centre travels with irpeed 2c. 

Figure 5 .  Normalized surface plot of the superlumirial HWE solution pulse Re{$&r; t ) ) ; where @, is 
given in (23) ;for the values t = 0 ; z ,  = 0.1. lz-ct ly l  d 1 em. 0 Q p Q 0.5 em. and y = 1.0. The pulse 
centre now travels with speed 10c. Note that  the leading and trailing 'JIach cones' have 
correspondingly smaller rertex angles as compared with the 2c pulse in figure 4. 

where zo > 0 is arbitrary, the exact space-time form of the HWE solution given 
through (20) may be determined. *Applying inverse spatial and temporal Fourier 
transforms to (20) gives, eventually. 

This integral may be evaluated (Gradshteyn & Ryzhik 1980, eq. 6.623.2) to give 

[zO-i sgn (y) (2-ctly)I
$?(I,: t )  = 

{p2((l-y2)/y2)+ [z0-isgn (y) (~--c t /y)]~}%'  
(23) 

As - 1 < y < 1. we realize that $y in (23) represents a waveform that is travelling in 
the positive/negative z direction, depending on whether y is positive/negative, with 
speed Ic/yl > 1. That is. $, in (23) is a superluminal pulse whose speed depends on 

l'roc. R. Soc Lo?ld.  A (1993) 
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y .  From (23)we also see tha t  a t  the pulse centre z = c t ly ,  the superluminal pulse 
decays like l / p 3 .This is to be compared with the co-called 'sling-shot ' superluminal 
LW HIVE solution found by Ziolkowski et al. (1993)) which has a ~veaker decay of only 
lip. I n  figures 4 and 5 we have shown surface plots of the superluminal HWE solution 
pulse Re {$,(r, t ) } ,  for $, as given in (23) .for two different values of y (corresponding, 
respectively. to  pulse centre speeds of 2c and 10c).Xote tha t  the leading and trailing 
'Mach cones' have smaller vertex angles for the faster pulse. 

(e )  Xuperluminal pulses : constant speed projections 

I n  figure 6 we have shown three arbitrary straight lines, each having the same 
reciprocal slope yo(O< yo < I ) ,  all emanating from the line w/c = - k , .  w/c > 0 .  
These three lines are projections of members of a family of HWE solution lines: an 
arbitrary projection line may be written as 

where p 3 0 is arbitrary. From this characterization of the projection we may readily 
determine the corresponding HWE solution line. This solution line will, in turn. 
correspond to a HWE solution whose Fourier transform is given by 

where, again, E(K,yo,P )  is an  arbitrary weighting function to be associated with the 
solution line. If we n o ~ v  choose 

where v: = y:P2/(1 - y ; ) .  the exact space-time form of the HIVE solution given 
through (25)  may be determined. Applying inverse spatial and temporal Fourier 
transforms to (25)gives, eventually. 

where we use x defined by 

The integral in (27)may be evaluated (Gradshteyn & Ryzhik 1980, eq. 6.637.1) to 
give 

$,,,p(r, t )  = exp(-iPyo[z-yoctll(l - Y ; ) )  

where I ,  and K Oare the usual modified Bessel functions. Again. since 0 d yo < 1. $yo,P 

in (29 ) ,this HM-E solution represents a waveform whose envelope is travelling in the 
positive z direction, with speed c l y ,  > 1 ; i.e. a superluminal pulse. 

Proc R Soc. Lond A (1993) 
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Figure 6 Projection of the support lines of the transforms of three members of a constant 
speed superluminal family of H W E  solutions, given through (24) ,for three arbitrary ralues of /I. 

Figure 7 Figure 8 

Figure 7. Xormalized surface plot of the superluminal HWE solution pulse Re { $ y o , p ( ~ .t ) ) .where $yo 

is given in (29) .for the values t = 0 ,  2, = 0.001. /J' = 10, 1%-ctly,] < 1 cm. 0 < p C 0.5 cm and y, = 
0.5. The pulse centre travels with speed 2c. 


Figure 8. Xormalized surface plot of the superluminal HWE solution pulse Re { $ y o , p ( ~ . 
t ) ) .where $ y o , p  

is given in (29) ,for the values t = 0 . z,  = 0.001. /I = 0.01.1r-ct/y,l < 1 cm, 0 < p < 0.5 cm and yo = 
0.5. The pulse centre travels with speed 2c. Xote the broadening of the pulse waist. as compared 
with figure 7. 

Figure 9. Sormalized surface plot of the superluminal HWE solution pulse Re { $ y o , p ( ~ .t ) ) :where 
is given in (29) ;for the values t = 0 ,  r, = 0 0 0 1 ,  ,8 = 10, r - c t l y ,  C 1 em. 0 C p C 0.5 om a,! 
y, = 0.1. The pulse centre travels with speed IOc. Note that  the leading and trailing '3Iach cones' 
have correspondingly smaller vertex angles than have the 2c superluminal pulse in figure 7. 

