(ds')?=(dx")*+(dy’)2+(dz")?+c*(dt')? in the frame
S’. The transformation of coordinates that guarantees the
invariance of the square of the interval, i.e., (ds?)=(ds’)?,
is given precisely by Eqs. (11). In this Euclidean space I can
define geometrical objects as four vectors: . #%, .#7,,..., and
tensors: % P, 7% ... An attractive feature of this space is
that there is no difference between covariance and
contravariance,* e.g., . 7*=. 7, and =4, With a bit of
manipulation, I can write my Eqgs. (7) as two tensor equa-
tions in this four space,

3,0%"=0, and G*Q"*+3"Q " +3°Q ’=0,  (17)

where 0*” is the electromagnetic field tensor in Euclidean
four space, which is defined by the following antisymmetric
matrix:

0 ~E, -E, —E,
E. 0 -B, B,

QK= (18)
E, B, 0 -B,
E, ~B, B, 0

I can also write the tensor Q*” in terms of the four potential
- H=(=D,A),

QHY= 3. ME— k. 1, (19)

where "=[(1/c)(d/31),V]. As you can see, Eq. (17) rep-
resent a respectable four-dimensional field theory. The ex-

pression (19) involves Egs. (6) and so the functions A and ®
emerging from quantum or classical mechanics represent, by
virtue of the elliptical propagation, the potentials of “my
electromagnetism” and not that of Maxwell. In conclusion,
your argument for deriving Maxwell’s equations isn’t as per-
suasive as you think; it’s shown to be ambiguous. The really
convincing things are always unambiguous, like you and
me,” finished the Devil with more than a hint of triumph.”

And God offered a draw, which was immediately ac-
cepted.

"The present fiction has been inspired by a nice paper of Roger Barlow,
“Introducing gauge invariance,” Eur. J. Phys. 11, 45-46 (1990). See also
Andrzej Horzela, Edward Kapuscik, and Charles A. Uzes, “Comment on
the paper ‘Introducing gauge invariance,’ by R. Barlow,” Eur. J. Phys. 14,
190 (1993).

“See, e.g., Donald H. Kobe, “Derivation of Maxwell’s equations from the
local gauge invariance of quantum mechanics,” Am. J. Phys. 46, 342-347
(1978).

See, e.g., Donald H. Kobe, “Derivation of Maxwell’s equations from the
gauge invariance of classical mechanics,” Am. J. Phys. 48, 348-353
(1980); James S. Marsh, “Alternate ‘derivation’ of Maxwell’s source
equations from gauge invariance of classical mechanics,” Am. J. Phys. 61,
177-178 (1993); José A. Heras, “Comment on ‘Alternate “derivation’’ of
Maxwell’s source equations from gauge invariance of classical mechan-
ics,” by James S. Marsh [Am. J. Phys. 61, 177-178 (1993)],” Am. J. Phys.
62, 949-950 (1994).

“See, for example, E. Zampino, “A brief study on the transformation of
Maxwell equations in Euclidean four-space,” J. Math. Phys. 27, 1315~
1318 (1986).
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There are various methods for obtaining the electromagnetic field generated by an arbitrarily
moving point charge in free space. If one decomposes the total electric field in terms of its transverse
and longitudinal components, one must deal with the fact that the longitudinal component is
propagated instantaneously. In this paper we deal with this in a novel manner. In the Fourier
transform domain we solve for the transform of the transverse electric field in terms of expressions
which involve the transforms of the current density and the longitudinal electric field; we thus view
these expressions as “‘sources” of the transverse electric field. By inverse Fourier transforming we
directly obtain the space—time transverse electric field, which is shown to contain a term which
exactly cancels the instantaneous longitudinal electric field, so that the total electric field is
propagated in a retarded fashion. Our approach does not make use of intermediate vector and scalar
potentials, and thus dispenses with the need for gauge conditions.

