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The evolution of new concepts in wave theory have led to proof-in-principle experiments aimed 
at validating the generation of a specified wave front. Not only have these concepts initiated 
research in transient wave theory, but they have also caused renewed effort in multichannel 
signal processing. In this paper, the development of a processor to deconvolve a transient 
acoustic wave from sensor array measurements is discussed. The design of the multichannel 
deconvolver coupled with model-based signal processing techniques using acoustic pressure 
field measurements is discussed. Here, it is shown that an efficient solution to this problem can 
be obtained using a vector form of the Levinson-Wiggins-Robinson (LWR) algorithm. 
PACS numbers: 43.60.Gk 

INTRODUCTION 

Signals propagating in both space and time are charac- 
terized by wave type phenomenology satisfying the scalar 
wave equation. Typical solutions to this equation are based 
on the theory of plane waves propagating in a given medium. 
Recently, interest has been kindled in the possibility of trans- 
mitting wave energy in space in nonstandard manners. This 
interest had led to the discovery of pulses with enhanced 
localization and energy fluenee characteristics that are tran- 
sient in nature. From the pioneering research of Brit- 
tingham • suggesting the possibility of solutions to the wave 
equation that describe a focused transfer of energy, much 
effort has been devoted to obtaining these classes of solu- 
tions. 2-• In this context, we define a localized wave (LW) as 
a pulse that exhibits localized transmission of energy, that is, 
it can be viewed as a transient beam having a Gaussian-like 
center and low-amplitude tails translating through space 
and deforming locally. Thus rather than the traditional solu- 
tions to the wave equation consisting of plane waves or their 
superposition, new classes of solutions have evolved based 
on the LW and their superpositions. It has been demonstrat- 
ed that the LW transmission of energy is possible in many 
real physical systems, and that these solutions can be recov- 
ered approximately from an array (see Ziolkowski6). These 
transient waves have a vast number of potential applications 
including microscopes and telescopes with extremely large 
depths of field, low-loss power transmission, secure commu- 
nications, remote sensing, and directed energy weapons ex- 
plaining the wide range of military and industrial interest. 

Here, we are concerned with the processing of a specific 
class of the transient solutions to the wave equation--the so- 
called modified power spectrum (MPS) pulse. Our goal is to 
develop signal processing techniques to estimate the pulse at 
the source location in order to validate its generation. This 
problem is complicated because this pulse is a transient in 
both time and space leading to a broadband response in both 
the spatial and temporal frequency domains. We are primar- 
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ily concerned with enhancing the signal-to-noise ratio 
(SNR) and providing a reasonable estimate of the transient 
wave. In order to accomplish this goal, we select a model- 
based approach, that is, we develop simple models, not only 
of wave propagation, but also of the instrumentation and 
noise inherent in the acoustic medium and utilize them for 

analysis and design from a signal processing perspective. In 
Sec. I, we discuss the necessary background information on 
transient waves. Next we discuss the model-based approach 
to characterize the experiment in Sec. II and show how it is 
used to develop the required signal processing models. In 
Sec. III, we develop the multichannel deconvolver and brief- 
ly discuss the vector LWR approach. We design and evalu- 
ate the performance of the processor in See. IV and summa- 
rize the results in the final section. 

I. BACKGROUND: TRANSIENT WAVES 

The pioneering work ofBrittingham • first suggested the 
possibility of solutions of Maxwell's equations that describe 
efficient, focused transfer of electromagnetic energy in 
space. It has been recently discovered that these original "fo- 
cus wave modes" represent Gaussian beams that translate 
through space with only local deformations and are another 
fundamental set of modes from which classes of solutions of 

the scalar wave equation can be constructed. In this section, 
we briefly discuss the MPS pulse---our particular transient 
wave of interest. In particular, assuming a solution 

<Pk (x,y,z,t) = e i•(z + ½')G(x,y,z -- ct) ( I ) 

of the scalar wave equation in real space: 

.... 0 (2) ,9x • + -• + Jz • c 2 a9t • 
reduces it to a Schr6dinger equation for G in the pulse center 
variable • ---- z -- ct. 