Proc. R. Soc. Lond. A (19931 
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As complicated as the expression for i" in (29), it represents a HWE solution 
exhibiting a certain degree of localization, with respect to the propagation axis. 
Indeed, for z = ctly,, and p % 0, we can make use of the first term in the asymptotic 
expansions for I, (given in (A5)) and for KO, given by (Abramowitz & Stegun 1965, 
eq. 9.7.2) 

Ko(C) V' ( ~ 1 2 5 )  (30)e-'> 

to approximate 

where we neglect all terms of order 1/p in the arguments of the modified Bessel 
functions. Thus, the superluminal pulse given in (29) decays like 1/p for large p. Note 
also that the 'far field' (in (31)), is exponentially smaller for those HWE solutions, in 
this family, that correspond to larger /3 values. 

I n  figures 7-9 we have shown normalized surface plots of the superluminal HWE 
solution pulse Re {$,o,p(r, t)), where given in (29), for different values of P and 
yo. It is seen that decreasing /3 causes the pulse to broaden, while decreasing yo 
(speeding the pulse up) causes a corresponding decrease in the vertex angles of the 
leading and trailing 'Mach cones '. 

(f)Subluminal pulse : constant speed projections 

I n  figure 10 we have shown two arbitrary straight lines, each having the same 
reciprocal slope yo > 1, both running between the lines o/c = +k, in the upper half- 
plane w/c > 0, and each cutting the w/c axis a t  different values, P,, and P2. 

These lines are projections of members of a family of HWE solution lines. An 
arbitrary projection line may be written as that portion of the straight line 

lying between the lines w/c = +k,. We realise that, on the corresponding HWE 
solution line, K will vary from zero up to some maximum value (depending on yo and 
p) and then back to zero. I t  is not difficult to show that the peak value of K (given 
by ,4y0/d(y:- I ) )  on any HWE solution line occurs for those values of o/c and k, 
where the corresponding projection line intersects the straight line w/c = yo k,. There 
will be two points on any HWE solution line with the same value of K in the range 
0 < K < Pyo/l/(y:- 1). This is to be compared with the luminal and superluminal 
cases, where for each HWE solution line there was a bijection onto K values in the 
range [0, a).Thus, here the HWE solution line breaks down naturally into two 
segments, as does the corresponding projection line (where the straight line segments 
will be of equal length). We may associate different weightings with each segment 
of the solution line. The general form of the Fourier transform of the HWE solution 
whose projection line is shown in figure 10 is given by 

%,t{$,,,p>{~>k,, = E l k , Yo, P)6(kz-~o[P+ V'[P2Y:-K2(Y:- l ) l l l (Y:- 1)) 

x 6(~-c[Py:+ V'[y:P2-K2(Yi- l)I l l(Y:- 1)) 

+Z2(K,YO, P)6(kz-~o[P- V'[P2Y:-K2(Y:- 1)11/(~:- 1)) 

x S(w-c[Py:- V'[P2yi-K2(Yi- l)lll(y:- I ) ) ,  (33) 
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0 kz 

Figure 10. Projection of the support lines of the transforms of two members of a constant speed 
subluminal family of HWE solutions; given through (32); for two arbitrary values. For  the 
corresponding support lines, the maximum value of K will occur where the support line projection 
intersects the line w / c  = y,k, ( s h o ~ m ) .  

for K in the range 0 < K < P Y o / d ( y i -  1) - K ~ ,where El and Zz are arbitrary 
weighting functions. If we now choose 

then the exact space-time form of the HWE solution defined by (33) may be 
determined. Applying inverse spatial and temporal Fourier transforins to  (33) gives. 
eventually. 1; d55Jo(Kod(l-c2,~ 5 )

$ y o , P ( ~ >2. t )  = KOexp 

The integral in (35) may be evaluated (Prudnikov et al. 1986. eq. 2.12.21.6) to give 
final1 y 

As yo > 1. $yo,P in (36) represents a waveform whose envelope is travelling in the 
positive z direction with speed cly, < c: i.e. a subluminal pulse. We note tha t  a t  the 
pulse centre (z  = ctly,) on the z axis (p = 0). I$,o,pl attains its maximum value of 
K~ = Pyo/l/(yi- 1). On the z axis the width of the 'main lobe' of I$.,o,pl ( the distance 
between which the argument of the sine function in (36) first takes on the value TC) 
about the pulse centre z = ~ z P / K ~ .ctly, is given by 2x(yi- l ) /pyi  = At the pulse 
centre the width of the main lobe '. in the p direction, is given by 2nd(y; -  l ) /pyo= 
2 n l ~ ~ .Thus we see that  greater localization is achieved for those HWE solutions in 
this family that have larger P values. or, for fixed P for those HWE solutions in 
families corresponding to values of yo closer to one (i.e, the speed of the pulse 
approaches c). 