L. INTRODUCTION

In this paper we solve for the electric field produced by a
moving point charge in free space using a method that has
not hitherto (to the best of our knowledge) been given. We
first solve for the transverse electric field, in the Fourier
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transform domain, in terms of expressions involving the
transforms of the current density and the longitudinal electric
field; we thus view these last two quantities as ““sources” of
the transverse electric field, and we discuss the physical
meaning of this interpretation. By applying an inverse Fou-
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rier transform we arrive, in a straightforward manner, at the
space—time transverse electric field. A direct by-product of
this analysis is a term which exactly cancels the instanta-
neously propagated longitudinal electric field. The total elec-
tric field is thus propagated in a retarded fashion. No inter-
mediate vector and scalar potentials are used in this analysis.

The problem of finding the electric field produced by a
moving point charge is traditionally solved by the introduc-
tion of intermediate vector and scalar potentials, but this im-
mediately raises the issue of a gauge condition. The
Liénard—Wiechert potentials are usually used to give the
electric field for an electron moving with constant velocity;'
an alternate approach in this special case is to apply a Lor-
entz transformation to the fields of a static charge. The elec-
tric field of an arbitrarily moving charge can also be found
by the method of “normal variables” and Fourier
transformation:> one proceeds by first finding the spatial
Fourier transform of the transverse vector potential, which is
gauge invariant. The causality of the electric field in the Cou-
lomb gauge has been demonstrated by Brill and Goodman,’
who show that the transverse current density, J, (r,t), com-
pensates for the instantaneous Coulomb interaction appear-
ing when one calculates E in the Coulomb gauge. Also of
interest is the work by Bohm and Weinstein* which considers
nonradiating charge distributions using potentials and Fou-
rier methods. We believe that the fields-only approach we
present here may be preferred by some, due to its directness.

Using a method which is initially related to the one we
use, Haus® derives the correct far field of an arbitrarily mov-
ing point charge in free space. He also attempts to explain
the dichotomy between the current density, as being respon-
sible for power transfer to the field according to Poynting’s
theorem, and the time derivative of the current density, as
being responsible for far-field radiation. We discuss Haus’
method, which seems flawed, in the final section of this pa-

per.
II. DERIVATION OF THE ELECTRIC FIELD

Our starting point is the vector equation obeyed by the
electric field:

V X VXE+1 62E_ A
( ) p Ryl Rl (1)

where the vectors E=E(r,t) and J=]J(r,) are functions of
the position r and the time ¢. We can apply a space-time
Fourier transform to Eq. (1) to get

2
w
kx[kx8]+?- E=—ipyw Z, )

where, for example,
E=Ekw)=F, F{EH ko)

= JR3drfRdt e KTl E(r 1), (3)

and k=k|= \/kx2+k§+kf. We may decompose & into com-
ponents parallel and perpendicular to k as &=&)+ & , with
the parallel components known as the (transform domain)
longitudinal field, and the perpendicular component known
as the transverse field. We have then that kX &=kX&,,
and so Eq. (2) decomposes into two equations: perpendicular
to k and one parallel to k.
Perpendicular to k we have
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[k —(0?/c?)]#, = —iopokX (kX 2)=ipw 7, ,
@)

where the unit vector k/|K| is denoted by k. Parallel to k we
have

[

w

pel A= —ipow 7. 35)
Since we write 7, = 7— 7, from Eq. (5) we have

PRy SLAP ©)

FL=. l‘«ocz &M E

and so Eq. (4) may be rewritten

2_ 24,2 & =i o w_2;(
[k“—(w*/c*)] &, l#o@?‘*‘cz ‘1 - 7

It is tempting to divide Eq. (7) throughout by k*— w?/c?,
and then inverse Fourier transform the result to obtain
E, (r;t). However, some care must be exercised because,
strictly speaking, this does not lead to a physically meaning-
ful solution unless some caveats are followed. Even if the
source current density, J(r,t), is spatially bounded, the lon-
gitudinal electric field, E"(r,t), whose space—time Fourier
transform appears as a “source” term in Eq. (7) for #(k,w),
is propagated instantaneously throughout space. This is
readily seen from the Maxwell equation V-Ey(r,t)=p(r,t)/€,
where E"(r,t)cvgu(k,w) form a space-time Fourier transform
pair; any changes in p(r,t) are manifested instantaneously
throughout space in E“(r,t).

