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Abstract 

In this paper we consider the problem of constructing solutions of several well known nonlinear partial dif- 
ferential equations (p.d.e.s) in phase space (i.e. the Fourier transform domain). We seek solutions representing 
travelling focussed pulses. As such, based on a technique used to construct such solutions (so called Localized 
Wave solutions) of linear p.d.e.s, we look for phase space solutions consisting of a generalized function whose 
support is a particular line or surface, together with a suitable weighting function. The support of the phase 
space solution must be such that it regenerates itself after the appropriate nonlinear operation. In one spatial 
dimension we construct the usual well known soliton solutions of several equations. For the case of higher 
spatial dimensions we construct a travelling "slab" pulse solution of the nonlinear Schr6dinger equation. We 
also discuss some issues involved with the extra freedom one has for the phase space support, leading perhaps 
to more exotic spacetime domain solutions. 

1. Introduction 

There are various methods available for obtaining solutions' of nonlinear partial differential 
equations (p.d.e.s) [1,2]. Of particular interest in physics and engineering are those equations 
having time and one or more spatial directions as variables, and for such equations one is often 
interested in solutions representing focussed pulses of energy. The soliton solutions of many well 
known p.d.e.s are examples. 

Fourier transform methods traditionally are used only when dealing with linear p.d.e.s. Applying 
these methods to the homogeneous wave equation, for example, we have shown [3] how one 
can design, in phase space [i.e. the Fourier transform domain], focussed moving pulse solutions, 
and how one should vary the phase space characteristics of the solution in order to achieve more 
focussing in spacetime. Basically, the phase space solution consists of any generalized function 
whose support lies on a particular surface (the so-called "dispersion surface", determined by the 
transform of the wave operator), together with a particular weighting function. It is the behaviour 
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of the weighting function which determines the spacetime focussing properties of the solution. It 
is important to realise that the wave equation itself enters into the discussion only inasmuch as it 
determines the surface on which the support of the phase space solution must lie. As such, one may 
use transform methods to construct solutions of nonlinear p.d.e.s. In these cases, however, there 
will be no "dispersion surface" (in the above sense) associated with phase space solutions. One 
may still proceed by appealing to support arguments. That is, the effects of the various derivatives 
in phase space do not change the support of the prospective solution; the effects of the nonlinearity 
do change the support, in general, and so one must now choose as solutions those phase space 
functions whose supports are "regenerating" in the sense of surviving the nonlinear phase space 
operations. 

These ideas are made more concrete below. In Section 2 we apply the method to the impor- 
tant nonlinear [cubic] Schrrdinger equation, in one spatial dimension, and show how the usual 
soliton solution may be constructed. We discuss examples of other nonlinear p.d.e.s to which we 
have applied this method. In Section 3 we consider the nonlinear Schrrdinger equation in three 
spatial dimensions and demonstrate how the above method can be used to construct "slab-like" 
moving solutions. The introduction of more spatial dimensions implies potentially more freedom in 
phase space when constructing supports having the requisite "regenerating" properties. We discuss 
this freedom, and suggest an example of a tentative support having the necessary "regenerating" 
properties. In the final section we summarise the approach. 

2. One spatial dimension 

For exemplification of the method we shall start by considering the [cubic] nonlinear Schr6dinger 
equation in one spatial and one temporal dimension: 

O. 8 2 
i -~u(z, t)  + -ff~u(z,t) + oolu(z,t)12u(z,t) = O, (1) 

where ao > 0 is a constant. If we apply a spacetime Fourier transform to (1) we obtain 

c~O toU(kz, to)-k2U(kz,  cO) + (-~)4[U(kz, to),kz,~oU*(-kz,-to)]*kz,o)U(kz, to) = O, (2) 

where *k,,o~ denotes the operation of convolution in the variables kz and to, and where 

U ( k z , to ) = Y'z , t { u } ( k z , to ) = .7:z Y't { u } ( k z , to ) 