The transverse distance is defined by p: = x/x2+ y•. 
This equation has the solution 

G(p,r) = e- kP21'(lø 4-,r)/4rri(zo + it). (3) 
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Thus the original wave equation has 

•k(p•,t) = e/k(=+½ø e-•ø•/l•ø+a•-•øl (4) 
4rri[zo + i(z -- ct) ] 

as an exact solution. The pulse has the corresponding param- 
eters: beam spread 21 = z o + r2/Zo, the phase front curvature 
R = r + •/r, and beam waist w = (A/k) •/2. This funda- 
mental pulse describes a Gaussian beam that translates 
through space-time with only local variations. Note that this 
solution has introduced an added degree of freedom through 
the variable k that can be exploited. For low values of k, the 
fundamental Gaussian pulses look like plane waves. More- 
over, for all k they share with plane waves the property of 
having infinite energy. As shown in Ref. 2, these fundamen- 
tal Gaussian pulse fields can be used as basis functions to 
represent new transient solutions of the wave equation. The 
general acoustic LW solution 

f(p,z,t) = • (p•,t)F ( k ) dk 

1 - fo•dkF(k)e -•(p'='ø, (5) = 4rri[zo + •(z--- ct) ] 
where 

s(p,z,t) = pa/[ z o + i(z -- ct) ] -- i(z + ct) (6) 
is an exact source-free solution of the wave equation. This 
representation, in contrast to plane-wave decompositions, 
utilizes basis functions that are more localized in space and 
hence, by their very nature, are better suited to describe the 

directe.d transfer of acoustic energy in space. 7 The resulting 
pulses have finite energy, for example, ifF (k)/x[• is square 
integrable. 

Clearly, different spectra F (k) in Eq. (6) lead to differ- 

ent wave equation solutions. Many interesting solutions of 
the wave equation are created simply by referring to a La- 
place transform table. One particularly interesting spectrum 
selection is the modified power spectrum: 

4rrifi (ilk -- b)"- •e-•a• F(k) = F(a) 
O, 

-- b) b 

(7) 
0<k< b . 

It is so called because it is derived from the power spectrum 
F(k) =k•-•e -ø• by a scaling and a truncation. This 
choice of spectrum leads to the modified power spectrum 
(MPS) pulse 

f (p,z,t ) = 1 1 -- e (8) 
z o + i(z -- ct) (s/fl+ a) • 

For the rest of this paper, the MPS pulsef (p,z,t) will refer to 
the real part of Eq. (8) and the direction of propagation will 
be taken along the positive z axis. Much effort has been con- 
centrated on this MPS pulse because it has an appealing ana- 
lytical form and its pulse shape can be tailored to a particular 
application with a straightforward change in parameters. 

Next let us analyze the properties of the LW pulse from 
a signal processing perspective. We first perform a spectral 
analysis of the MPS pulse as viewed through a finite linear 
aperture of 2.5 m. We choose a line array of 101 elements in 
order to provide enough spatial resolution to observe the 
major features of the MPS pulse as well as its spectral con- 
tent. A simulation using Eq. (8) was performed at a spatial- 
temporal sampling interval of (Ap = 0.01 m, At = 1 ps, 
z = 0) with the results shown in Fig. 1. In this simulation we 
used the following MPS pulse parameters: a = 1 m, a = 1, 

(a) 

-1 

. (c) 

lO 

x lO • 

FIG. !. MPS pulse spectra: (a) Space-time MPS pulse. (b) Space-time MPS pulse contour. (c) MPS frequency-wave number spectrum. (d) MPS frequency- 
wave number contour. 
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b = 600m - t ,-fi --- 300, andz o = 4.5)< 10 -n m. In Fig. 1 (a) 
we see the MPS pulse, f (p,z,t)Iz = o, observed through the 
2.5-m linear aperture. The finite aperture truncates the tails 
of this pulse. This phenomenon is also observed in Fig. 1 (b). 
Here, we see the Gaussian-like pulse (center) and plane- 
wave like tails. The frequency-wave number spectral domain 
also reveals some interesting properties in Figs. l(c} and 
(d). We again observe a Gaussian-pulse spectrum (center) 
and associated tails. We also note that the overall spectrum is 
bounded by the rectangle [ + 5 MHz, + 20 m- l ] with 3- 
dB bandwidth of [ + 0.5 MHz, + 2 m- • ]. Thus we see that 
the MPS pulse is broadband both temporally and spatially. 