Nevertheless, if we impose the condition that the effects of
both source terms on the right-hand side of Eq. (7) be propa-
gated in a retarded sense in space—time, then the appropriate
inverse spatial transform solution of Eq. (7) is given by

iwr/c
FAE)(r0) =7 *r(iwuo.%{J}mw)
w2
+?Z{E”}(r’w))’ (8)

where *. denotes the operation of three-dimensional spatial
convolution, and r=|r|. This leads to the transverse space-
time electric field,

d J(&t—|r—§/
Nl = &/

d4mir—§
_ia_z Ej(&1—|r—&/c) 0
c? ot Jp3 47|r—§ ©)

This equation is central to our approach. It describes how E;
is manifested in terms of source components J and E;.

Again, it should be emphasized that, although the longitu-
dinal electric field, E(r,t), is propagated instantaneously
throughout space [via Eq. (5)] as a result of the parallel com-
ponent of the current, J(r,t), or of the charge density p(r,t),
the contributions of E| gr,t) from each point in space are in
turn propagated causal{y (i.e., via the retarded propagator) to
effect E, (r,t) in Eq. (9). We shall demonstrate, in a novel
fashion, that the second source term in Eq. (9) contains a
component which exactly cancels the longitudinal electric
field, E, at r at time ¢.

We now assume the existence of a lone particle of charge
q located in free space at the point ry(¢), so that
p(r,t)=qdlr—ry(r)], and hence J(r,t)=qv(t)dr—ry(?)],
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where v(¢)=dry/dt is the velocity of the particle. All the
subsequent analysis may readily be extended to cases of a
finite or infinite number (including a continuum) of charged
particles. Both source terms (integrals) in Eq. (9) contribute
terms which are dependent on the velocity of the particle,
and on the acceleration. We shall deal with the contributions
from each integral separately.

In the second integral in Eq. (9) we make the change of
variables {=r—§, and then convert the triple integral with
respect to ¢ to spherical polar coordinates, to write

E||(§,t—|r—§|/c 1
| e T E i g ave
xE"(r—gz,t—g/c), (10)

where {=|¢, =0, and [ 2d.#? denotes the integration
over the unit sphere, with respect to the unit vector {. Mak-
ing the further change of variable {/c =7 allows us to rewrite
Eq. (10)

E(&t—|r—4/c)
R3 £ 4mlr—§ T4 dT Tf ds*
XE"(I'—ZCT,I‘-—T). (11)

An expression for the longitudinal electric ﬁe]d can be ob-
tained from Green’s Representation Theorem® for a sphere V,
of radius ¢, centered on the point r

VZE"x(r,t— T)
4a|r—r'|

-1
Ey(r,t— T)ZET- fvdl‘,

47r(c7') fVE"x(l‘ ,t—17)-dS’

+4—7T(;;'—)—2_ fst’ E||x(l",t—7'), (12)

where E, denotes the x component of K|, and JsdS' denotes
integration with respect to r’ over the surface S. Using
Gauss’s Theorem, we may rewrite Eq. (12) as

-1 , VZE”x(l",t—T)
Ewlrt=n=qg 4" el

47_‘_(”_) J' \% E"x(r t—r)dr’

1 ‘ .
sy de.sﬂ Ep(r—crie—7), (13)

where we have converted the last integral in Eq. (12), with
respect to r’ over the spherical surface S centered at r, to a
corresponding integral with respect to the unit vector { over
the surface of the unit sphere centered at the origin. We shall
now combine Eq. (13), along with analogous equations for
the y and z components, into a single vector equation. First
we note that V-E;=p/€, implies that \'& E=Vp/gy, where
V2E| is taken to represent the vector consnstmg of the La-
placian operating on the Cartesian components of E; (this
result may be verified by remembering that VXE;=0 so that
VXVXE=-V E“+V(V -E))=0; hence, V(V- ill’") v E").
The vector analogue of Eq. (13) then becomes
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Vo(r',t—1)

|r—r'|

-1
Ey(ri—7) =7 fvdr’