= / dz / dt e -ikzz e i°Jt u(z , t ) ,  (3) 
, I  fi R 

and so u(z, t) ~ U(kz, to) denotes a Fourier transform pair. Note that we have the transform pair 

lu(z , t ) l  2 ~ (/-~--~U(kz, to) *k,,w U * ( - k z , - t o ) ,  (4) 

which may perhaps best be thought of as a type of "autocorrelation" of U with itself. Nevertheless, 
for ease of referral we shall henceforth refer to the spacetime Fourier transform of lu(z, t)12u(z, t) 
as involving a double convolution of U (kz, to) with itself, despite the special meaning of one of the 
convolutions. 
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Fig. 1. Tentative choice of "regenerating" support line (co = mkz + b) for phase space solution of nonlinear Schr6dinger 
equation. 

From a knowledge of the design of Localized Wave (i.e. focussed) pulse solutions of the homoge- 
neous wave equation [3] we realise that focussed, moving spacetime pulses can be associated with 
phase space (i.e. Fourier transform domain) functions consisting of a generalized function whose 
support lies on a line or surface in phase space, together with an appropriate weighting function. 
The decay of the weighting function for large values of the spatial transform variable (s) determines 
the degree of focussing of the pulse. This is independent of the particular spacetime equation (or 
phase space equation) to be satisfied by the pulse. In this case, however, we seek such phase space 
forms that satisfy (2). 

If we want U(kz, co) to be a generalized function with a particular support in phase space, 
together with an associated weighting function, then with regard to (2) we realise that multiplying 
U(kz, co) by either co or kz 2 will not change the support. However, in general the support of even 
U(kz, co) *k,,oJ U* (-kz ,  -co) will differ from that of U(kz, co), as will indeed that of the double 
convolution term in (2). Thus, we must seek solutions of (2) in the desired form (i.e. product of 
a generalized function with a particular support, together with an associated weighting) such that 
the support of U(kz, co) is "regenerating" after the double convolution, in the sense that it equals 
the support of [U(kz, co) • U*(-kz , -co)]  • U(kz, co). 

One obvious choice of a"regenerating" support is the arbitrary straight line, of slope m and co-axis 
intercept b, as shown in Fig. 1. With the support given in Fig. 1, we see that U(kz, co)must be 
given by 

U(kz, co) = F(co) J ( c o -  mkz - b),  (5) 

where F(co) is, as yet, an arbitrary weighting function. 
The statement that the support of U(kz, co) regenerates itself after the double convolution in (1) 

is perhaps best justified graphically; this facility, although clearly not necessary here, is useful in 
the multidimensional case. The first convolution operation involves multiplying U(kz, co) by the 
conjugate o f  linear translates of itself, and then integrating over the kz, co plane. The product will 
be nonzero (i.e. the two support lines will overlap) only where the support line is translated so that 
it lies on itself, so that the translates must lie on a line parallel to the original support line, passing 
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through the origin. Performing the first convolution gives specifically 

U(kz,to) * U*(-kz , - to )  = [F(to)  *coF*(- to)]  ~ ( t o -  mkz) ,  (6) 
m 

where *o~ denotes convolution with respect to to only, and we see that the support of this function 
is not in general the same as that of U (kz, to). However, repeating the convolution process we "flip 
the function in (6) over" with respect to the two axes (this does not change the support),  then 
multiply translates of it by U(kz,to), and then integrate over the kz,to plane. The two lines will 
overlap only when the translates lie on the original support line of U (kz, to). Specifically, 

g(to - mkz - b) 
[ U ( k z , t o ) , w U * ( - k z , - t o ) ] , U ( k z ,  to) = [ F ( t o ) , F * ( - t o ) ] , F ( t o )  m2 (7) 

As the support of the double convolution term in (7) is the same as that of U(kz, to), in (5), 
we can substitute these expressions into (2) to obtain 

(to - b)2 
t o F ( a ) ) $ ( t o - m k z - b )  m2 F ( t o ) t S ( t o - m k z - b )  