I n  figures 11 and 12 we have shown normalized surface plots of Re(@,,p(r, t)}, 
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Figure 11 Figure 12 

Figure 11. Normalized surface plot of the subluminal HWE solution pulse Re {$./o,p(~, t)}, where 
is given in (36), for the values t = 0, ,8 = 50, l z - c t / yo l  < 1 cm, 0 < p < 0.5 cm, and y o  = 2. The 
pulse centre travels with speed i c .  

Figure 12. Normalized surface plot of the subluminal HWE solution pulse Re{$./o,p(r, t ) } , where $,o 

is given in (36), for the values t = 0, ,8 = 10, l z - c t / y o i  < 1 cm, 0 < p < 0.5 cm, and yo= 2. The pufse 
centre travels with speed i c .  Note the broadening of both the pulse waist and duration, as compared 
with figure 11. 

where is given in (36)) for two different values of P. We see that a decrease in 
/3 results in a broadening of the pulse waist and duration. 

4. Superpositions of LW solutions and finite energy conditions 

The FWM and BG pulses. defined by (8) and (14), the constant speed family of 
superluminal pulses, defined by (29).and the constant speed family of subluminal 
pulses, defined by (36). are all HWE solutions for arbitrary choices of the positive real 
parameter p present in the solution. As such, a weighted superposition of members 
of each family of solutions. with respect to the parameter P. 

will also have a HWE solution. I n  (37) F(P)is an arbitrary 'spectrum', or weighting, 
and we have used the symbol $p to denote an arbitrary member of one of the above 
mentioned HWE solution families. 

The transform domain representations of the above luminal and superluminal HWE 

solution families (given, respectively, in (18), and (25))share the property that they 
may be written in the form 

where fK(P)and gK(/3) are functions of K and /3 such that K~ +f :(P)-g;(b)/c2 = 0. The 
energy of the superposition (37) is given by 
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In  Appendix B we show how this energy expression may be rewritten as 

for a superposition O(u. t )  of members of a family of HWE solutions whose transform 
domain representation is of the form (38). A straightforward modification of (40) 
gives the energy of superposition of the superluminal pulses, given through (33). 
Equation (40) is quite useful, as it obviates the need for manipulating the often 
cumbersome expression (39) on an ad hoc basis for any particular HWE solution family 
we choose. All we need do is substitute for the constraint fK(/3) and the weighting 
function E(K,/~).Using (40) we can obtain bounds for the superposition weighting, 
F(/3). in order that the superposition O(r, t)  have finite total energy. This 
consideration is clearly important for launching approximate realisations of these 
superpositions from (necessarily) finite apertures. 

I n  particular, for both LW and BG pulses, comparison of (38) with (6) shows that 
fK(/3)= /3- ~'/4/3. For LW pulses. where the weighting E(K. /3) is given in ( 7 ) ,the energy 
integral (40) becomes 

1 " CC K 
&I,, = j dK ------ ~ ~ z ~ / 2 / 3 ) ,j, d/3IF(P)I' K2+4/3' exp ( -

and using standard manipulations of the K integral (Donnelly & Ziolkowski 1992) we 
obtain the inequality, previously given in ( lo) ,to be satisfied by the superposition 
spectrum F in (27). For the zero-order BG pulses, whose weight E(K,A, /3) is given in 
(13), the energy integral (40) becomes 

or, if we make the change of variable KIP= < in the inner integral, 

A crude sufficiemt condition on the spectrum F(/3), so that &I,, remains finite. may be 
found. For 0 < z < 1 we have I,(z) < 2, while for z > 1. I,(z) < eZ/2/(2?cz) (see (A 5)). 
If we denote the inner integral in (43) by D, we have the inequality 

2/*zo 45 exp (hz, 5)exp ( -&zob?) 
. (44)

4 + %  4+51 

A further inequality may be obtained by replacing the denominators of both 
integrands in (44) by 4, and extending the range of integration in the second integral 
to -co.With these alterations the integrals in (44) may be evaluated, and we have 

D < 1-exp ( -2/3/zo h2) + exp (h2z0/2/3) 
Pzo (220)W(P.n) 
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Thus, a superposition, of the form (37), of zero-order BG pulses will have finite energy 
if we choose a spectrum F satisfying 

For a superposition over the constant speed family of superluminal pulses. given 
in (29). we find, by comparison of (25) with (38), that 

and the weighting E ( K , / ~ )  is given in (26). In  this case the energy integral (40) 
becomes 

where again v: = y:pZ/(l-y:). The integral with respect to K in (48) does not 
converge. Hence, no weighted superposition of superluminal pulses of the form (29) will 
havejnite energy. The problem comes from the 1 / ~  term in (48). Hence, considering 
the weighting S(K.  yo,/3) in (26), if instead we chose as weighting, say, 

the resulting space-time pulses would still be superluminal, and it would be possible 
to take weighted superpositions (with respect to /3) of such pulses, such that the 
superposition had finite energy. Unfortunately, the choice of weighting (49) leads to 
space-time superluminal pulses that cannot be found in closed form. However, as the 
proposed weighting E in (49) has a slower decay with increasing K than does the 
original E in (26). the uncertainty ideas explored in Appendix A lead us to conclude 
that our new family of superluminal pulses would possess better localization 
properties than do the previous ones. 