1
+ ’ [P
dmeg(c?) fvdr Vo(r',t—1)

1
+E fyzd'yz E\(r',t— 7). (14)

Now, since p(r’, t—7)=q 8[r' ~ry(¢t—1)], we see that

fdr'VP(l",t—TF‘If dr'V &[r' —ro(t—1)]=0.
v v

(15)
However,
-1 Vo(r',t—1
fdr, p( , )
dmey Jv [r—r'|
—q J‘ , Volr' —ry(t—17)]
= dr ;
dmey Jy [r—r'|
q 1|
) - if rg(t—7)eV
—{4me; " |r—r Hr’=r0(t—-r) 0 )
0 otherwise
(16)

We realize that ry(t— 7)€V only if [r—ry(¢t—1)|<c7, which
allows us to rewrite the spatial conditions on the result (10)
in terms of u[c7—|r—ry(t—7)|], where u denotes the unit
step function. Rewriting Eq. (16) thusly, and combining the
result along with Eq. (15), allows us to rewrite Eq. (14) as

q r—ro(t—1)
dmey [r—ro(t—1)|

E|(r,t—7)= s ulct—|r—ry(t—~1)|]

1 n
+E jyzd.72E||(r—CT§,t—T). 17)

From Eq. (17) we may substitute for the inner integrand on
the right-hand side in Eq. (11) to rewrite the second source
term on the right-hand side in Eq. (1) as

_liz—f d E"(f,t—ll'—ﬂ/c)
¢ o2 R3 47T|l‘—§l
2

a o©
=——2-f dr TE”(r,t—T)
0

at
2
qg 9 (= r—ro(t—7)
NR T ——
47e, o7 )y drr |r—ro(t—7)|
Xu[cT—|r—ro(t—7)|]. (18)

We may further write
2

* (= 9 \E
32 J;] dTTE"(l',t—‘T)—-—EZ[tu(t) P ”(l',t)]
= — 8(1)*E(r,t)= —Ey(r,), (19)

where *, denotes the operation of convolution with respect to
t. This demonstrates that E, (r,) contains a term which ex-
plicitly cancels the instantaneous longitudinal field.
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Regarding the second integral on the right-hand side of
Eq. (18), we shall make the change of variables —7=v. The
semi-infinite range of integration with respect to v may be
extended to infinity in both directions by including an appro-
priate step function in the integral. Thus

(92 wd l‘—l‘o(t—T) |
a2 |, TT o= ulcr—|r—ry(t—1)|]

& r—ry(v)
ZW deV —|l'_l'0( v)|3 (t—v)u[t—v]
X u[e(t— )= [r—ro(¥)]]. (20)

We may now take the time derivatives inside the integral on
the right-hand side in Eq. (20). If we discard terms which are
zero in the sense of generalized functions, such as (¢t —v)d(¢
—v), for example, and also assume that ro(¢)#r, then we
may rewrite Eq. (20) as

& " r—ry(t—7)
— I
a7 |, TT|1"1'0(t“T)| ulcr—|r—ry(t—1)|]

_ d r_ro(V)
=c 5 fRdV m (t—v)u[t—v]

r—ro(v)

X &c(t— V)_ll‘_l'o(V)l]+CJRdV

|l'_l'0(1’)|3

Xu[t—v]&c(t—v)—|r—ry(v)|]. (21)

To evaluate the integrals on the right-hand side in Eq. (21),
we shall make the change of variable c(¢t— v) —|r—ry(¥)|=X,
whereupon we have

| av stett-n-Ir-rl

1 S(N)d\
f (\) 22)

T Sk T-(V(») - Ir—r()) D/clr—r(»)]