$ (to m k z  b) (~0 + ~ [F( to)  • F* ( - to )  ] • F ( w )  m2 = O, (8) 

where we have used the property g (C)~ (C-C0) -= g (Co)t~ ( C -  C0) (effectively we have coupled kz 
to to in a linear relation by the choice of  a straight line support in (5)).  A solution of  (8) is given 
by 

toF(to) (to - b)2F(to ) + ao [F ( t o ) ,  F * ( - t o ) ]  • F( to)  = 0, (9) 
rn 2 m2(2~) 4 

and so the problem now becomes that of finding F( to) .  
To this end we shall apply an inverse temporal Fourier transform to (9). The resulting equation 

will contain time derivatives of f (t), where f (t) ~ F (to), and it transpires that the equation can 
be readily solved if the term containing the single derivative vanishes. From (9) this implies that 
the term in to vanishes, and so we shall impose the constraint 

2b 
m2 = - I .  (10) 

With this constraint satisfied we inverse transform (9) and rearrange to get 

d2f ( t )  b2f( t )  ao ]f(t)12f(t)  = 0 .  (11) 
dt 2 = (21r)2 

If  we assume that f (t) is real valued, then a solution of (1 1 ) is readily obtained: 

I 2 
f (t) = 21tb~ ~00 sech[b (t - to) ],  (12) 

whereto  is constant. 
Finally then, inverse Fourier transforming (5) gives 



u(z , t )  = 
e- i zb /m 

2nm 
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f ( t  - z / m ) ,  

119 

(13) 

and so 

subject to the constraint (10). This is a well known soliton solution of (1) [I,2]. 
Some comments are in order regarding the method just used. It was based upon the fact that 

the support of the proposed phase space solution, (5), was "regenerating" in that after convolving 
twice, the support of [U(kz, oD • U*( -kz , -oJ ) ]  • U(k~,oD was the same as that of U(kz, oJ). 
However, to be precise, this is not sufficient, as we could replace ~ by ~' in (5) and still maintain 
the "regenerating" support argument. The problem would be that now after convolving twice we 
would obtain finally ~"  instead of ~'. We must therefore restrict ourselves to delta functions in 
phase space. 

The slope and oJ-axis intercept of the support line in (5) are arbitrary as far as the "regenerating" 
property goes. The constraint (10) is imposed only to obtain a temporal differential equation, ( l 1 ), 
containing no first derivatives, which can be readily solved. 

It is also important to note that this approach is not the same as assuming a solution containing 
a function g ( z -  rot), and then substituting into (1), as one must assume a priori the existence of 
a phase term to make progress towards a solution [2, Section 17.8]. In our approach that phase 
term arises from the offset of the support line from the origin. 

The above method can be applied readily to other nonlinear p.d.e.s, such as 

0 a-~ O3 
-~v(z, t)  + aoV(Z,t) v ( z , t )  + -~-~v(z,t) = O, 

0 _ ~-~v(z,t) = O, -~v ( z , t )  v ( z , t )  - a o o ~ V ( z , t  ) 

0 2 0 2 
ot2V(z, t)  - -~-~v(z,t) + s inv(z , t )  = O, 

(14) 

(15) 

(16) 

which are the Korteweg-de Vries equation, Burger's equation, and the sine-Gordon equation, 
respectively. In the case of the first two equations, the Ov/Oz carries over to ikzV(kz, oJ) in the 
transform domain, which does not affect the support of V(kz, co). Hence, in both these equations 
we seek phase space solutions whose supports regenerate themselves after a single convolution; 
there will therefore be no phase terms present in the spaeetime solutions, since there can be no 
offset of the support line from the origin in phase space. In the case of the sine-Gordon equation, 
by expanding sinv = v -v3 /3!  + v 5 / 5 ! -  ... we realise that we need a phase space solution whose 
supports regenerate themselves after two [strict] convolutions (since they will thus regenerate 
themselves after four convolutions, and so on). We see here also then that there will be no phase 
terms present in the spacetime solution. Following the procedure outlined above we obtain the 
standard soliton pulse solutions (e.g. [2] ) to these equations. 
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3. More than one spatial dimension 

The above notions can be used to search for solutions of nonlinear p.d.e.s in more than one 
spatial dimension. As an example, consider the cubic Schr6dinger equation in three spatial variables, 
x,y, z: 

i~---iu(r,t) + V2u(r,t) + o~olu(r,t)12u(r,t) = 0. (17) 