5. Localized wave solutions of the Klein-Gordon equation 

Consider the Klein-Gordon equation (KGE) 

where p > 0. Applying Fourier transforms to (50) gives 

{ K ~  (w/c)' +p" (k,W )  = 0. (51)+k,2- >,t{$} 

Following the analysis of the HWE, we realise that any rotationally invariant solution 
of the KGE will have a Fourier transform whose support lies on .the surface 

This surface is shown in figure 13. Once again, to consider Fourier transforms of KGE 

solutions whose supports are lines lying on the surface (52), we shall instead consider 
the projections of the support lines onto the Ic,, w/c plane. 

Rather than catalogue various types of KGE solutions, as we did in the HWE case, 
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Figure 13. The surface K~ +k2 - ( w / c ) ~+p2 = 0, for the Klein-Gordon equation. is shown above 
the k , ,  w / c  plane. and for the value p = 4. 

Figure 14. Projection of the support line of the transform of a member of a constant speed 

superluminal family of KGE solutions. for an arbitrary /7 value. 


here we shall investigate families of superluminal and subluminal pulses. I n  figure 14 
we have shown an  arbitrary member of a family of straight projection lines, each 
having the same reciprocal slope yo (0 < yo < 1) .  

I t  is relatively straightforward to find the KGE solution line corresponding to this 
projection. This solution line ~vill. correspond to a KGE solution whose Fourier 
transform is given by 

e,tt($,,,p>W )  = P ) S(JC,-yo[-P+ 2 /[ (K2+P2)( 1-7:) +Y;P211/(1-Y; ) )( K ,  JC,, Y O ,  

~~(~-~[-PY:+~/[(K~+P~)(~-Y;)+Y:P~I~/(~-Y;))>
(53)  

where E is an  arbitrary weighting function to be associated with this solution line. 
This form is to  be compared with the Fourier transform of the arbitrary HWE 

superluminal pulse, given in (25) .If we nox7 choose 

~ K , Y O , P )  = ( 2 . ~ ) ~ e x p  (54)( - x ~ ~ ( v : + K * ) ) / ~ / ( v : + K ~ ) ,  

where v: = P2y; / ( l-y;)+p2.  and X ,  is an  arbitrary positive parameter, the exact 
space-time form of the KGE solution given through (53)  may be determined. 
Applying inverse spatial and temporal Fourier transforms to  (53)gives, eventually, 

+ y , , P ( ~ :Z :  t )  = ( -d texp  1:vo( - ipyo 'Z-yOct l )exP 
(1-73 

[ ~ , - i c r ~ ]  I ) ) ,vo) [Jo(pvo 2/(t2-
(55) 
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Figure 15 Figure 16 

Figure 15. Sormalized surface plot of the superluminal KCE solution pulse Re{$,o, (r,t)}, where 
is given in (571, for the values t = 0, y,= 4, j5' = 0.1, = 50, X, = 0.01, / r-ct/./,f< 1 cm, and 

O < p  <0.5cm. 
Figure 16. Sorrnalized surface plot of the superlurninal KCE solution pulse Re{$,o, ( Y ,  t)}, where 
$yo,:, is given in (571,for the values t = 0, y,,= 9. B = 100,y = 50. 2, = 0.01, /z-cf/:/,/o< 1 m,and 
0 < p < 0.5 cm. Vote the broadening of the pulse duration, and the different oscillatory behaviour 
of the solution inside the 'Mach cone'. as compared with figure 15. 

where we use oodefined by 

g o  = (~Olv'(1-y:)) [z-ctlyol. (56) 

The integral in (55)may be evaluated (Gradshteyn & Ryzhik 1980. eq. 6.646.1) to 
give 

The KGE solution given by (57) clearly represents a superluminal pulse (0 < yo< 1). 
In  figures 15-18 we have shown normalized surface plots of the superluminal KGE 

solution pulse Re{$yO,a(~, C)),  where is given in (57), for varying P, p (i.e. mass 
term), and x,. 

We see that as ,u is decreased, the oscillatory behaviour of the solution within the 
'Mach cone' becomes difficult to detect (relative to the amplitude at  the pulse 
centre). Also, decreasing the value of x0 causes a decrease in the change of the 
solution across the Mach cone. 