Evaluating the integrands in Eq. (21) when A=0 will imply
that c(f— v) =|r—ry(v)|, which implies setting v equal to the
retarded  time  v=tp=t—|r—ry(tg)|/c<t,  whence
t~v—|r—ry(tg)|/c and u[t—tz]=1. The results may be
compactly written if we introduce the vector

w(t)=r—ro(1), (23)
running from the particle’s position at time ¢ to the fixed field
point. Thus Eq. (21) becomes

& fwd r—ro(t—17)
7 |, TT—ﬁ“l‘o("Tﬂ ulcr—|r—ry(t—1)|]

=ci‘ 1 w(tg)
ot |[1—v(tg) - w(tg)/c] [w(tg)|
1 W(tg)

+[1—V(tR)-v‘v(tR)/c] w(ta) %’ (24)

where w=w/|w|. To carry out the remaining differentiation in
Eq. (24) we shall decompose d/3t=(dtg/dt)d/dty. If we
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differentiate the relation t5=t—|r—ry(tg)|/c with respect to
t and solve for dt/dt, we obtain

dty 1
o [1=v(tg)-w(tg)/c]

(25)

The differentiation (now with respect to ¢g) is readily carried
out in Eq. (24); we make use of the following results:

E w(tg)=—v(tg),

d
diz {w(tg)|=—v(tg)-W(tg), (26)

1
d_tR WUR):W {—v(tg) +[v(tg) - W(tg)IW(tg)}.

Combining both resulting terms on the right-hand side of Eq.
(24) allows us to rewrite it as

¢ °°d r—ry(t—7) |
— e (e
gl T T|l'—l’0(t_7')l ulcr—|r—ry(t—17)|]

_VAV(’R)[CZ_Uz(tR)]_CV(tR)[l —v(tg)- W(tg)/c]
B lw(tp)[P[1—v(tg)- W(tg)/cT?

[V(tg) - W(tg)]W(tg)
cAlw(tp)[[1—v(tg)-W(tg)/c]*’
where v(tg)=|v(¢z)| and v(£)=dv/d:.

From Egs. (19) and (27) we may then rewrite the second
term on the right-hand side in Eq. (9), via Eq. (18), as

(27)

—_1 3 E”(f,t—ll‘—fl/c)
2 W R3 4'Tl'|l‘—§]

- 1
= E"(l‘,t)+4ﬂ_€0

[‘AV(tR)[CZ_UZ(tR)]_CV(tR)[l ~v(tg)-W(tg)/c]
c*|w(tp)|*[1—v(tg) W(tg)/c]®

[V(tr)- W(tg)IW(tg)
cHlw(tp)|[1=v(tg)-W(tg)/c]® |

(28)

We shall now consider the first source term on the right-hand
side in Eq. (9). Since the current density in this case is
J(x,0)=qv(t) dr—ry(t)], we may rewrite this term

0 J(&t—|r—§/c)
g =S

dmlr—§
3 d v(t—|r—§/c)
= T4l ot fR3d§ 47T|l"-§|
X O E—ro(t—|r—&/c)]. (29)

To evaluate the right-hand side integral we shall make the

change of variables
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{=€&-ro(t—[r—g/c), (30)

whereupon Eq. (28) may be rewritten

aJ’d
#OEng

J
=—qMo 3t J'R3 {d{;’

(r=9 ]‘1] v(t—|r—g/c)
cl(r- )| 4alr—§
The integrand on the right-hand side in Eq. (31) must be

evaluated for =0, so that t—|r—&/c—tg, and E—ry(tg).
We obtain, using the notation introduced in Eq. (23),

J(&t—|r—é&/c)
4m|r—§

Ir—ﬂ)

1—v(t—

8(9). (31)

J(&t—|r—gl/c)

—MOE f]ﬁd 47r|r—§|

_ 9k 9
4 ot

v(tg)
|w(t)|[1—v(tg) - W(tg)/c] |

(32)

[w(tr) —v(tr)|W(tr)|/c][1—v(tg)/c?]