Applying a spacetime Fourier transform gives 

coU(k, co) - k2U(k, co) + (-~j-~[U(k, co) * U*(-k , -co) ]  * U(k,co) = 0, (18) 

where k 2 = Ikl 2 = k~ + ky 2 + k~. We seek a solution U(k, co) whose support is "regenerating" in 
the sense of surviving the double convolution. An obvious choice is therefore the product of a delta 
function, whose support is an arbitrary straight line in kx, Icy, kz, co space, with a weighting function: 

V(k,co) = F(co) ~(co - mxkx - bx) tJ(co - myky - by) ~(co - mzkz - bz). (19) 

That the support of V (k, co) is indeed regenerating is readily verified. Substituting from (19) into 
(18) gives, after performing the delta function convolutions and equating the entire coefficient of 
the product of delta functions to zero 

c o F ( c o ) - [ \ ~ /  + \  my / + \  mz ) F(co) 

a0 [F(co) * F*(-co)l  • F(co) = 0 (20) "+ (mxmymz)2(2~r)s 

which we must solve for F (col If we apply an inverse temporal transform to (20) and enforce the 
constraint 

bx by bz 1 
rnx 2 + m---~ + m--'~ = - 2 '  (21) 

we get a time domain equation containing no first derivative terms, identical to (11 ) apart from 
constants. The solution is 

f (t) = (2u)3mxmymzlbm[~oSeCh (Ibmlt~k {ml ] ' (22) 

l 

where f ( t ) ~ F ( co ), and 

. m =  ( ~_~x, b V bz ) ( 1  1 1 )  
my 'mz ' m =  m z ' m r ' m z  " (23) 

Finally, then, inverse transforming (19) gives us 

i 2 [ ( ( t - t 0 ) ) ]  u ( r , t ) = e  -i ' 's-lbml ~00sech Ibml r . ~ - ~  , (24) 

where ~ = m/Im[. Note that the constraint equation (21) can be rewritten: 
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bm .RI = - ½ .  (25)  

The solution (24) represents a pulse travelling with speed 1/[m[ in the direction ~ .  If  the speed 
of  the pulse increases (so that [m[ decreases), we must have ]b m] increasing, and so the term e -i''bm, 
representing a "tippling" in the direction bin, at an obtuse angle with respect to the direction of  
propagation, m, oscillates more rapidly. 

In (19) we chose the phase space candidate solution for the Fourier transformed cubic Schr6dinger 
equation as having the simplest support that "regenerated" itself after the double convolution in 
(18): i.e. a straight line support in k, to space. This was the obvious generalization of  the 
one spatial dimension case. If we accept a phase space candidate solution containing the term 
F(to) d ( t o -  mkz - b) (this leads to a spacetime pulse travelling with speed m in the z-direction), 
then there remains to choose the variation with respect to kx and ky. If  this variation is independent 
of  to, then the resultant spacetime pulse will have a transverse profile that is independent of  z 
and t. If  the kx, ky variation is linked to to (hence kz, via d ( t o -  m k z -  b)) then the transverse 
behaviour of  the corresponding spacetime pulse will depend on z and t. We now explore these 
possibilities in more detail. 

If  the variation of  the candidate solution, in phase space, with respect to kx and ky is independent 
of  to, then in order to proceed as in the one dimensional case (i.e. ultimately obtain a phase space 
equation in to to solve for F ( to ) ) ,  Eq. (18) must ultimately contain only to variations. Two terms 
that tend to thwart this are x2U(k,  to) (where x e = kx 2 + k~), and the double convolution of 
the kx, ky varying term (call this term, say, G(kx, ky)). To remedy this we may demand that 
r.2G(kx, ky) = 0 (implying that g ( x , y )  is a solution of  Laplace's equation, where g ~ G), and 
that the double convolution [ G ( kx , Icy ) • G* ( -  kx , - Icy ) ] • G ( kx , ky ) results in a term proportional to 
G(kx, Icy). Alternately, we may demand that the double convolution behaves as just stipulated, but 
now that G(kx, Icy ) is such that x2G(kx, ky ) is proportional to G(kx, ky ) (so that g (x ,y )  satisfies a 
Helmholtz-type equation). Based on investigations of these possibilities, we speculate that in either 
case such behavior is not possible, so that no requisite G(kx, k~) exists. 