It should also be noted that had we chosen projections of KGE solution lines that 
had reciprocal slope one (yo = I ) ,  instead of (53) we should arrive at  a KGE solution 
whose Fourier transform is given by 

If we now choose 
E(K,P) = ((2z)'lP) exp ( -.zOK'/~P):  

where zo > 0 is arbitrary, then the exact space-time form of the KGE solution given 
through (58) is given by 

x exp [ -~ ' [ z ~  (60)-i(z-- ct)]/2P]. 
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Figure 17 Figure 18 

Figure 17. Xormalized surface plot of the superluminal KGE solution pulse Re($,o, (r,t ) } :where 

* Y " J  is given in ( 5 7 ) .for the values t = 0,  y o  = 4;P = 0.1, p = 1, X, = 0.01. lz--ctjy,f< 1 cm, and 
0 < p < 0.5 cm. Xote that  the mass term is lower than in figure 15 and, the oscillatory behaviour 
inside the 'Alach cone' is undetectable. 

Figure 18. Normalized surfkce plot of the superluminal KGE solution pulse Re{$,o, (r.t ) } .  where 

$,,a is given in (57).for the ralurs t = 0; y, = & /i = 0.1. p = 5 0 , ~ ~0.002, lz-ctly,/<
= 1 em. and 
0 < p < 0.5 cm, Again. oscillatory behaviour inside the 'Mach cone' is undetectable, and, 
moreover, the change in the pulse when crossing the Mach cone is smaller (relative to  the pulse 
centre amplitude) then in figure 17. The serrations of the surfice a,long the Mach cone are an 
artefkct due t o  plotting grid coarseness. 

The integral in (60) may be evaluated (Gradshteyn & Ryzhili 1980. eq. 6.631.4) to 
give 

$@(p,z: t) = exp (iz(p2 -P2)/2P) exp ( - itc(p2+P2)/2,8) 

The KGE solution in (61) is essentially the same type of LWE KGE solution found 
previously by us (Donnelly & Ziolkowski 1992). Comparing it with the HWE FWM 

solution. given in (8), we see that  $P in (61) has essentially the same localization 
properties as that  LW solution. but is trarelling at  luminal speed. 

On the other hand, if one proceeds with a projection analogous to the HWE result 
shown in figure 10, one obtains the Fourier transform 

~"{$,,,@> ( r :t) = E,(K,Yo, P)s(k, -yo[P+ a/[P2yi - i K 2  +p2)(Yi- l)Il/(Yi-1)) 
x S(w-c[pyi+ .\j[y;p2- (K2+/1" (7:- l)]]/(yi- 1))  

+ E g ( ~ :  (7;- l)l]/(Yi- 1))  yo,P)  a(kz-~olIP-- v ' [ P 2 ~ i - ( K 2 + ~ ' )  

x 6(w-~[Pyi- d[P2:/i- ( 1 ~ 9 . p ~ )  (62)(7;- 1)11/i~i- I ) ) ,  

where K now lies in the range 0 < K < [(,8yo/g(7:- I ) ) ~ - - ~ ~ ] ;K,,. If we choose the E 


same weighting functions s", and Zg defined by (34): 

then the exact space-time form of the HWE solution defined by (62) may be 
determined by proceeding exactly as we did in 93f. This process yields the KGE 

solution 
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As yo > 1, $Yo,p,, in (65) represents a waveform whose envelope is travelling in the 
positive x direction with speed v, = c/yo < c;  i.e. a subluminal pulse. This result 
recovers the unidirectional KGE solution reported by Ziolkowski et al. (1991). 

Aside from the actual definition of K,, we note that the subluminal KGE solution 
(65) is identical to the subluminal HWE solution (36). Introducing the standard 
relativistic factor y,2,, = we can write yi/(yi- I )  = y:,, and specify the [1- (V,/C)~]-~,  
terms 

w(K,)/c = [Ki+ k: +p21i = P, 
= ( ~ ~ ~ , 2 ~ l-p2)', 

V, = w ( ~ ~ ) / k ~= Cy, = C2/vg, 

so that we rewrite (65) as 

The parameter P is still free, the propagation constants v,, K,, Ic,, and w following 
from (66). We could thus continue with our analysis by taking superpositions of (67) 
over this free parameter p to obtain finite energy solutions. Another choice would be 
to fix v, and then form superpositions over the angular frequency w since (66 b)  gives 
P = c).  This would yield a localized finite energy solution travelling along z a t  
speed v,. 