_ 9
E“")“mo[ [W(tR) FTL~V(tg) - W(ta)/c T’

+ [v(tg) - W(tg)I[W(tg) — ¥(1g)/c]—V(tg)[1—V(tg) W(tg)/c]

The differentiation with respect to ¢ is best done by decom-
posing 9/dt=(dtp/dt)d/dtg , as before, and then making use
of Eq. (25) and the relations (26). If we also write
uo=1/(c%ey), we obtain eventually

E J(&t—|r—&/c)
“Hoge fmdg 47ir—§

q I clv(tg)-w(tg)]v(tg)— Uz(tR)V(tR)
lw(tp)[*[1=v(tg) - W(tg)/c]®

4’"'50

cv(tp)[1—v(tg) - W(tg)/c]+[V(tg) - W(tg)Iv(tg)
Slw(tg)|[1-v(zg) - W(tg)/cT?

(33)

We may now combine the expressions in Egs. (28) and (33)
to give E, (r,¢) in Eq. (9). Finally, since E=E, +Ey we obtain
after simplification,

w(tg)|[1—v(tg)-W(tg)/c]®

This last expression may be interpreted and simplified in
the usual way as follows. From the definition of w(¢) in Eq.
(23), we see that |w(tg)|/c is the time taken for a signal
traveling with speed c¢ from the particle’s position at the
retarded time, 75, to reach the field point r at time ¢. Now, if
the particle were traveling with constant velocity v(zz) for
all time following 5, then the position of the particle at time
t would be ry(tg)+v(tg)|w(tg)|/c. From Fig. 1, we see that
w(tg)—v(tg)|W(tg)|/c is the vector going from this supposed
position of the particle at time ¢ (i.e., assuming it traveled
with constant velocity v(¢g) for all time following ¢5) to the
field point r. We shall thus define the vector

W(2)=w(tg)—v(tr)|W(tg)l/c, (35)
as shown in Fig. 1. From Fig. 1, we then see that

w(tg) X v(tg)=W(tg) X v(tg)

|w(tg)|sin 6=|W(tg)|sin .

Using Eq. (36) it is not too difficult to show that the denomi-
nator of the first term on the right-hand side of Eq. (34) may
be rewritten as

|w(tr)|P[1—v(tg) - W(tg)/c]

v3(1g)
7

(36)

3/2

sin? ¢ 37

=|w(tR)‘3{1_
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(34)
—
It is also conventional to define a normalized velocity
pl=2r. (38)

Making use of the triple product relation AX(BXC)
=B(A-C)—C(A-B), we may thus rewrite the numerator of
the second term on the right-hand side of Eq. (34) as

cW(tg) X {[W(tg) — B(tr)1X B(tz)}. (39)
Thus, from Egs. (37) and (39), we may rewrite the electric
field in Eq. (34) as

g W(tg) 1—v¥(tg)/c?
41req |W(tg)|? {1-[v3(tg)/c?] sin® y}3/?
a_ [mo W(tR) X{[W(tp) — Bltr)] X Bltr)}
4w Ve |w(tp)|[1-Bltr) - W(tg)]®
(40)

E(r,t)=

4

recovering the well-known result.” The first, ““short range”
component of the electric field in Eq. (40) depends only on
the velocity of the particle at the retarded time, fp, and is
directed towards the field point r from the position the par-
ticle would occupy had it been traveling with constant veloc-
ity v(tg) following tg . The “far field” second component of
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field pomnt

\

Actual path of particle

Fig. 1. The actual path of the particle is shown dotted. Point A is the
position of the particle at the retarded time ¢4 ; Point B is the position of the
particle at time ¢ assuming that it continued travelling with velocity v(¢z)
after time 15 ; Point C is the actual position of the particle at time ¢.

the electric field is nonzero only if the particle has nonzero
acceleration at ty .