If  the variation of  the candidate solution, in phase space, with respect to kx and ky is linked to 
to then an interesting possibility arises. It may be possible to choose the variation of  U(k, to) with 
respect to kx, ky, to (as opposed to kz and to) as a function (call it G(kx, ky, to)) whose support is 
a surface in kx, ky, to space. Note that it is essential for the argument presented in the case of one 
spatial dimension that the support of  the delta function in kz, to be an infinite straight line: a finite 
or semi-infinite straight line support will not "regenerate" itself in the sense described above. With 
this we realise then that a surface support of  G(kx, ky, to) must extend to 4-0o in the to variable. 
The weighting on such a surface in the to direction is just F( to) ,  and so we are free to choose 
a weighting with respect to kx and ky. The value of  kx 2 and kf  on the surface will be linked to 
to, and so the term x2G(kx, ky, to) can be rewritten H( to)G(kx,  ky, to), where H(to)  depends on 
the surface. We thus further require the surface support of  G(kx,ky, to), and the kx, Icy weighting 
associated with that support, to be such that 

[U(k,  to) • U* ( - k , - t o ) ]  • U(k,  to) 

= [F (to) G(kx, ky, to) *kx,ky,to F* (- to)  G* ( -kx ,  -ky ,  - t o ) ]  *kx,ky,to F(to)  Gtkx, ky, to) 

a(to - mkz - b) × 
m 2 

constant × [F (to) *,o F* ( - to )  ] • F( to )  G(kx, ky, to) J(to - mkz - b) .  (26) 
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co 

Fig. 2. Tentative choice of part of "regenerating" support surface for phase space solution of nonlinear Sehr'ddinger equation 
in three spatial dimensions. The problem is to choose a suitable angular weighting function for the surface. 

As formidable as these requirements may seem, an example of a reasonable prospective transform 
domain solution is the function G(kx, ky, to) whose support is the cone, as shown in Fig. 2. In this 
case we see that 

G(kx ,  ky, to) = ~ (q~) t~(to 2 - -  a2K2) ,  (27) 

where ~ (~o) is the weighting function on the conical surface (~0 = tan -1 (kylkx)). That this is a 
reasonable guess is confirmed when we overlap the support of  G with conjugated copies of itself 
that have been translated along the surface of the cone. In this case the two cones intersect along a 
generator. We see that x ZG (kx, kr, to) = (to2/a2)G (kx, ky, to), and so the problem remaining is to 
choose the angular weighting associated with the conical surface, • (~0), such that (26) is satisfied. 
As yet we have been unsuccessful in this effort. 

4. Concluding remarks 

The method presented here, of constructing solutions of nonlinear partial difcrcntial equations 
in phase space, is novel. An obvious by-product of the method is that one automatically gains 
knowledge of the spatial and temporal frequency content of the solution, which is of importance 
for many practical applications. From our knowledge of the phase space characteristics of moving, 
focussed, pulse-like solutions of linear p.d.c.s wc rcaliscd that such phase space solutions in the 
nonlinear case should also bc represented as generalized functions whose support is a particular line 
or surface, together with an appropriate weighting function associated with the surface. The support 
surface determines the propagation characteristics of the spacetimc pulse, while the associated 
weighting function determines its focussing characteristics. The problem then becomes one of 
choosing the support surface, together with the weighting function, such that the support of the 
solution is "regenerating" in the sense of surviving the nonlinear [convolution] operations. In one 
spatial dimension the obvious choice of "regenerating" support is a straight line. In the case of 
higher spatial dimensions a straight line support also suffices, but there arises the possibility of more 
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exotic support surfaces, thus leading to interesting new spacetime solutions. Although we have not 
yet found examples of new support surfaces, we suggested a tentative example [for the nonlinear 
Schr6dinger equation], in the hopes that this may spur other workers to solve this problem. 
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