A similar form for (36) can also be obtained simply by taking p+O in the 
frequency, wavenumber, and phase velocity expressions given in (66) ; finite energy 
superpositions, as discussed in $4, would then be available for the HWE. However, 
without labouring any further into finite energy superpositions, we can note several 
interesting features shared by the subluminal KGE and HWE results. As noted above, 
the subluminal HWE (36) and KGE (67) solutions differ only by their values for the 
propagation constants. None the less, we now will interpret (67) as a representation 
of a massive, spinless particle travelling with speed v, along the z-axis and the 
corresponding HWE result (36) as a localized packet of waves. The dispersion relation 
(52)then represents the energy of the particle if we define the energy E = &w and the 
momentum p2 = & 2 ( ~ 2+k:). Similarly, the dispersion relation (12) represents the 
wave energy if we introduce the same energy and momentum definitions. We note 
that both the KGE I$,,,p,yl and the HWE I$yo,pl solutions attain their maximum value 
of K~ a t  their centres (z = ctly, = v, t )  on the x-axis (p = 0) and that the weights given 
by (34) and (63) could be adjusted by I/K, to yield unity normalizations of these 
solutions instead. On the z-axis the width of the 'particle' and 'localized wave 
packet' about their centres a t  z = ct/yo = v,t is given by 

~N(Y; -1)lK; yili = 2n/(y,e1 K O ) .  

This longitudinal extent decreases as the particle or wave speed increases towards c 
and the relativistic factor y,,, increases. The transverse width of the 'particle' and 
'localized wave packet' about their centres in the p direction, is given simply by 
2 x 1 ~ ~ .As one would expect from relativistic considerations, the transverse waist is 
not explicitly dependent on the factor y,,,. Thus we see that greater localization of 
the particle or the localized wave packet is achieved for those cases having larger P, 
hence, K~ values, or, for fixed P, those cases corresponding to values of yo closer to 
one (i.e, as the group and phase speeds of the particle or the localized wave packet 
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Figure 19 Figure 20 

Figure 19. Sormalized surface plot for the subluminal KGE solution pulse Ke{$yo,P(~; t)), where 
$yo,P is given in (65). for the ralues p = 1; t = 0, p = 20, z -c t l y ,  < 1 cm; 0 < p < 0.5 cm; and 
yo= 5 (so that  the pulse centre travels with speed +c, 

Figure 20. Normalized surface plot for the subluminal KGE solution pulse R'e{$yo,p(~, t)}; where 
$,o,p is g i ~ e n  in (65). for the values p - l jt - 0, /3 = 20; lz-ct/yoi < 1 em, 0 < p < 0.5 cm; and now 
yo = 1.1 (so that  the pulse centre travels with speed c / l . t ) .  I n  comparison with the pulse shown in 
figure 19, the pulse here has the sarne mass but increased kinetic energy: the pulse here is more 
highly localized. 

approach c). However. we rnrnst rerneniber that  the exact values for these parameters 
are obtained differently between the KGE and the HWE solution families. For 
instance, a decrease in either ,u or yo leads to an increase of K,. which in turn results 
in a narrowing of the particle's transverse waist and longitudinal extent. On the 
other hand. one can only either increase the value of ,8 or decrease yo so as to increase 
K, and thus produce a similar effect on the properties of the localized wave packet. 

I n  figures 19 and 20 we show a normalized surface plot of Re {+vo,B(r' t ) ) .where the 
KGE solution is given by (65). Comparing figures 19 and 20 we find that  keeping 
the mass term b] and constant. while increasing the speed (hence kinetic energy) 
of the pulse. results in an increase in the value of K,. hence an  increase in the pulse 
localization. 

We note that  there have been many connections between particle and purely wave 
solutions, generally based on standing waves or plane waves. The relationships 
between (36) and (67) provide a direct connection between localized massless (HWE) 

and massive (KGE) solutions. M'e note that  there are some properties directly shared 
between the subluminal (or superluminal) HTVE or KGE solutions without specifying 
any case dependent parameters. For example, the phase and group speeds in both 
instances must strictly satisfy the relation. 

1;
P 
1;

B 
E c2. (68) 

This property can be seen to be intimately connected to the subluminal (or 
superluminal) nature of these solutions and their free space dispersion relations. I t  is 
a natural generalization of the luminal solution property that  v, = v, = c. 

6 .  Discussion 

I n  this paper we have made transparent our previous 'algebraic' method for 
obtaining interesting, non-separable. localized solutions of constant coefficient 
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homogeneous linear partial differentia'l equations. Considering the HWE, we dealt 
with solutions whose Fourier transforms have supports along lines lying on the 
surface K~ +k i  -- ( w / c ) ~= 0 in phase space. We further note that these supports would 
equally well have been taken as patches or point,s, although these choices were not 
considered explicit'ly. Varying the free para'meter (present in most of the solutions 
considered) caused the corresponding support line to sweep out a subset of that' 
phase space surface and, hence, caused the projection of the support line t'o sweep out 
some region of the k,, w/c plane lying within the wedges -w/c < k, < w/c (e.g. see 
figure 2). 