IIL. DISCUSSION AND CONCLUSIONS

In the above work we have obtained the electric field due
to a charged particle moving arbitrarily in free space; the
method is applicable to arbitrary collections of particles. To
obtain the electric field we first wrote the Fourier transform
of the electric field [i.e., £(Kk,w)] in terms of the transforms
of the current density and the longitudinal electric field [in
Eq. (7)]. We then applied an inverse Fourier transform to
obtain an expression for the transverse electric field E, (r,f)
[in Eq. (9)]. This expression gives E, (r,t) as the sum of two
sources: the effect of the spatially bounded current density,
propagating in a retarded fashion to the space—time field
point (r,?), and the effect of the longitudinal electric field,
which exists throughout space instantaneously because of the
charge density, but whose effects are nevertheless also propa-
gated in a retarded fashion to the field point. Both source
terms were explicitly evaluated, and were shown to contain
effects due to both the velocity and the acceleration of the
particle at the retarded time ¢z [Egs. (28) and (33)]. It is
worth commenting on the physical interpretation of the sec-
ond source term in Eq. (9): the integral represents the
weighted sum of contributions, to the point r at time ¢, com-
ing from spherical layers centered on r; as one proceeds
outward from r, one adds contributions from those E, values
that existed in the layer at a preceding time, and the weight-
ing on the contribution is inversely proportional to the dis-
tance of the layer from the center. We showed that the second
time derivative of this weighted summation (integral) con-
tains a quantity which exactly cancels the instantaneous lon-
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gitudinal electric field, Ej(r,¢). This “Onion Theorem” result
is represented by Eqgs. (18) and (19). The total electric field is
therefore propagated in a retarded manner. This novel ap-
proach did not make use of intermediate vector and scalar
potentials.

Finally, we comment on a paper by Haus, in which he
derives the transverse electric far field of an arbitrarily mov-
ing point charge in free space, using methods which are ini-
tially similar to the ones we have used here. From an equa-
tion like (4) above, Haus solves for & (k,w) and then applies
an inverse Fourier transform, converting the triple integral to
spherical polar coordinates, to obtain essentially [see Eq.
(10) in Ref. 4; we have used the notation developed above]

—i 27 T ®
FAE (1, w)= ek f dé f doj ki
)] 0

2m?® Jo
kx[kx Z(ko)]
e @)

Haus then writes “The last integral can be carried out by
contour integration. For k-r>0 the contour must be closed
into the necessary imaginary half-plane of k...” However,
this reasoning seems flawed. In general Z(k,w) will not sat-
isfy the symmetry conditions that allow for extension of the
k integral to —o. Therefore, the contour integration results
that Haus invokes are not valid. In any event, for the constant
velocit;/ moving point charge we have J(r,t)=qgvdr—ry(t)]
so that’ Z(k,w)=2mwqgvN w—k-v). It is thus reasonable that
the inner integral in Eq. (41) must be evaluated using gener-
alized function means, i.e., it is the argument of the delta
function which determines where the remainder of the inte-
grand should be evaluated. It is incorrect to use contour in-
tegral methods to empower the real axis poles of the inte-
grand to influence the behavior of the delta function term.
In the general case, for a particle moving with arbitrary
velocity, it is possible to start with Eq. (41) and obtain the
correct expression for the far field component of the trans-
verse electric field using sounder methods than those used by
Haus. We indicate such an approach in the Appendix.
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APPENDIX

It is possible to obtain the correct expression for the far
field component of the transverse electric field if one starts
with Eq. (41), which we rewrite as

kx[kx Z(ko)] .
— 3 e
k*— w?/c? ’
(A1)
without using the approach presented in the main text. As
stated above, the current density in this case is

J(r,t)=qv(t) dr—ry(t)] from which we obtain [see Egs. (3)
and (4) in Ref. 4]

FHENro) =t |
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y(k,w)=qud)\ eiW)\v()\)e-—ikrO()\).