The process of designing a family of non-separable, localized HWE solutions can 
t'hus begin by choosing a one parameter family of straight lines t'ha't sweeps out some 
region of the mentioned k,, w/c-plane wedges. The corresponding family of 
transformed solution supports is readily found. The coupling of K ,  k,,  and w on any 
support line is wha't causes the corresponding space-time solutions to be non-
separa'ble. Th.e degree of localization of the ~olut~ion (about the propagation axis) is 
controlled by the weighting associated with t,he transformed solution support line; 
in particular, by effectively t'reating K as a free parameter, one can create an 
appropriately designed weighting over the variable K to produce the desired 
localiza'tion in the space-time domain. Considering, for example, a support line on 
which K +a,we obviously require the weight'ing to be such that t'he inverse Fourier 
transform exists; but beyond this requirement', we observe that tempering the decay 
of the weighting (as K +cc) will, in general, cause a greater degree of localizat'ion (in 
a'ccordance wit'h sa't'isfact'ion of the 'uncertainty relation' (16)). 

We demonst'rat'ed that by choosing t,he projections of t'he support lines to have 
slopes greater than (respect'ively, less tha'n) one, in t'he k,, w/c pla'ne, one can obtain 
solutions whose envelopes (localized component') travelled with speed greater t'ha'n 
(respectively, less than) c ;  i.e, superluminal (subluminal) solutions. Moreover, the 
examples we presented included a cert'ain degree of loca'lization as well. Identica'l 
forms were obt'ained for the sublumina'l localized wave HWE and KGE solutions, 
which led to a direct connect'ion between the corresponding loca'lized wave pa'cket' 
and particle int'erpreta't'ions of those solutions. Common properties of those 
subluminal solutions were identified such a's an increa'se in the degree of localiza't'ion 
as their energy increa'sed (mass remaining constant for the KGE pulse); and it was 
shown tba't those solutions require a specific relationship bet'ween their pha'se a'nd 
group speeds : v, vp = c2, which is a generalization of the usual luminal d u e s  vg = 

v = c.P 
It is important to realize that t,he various weightings a'ssociat'ed with the support' 

lines t'hat we considered here were chosen solely to guara'ntee tha't a closed form 
space-time solution could be found (i.e. tha't the inverse Fourier tra'nsform could be 
evalua'ted in closed form). To more fully exploit this design procedure for purposes 
of launching, sa'y, acoustic realiza'tions of (a'pproximations t'o) localized waves and 
their superpositions from a'n array of t'ransducers (see Donnelly & Ziolkowski (1992) 
for a summary of experiments), one would choose a support line weight'ing that gave 
the desired localizat'ion properties, and then numerica'lly invert the Fourier 
transform. One would t'hen obt'ain the requisite time doma'in signals to be fed into a 
tra'nsducer a'rray to reproduce the solution, a t  least in the nea'r field of t'he array. 

I n  addition, it must be not'ed t'hat in this paper we chose particula'r solution 
families whose Fourier t'ransforms have supports which projected onto a family of 
straight lines in the Ic,, w/c plane. This is not necessary. &T7e could, for example, have 
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chosen a one parameter family of hyperbolae that 'spanned' either wedge in the HWE 

case (shown in figure 2). or the interiors of either hyperbola in the KaE case (shown 
in figure 14). These considerations lead us to pose the following question: what is. a 
priori. the speed of the envelope of the HWE solution corresponding to an arbitrary 
support line projection in the k,. w/c plane (i.e. to an arbitrary support line) ? Linked 
to this question is the important notion of the group velocity of a pulse. The localized 
waves we have considered are broadband either temporally or spatially or both. Most 
considerations of group velocity deal with narrowr band (in frequency) wave packets. 
and the concepts used in that case often break down when extended to broadband 
signals (Jackson 1975). I n  this context the idea of group velocity seems important, 
albeit ambiguous. and will be addressed in a future publication. 

This work was done when R.D.  was a Visiting Scholar in the Department of Electrical and 
Computer Engineer~ng a t  the University of Arizona, during the autumn of 1991. This work was 
supported by the Canadian Natural Sciences and Engineering Research Council Operating Grant 
OGPIN 011. 

Appendix A. The uncertainty relation for localized waves and Bessel-Gauss 
pulses 

Here we shall make more precise statements made in the main body of the paper 
concerning the inequality 

as it pertains to the FWM and zero-order BG pulses. I n  (A 1) we have used the symbols 
W and B to denote the (transverse to propagation axis) 'waist' and (corresponding 
transform domain) 'spatial bandwidth' defined there. 

The Ziolkowski LW pulses, $,,,. are given in (8). and their full space-time 
Fourier transforms through (6) and (7). The expression (F,,,{@,,,)(K. z .  t ) (  required 
for the bandwidth (B) quotient, is given equivalently by the magnitude of the inverse 
x and t Fourier transforms of (6).The delta functions in (6) contribute terms whose 
magnitudes are one, and so 

The integrals in the expressions for W and B are readily evaluated, and we obtain 

From (A 2) we see that the waist of the FWM pulse changes as z-ct changes. and that 
the bandwidth remains constant. We also see that the smallest value of the waist- 
bandwidth product is one, and this occurs a t  the pulse centre. x = ct, whereas the 
waist takes its smallest value. zO/2P. 

For the Overfelt zero-order BG pulses the analysis is not so simple. Here we have 
$,,,, as given in (14)) and again we have 

I E , y { $ ~ ~ , o )( K ,  2, t)I = IEBG,O(K,P)I. 
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The expressions for t'he waist and ba'ndwidt'h here reduce to 

To obtain an approximate expression for the product (WxB),,,, we shall assume 
that h + p > 0. Note that, this assumption is justified for the following reasons: 

(i) I t  is known (Overfelt 1991) that the zero-order BG pulse reduces to the FWM 

pulse as h +0. and so any 'improvement ' of localization properties of the BG pulses 
can be expected to come from values of h away from zero. 

(ii) I t  is known (Ziolkowski 1985. 1989) that the FWM pulses possess little 
localization for small p. 
Numerical studies of the integrands in (A3) and (A4) suggest that the following 
approximations are valid for h only two or three times greater than P. 

With the above assumptions then. we approximate I, and J, by the first terms of 
their asymptotic expansions (Abramowitz $ Stegun 1965. eqs 9.2.1, 9.7.1) 

With these approximations our expressions ( 9 3 )  and (A4) for the waist and 
bandwidth of the zero-order BG pulse reduce to 

(m 

dpp2jcosh [hap(z -ct)]+sin [hapro]} e-lap2 
wz j 0  (A6)

J: dp (cosh [hap(r -ct)]+sin [hapro]} e - h 2  ' 

Jmd~ K2 exp ( -Z,(K -h)'/2p) 

B z L (A 7) 


J: dx exp ( -z0 ( r-h ) ~ / 2 ~ ) 
' 

where a = 2z , / [z~+(z-~ t )~] .TWO further approximations are justified by our 
assumptions. Since h + p, the oscillations due to the sin [hapz,] terms in the waist 
expressions will cause the integrals involving these terms to contribute very little 
to both the numerator and denominator: we shall neglect their contribution. 
Additionally. we shall extend both ranges of integration to - ar, in the expression 
( 8 7 )  for the bandwidth. With these approximations. the integrals in the waist 
expression are known (Gradshteyn $ Ryhzik 1980, eq. 3.546.2) and those in the 
bandwidth expression are easily evaluated. We arrive a t  

Considering (A8);  we see that the waist of the zero-order BG pulse varies with 
z-ct. whereas the bandwidth remains constant. This is so, in fact, regardless of our 
assumptions. The smallest value of the waist is z0/4P, a t  the pulse centre, z = ct. 
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Considering the waist-bandwidth product for the FWM pulses, (A2),  and for the 
zero-order BG pulses. (A8).  we realize the following. The smallest value of the waist 
of the zero-order BG pulse (if h % P > 0) is half tha t  of the FTVM pulse. Both 
waists/bandwidths decrease/increase as  P increases. With the assumptions made. 
the value of h does not affect the smallest value of the zero-order BG pulse waist, and 
moreover it seems to increase the waist of the pulse as i t  increases, for z J; ct. 

Appendix B. Derivation of energy expression (40) 

The energy oTer a superposition of HWE solutions is given by (39). which we 
duplicate here for convenience, and rewrite using Yarseval's theorem : 

The HWZ solution @(r,t) is given as a superposition of the HWE superposition family 
7Crp(r, t) (through (37))) where the transform domain form of $p(r, t) is given in (38). 
Using (37) and (38) we may write 

where 9.1,'denotes the inverse temporal Fourier transform operator. 
I n  equation (B2) let us make the change of variable f,(P) = 5, and assume that  we 

can invert this relationship to obtain /3 =f;'(t) (iff,. whose domain is [0, a ) .  is not 
a bijective mapping onto its range, then this argument may be modified). We then 
obtain r(m)dSdf;'(5g~(f;'(5))(k ,  t) = - S(K.f;' (6))S(k,--5) e r p  (-itg.,(f;'([))) 

2~ f,(o) d6 

' k--Adf;~(~;'(k,)) E(K,f;'(k,)) enp (-itg,(f;'(r,))). 
2n: dk, (B 3) 

where we assume that  k,_ .= min (fK(0), fK(m) )< k, < max (S,(O). f , (m))  E k,', and the 
constant A = + 1 depending on whether f,(m) 3 fK(0). Then (B1)becomes 

1 k, 2 

8 = -1 dk, dk, 1'dk, / m d ~ ( f r ' ( k , ) )  S(K. f;'(k,)) / . (B1)
('E)' R k 2 1  dk, 

Making the 'inverse' change of variable f;' = P, so tha t  k, =fK(P),our energy 
expression becomes 

I t  is readily demonstrated tha t  

Proc. R. Soc. Lond. A (1993) 



and so our. energy expression becomes 

as was stated in (40)in the main text.  
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