Substituting from Eq. (A2) into Eq. (Al) for Z(k,w), and
interchanging the order of integration, we obtain

— - l#‘()wq iwh ‘[

—(271_)3 J’Rd)\ e R3dk
y kx [kxv(\)]
In Eq. (23) we defined w(A\)=r—ry(\). We can convert the

inner triple integral in Eq. (A3) to spherical polar coordi-

nates, with the north pole in the direction of w(A), to rewrite
it as

(A2)

FAE }r,0)

ek r—ro\)] (A3)

% k2
2 e [l ik|w(\)|cos o
JO dk k2— wz/c J'.yzdny kX [kx V(A)]e .

(Ad)

We are interested in a far field expression for E, , valid for
large |W())|, and so we shall apply a stationary phase argu-
ment to Eq. (A4). The stationary (end) points are =0 and
¥=m, at both of which kX[kXv(A)] takes on the same
value. The integral (A4) may thus be approximated by

@ k? . a
Jl) dk PTZ/CZ kX[kXV()\)]lf‘”w()\)

% f d.5%e ik|w(\)|cos &

[t

once the integral over the unit sphere is performed on the
rapidly oscillating exponential term. The restriction ||}"w( A) in
Eq. (A5) means that the expression is to be evaluated for the
unit vector k parallel to the vector w(\). Note that Haus
writes [preceding Eq. (18) in Ref. 4] that for a corresponding
integral over the unit sphere ““the upper limit on 6 is ignored
because of the rapid variation of the exponent,” which is
incorrect. Evaluating the limits on 9, we can then convert the
semi-infinite integral with respect to & to infinity in both
directions, to rewrite Eq. (A5) as

mL A A~ 3

ik|w()\)|cos b |(‘l)‘r
b

(A5)

k
ik|w(\)|
| ()\H kX[kXV()\)]IﬂW()\)j dkk—j/ e .

(A6)
The real axis integration contour in Eq. (A6) may be de-
formed to capture onlg the pole at k= w/c (this is not the
only way to proceed),” corresponding to choosing a causal

solution. With this, our expression (A3) for % {E, }(r,w) be-
comes

—ipgwq2?

-%{El}(r,w)’“—W

elm)\
f M ol
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iw|w(\)|/c
b

X kX [kX VM) Jigwonr@ (A7)

valid for large |w|.
If we apply an inverse temporal Fourier transform to Eq.
(A7), and interchange the orders of integration, we get

—ipgg2m? f l}x[l}Xv()\)]h}“w()\)
~— 2T
(2m) R

E, (rt)
. [w(V)
Xf dw wei@lt—N—lw)lic]
R

#0‘1

“Am o d)\ o=

—[w(M)|/c)

kx[kx v lkgwon)
lw()]
The integral in Eq. (A8) may be evaluated exactly as in Egs.
(21) and (22), and the eventual result is
,U«oq 3 W(tg) X[W(tg) X v¥(tg)]
m ot [1=v(tg)-w(tg)/cl[w(tp)]

The various derivatives in Eq. (A9) can be evaluated, us-
ing Egs. (25) and (26), in a straightforward manner. If we
retain only the leading terms (containing only an inverse
power of |[w(\)|, we further approximate Eq. (A9) as

,U«oqC w(t) X [W(2) X B(t)]{1— B(t)- W(1)}
{1-B(6)-w(t)Plw(t)]
+v*v(t)><[¢v(t)><B<t)]<if(t>-“v(t>)

{1-B0)-%@Fw] ]_°

(A10)

where B is the normalized velocity defined in Eq. (38). Fi-
nally, the numerator in Eq. (A10) can be rearranged to show
equivalence with that of the second term in Eq. (34), and so,
following the working there, we have

E (rmd \/@ W(tg) X{[W(tr) — B(tg) 1% B(tr)}
0772 Ve~ Wil - Bltg) Wi
All)

(A8)

E (r)~

(A9)

E (r,t)~

as the far field component of E, (r,t) in Eq. (40).
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