II. LOCALIZED-WAVE EXPERIMENTS 

In this section, we develop a model-based approach s to 
solving the transient wave estimation problem. This ap- 
proach decomposes the signal processing problem into a set 
of mathematical models representing both the physical 
phenomenology as well as measurement system dynamics. 
This approach can be accomplished is a number of different 
ways. For instance, we can utilize complex wave propaga- 
tion models including the appropriate boundary conditions 
to characterize the experiment. At the other extreme, we can 
utilize "black box" models that lend themselves to little 

physical interpretation, but can be used to predict the data. 
For our problem, we know enough about the phenomena to 
develop a "gray box" approach, that is, we use simplified 
models of the phenomenology that lend themselves to some 
interpretation, bu.t are simultaneously able to "predict" the 
data. First, we develop the basic models. 

The Ultrasonic test bed facility at the Lawrence Liver- 
more National Laboratory is employed for the LW transmis- 

I Prog ramable pulser 

I Trarmmlt tranKlucer 

FIG. 2. Ultrasonic test bed facility. 

transducer 

Gomput•r I 
sion acoustic experiments. The facility consists of a water 
immersion tank fully instrumented with acoustic trans- 
ducers accurately positioned by a robot arm under computer 
control. The acoustic pressure field is generated by driving 
an array of sensors with the appropriate waveform syntheti- 
cally. That is, each element of the array is driven individually 
by its own source, each source having the appropriate wave- 
form. The field generated by each source is recorded at the 
corresponding receiving sensor. After all the transmit sen- 
sors are driven by the requisite LW pulses and the fields 
recorded, the total field is synthesized on computer by the 
superposition of the measured fields. Thus the overall pres- 
sure field is generated by computational reconstruction us- 
ing experimentally measured contributions from individual 
radiators. The facility is simply depicted in Fig. 2. Note that 
a sophisticated control system is used to accurately position 
the transmitter (ultrasonic transducer), a piezoelectric disk 
that produces a pistonlike motion in the immersion tank. 

A simple propagation model of the localized-wave ex- 
periment is depicted in Fig. 3 (a). The model consists ofdriv- 
ing funetionsf (_r,t) exciting the finite aperture, transmitting 
array.4 r(_r,t). This array generates a wave T(_r,t) that prop- 

(a) 

fiX,t) 
x(•,t) 

FIG. 3. Modeling. (a) Simple propagation 
model. (b) Signal processing model. 

(b) 
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agates through a medium with an impulse response (Green's 
function) hM (_r,t). The propagated wave is received by the 
finite aperture, receiving array An (_r,t) to produce the re- 
ceiver output x(_r,t). Mathematically, the model is given by 
(the convolution operator * is assumed over both space and 
time) 

x(_r,t) = A n (_r,t)*hst (_r,t)*Ar(_r,t)*f (_r,t), (9) 

where the individual input-output relations indicated in Fig. 
3(a) are defined by 

T(_r,t): = Ar(_r,t)*f (_r,t), 

s(_r,t): = hst(_r,t)*T(_r,t), 

x(_r,t) = A n (_r,t)*s(_r,t). (10) 

Thus the pressure field at any point of the receiver array can 
be calculated using the medium response model (Grecn's 
function) h• (_r, t ). Assuming a homogeneous, isotropic me- 
dium, it is well known that 

hs• (_r,t) = ( l/4rrl_r [ )•(t -- Irl/c). ( 11 ) 
Since our problem is circularly symmetric with 

p,, ---- x/x• + y•, then both arrays lie in the p-z plane with 
the transmitter at (p,,z,) and the receiver at (Pm,Z,n). We 
define the distance metric as 

rm, = I_rl •-'4 (Xm --Xn) 2 '•- (Yrn --Yn) 2"• (Zm --•'n) 2- 
(12) 

For this simple model both arrays are merely represented as 
"spatial samplers" characterized by the all-pass response: 

As(_r,t) =•5(_r--_r,,), m =0 ..... Ns -- 1. (13) 

This forms a spatial impulse sampler multiplying the incom- 
ing signal. For instance, at the nth transmitter we have 

T(_r,t) =f(_r,t) X•(_r -- _r, ) =f(_r,,t). (14) 

Therefore, in its simplest form, we have the receiver response 
at the tnth sensor (receiver) from a source transmitted at the 
nth sensor by 

x(_rm,t) = (1/4•rl_rm - r.I)•(t- Irm - -r•l/c)*œ(-r.,t) 

or simply 

x(_rm,t) -- ( l/4rl_r. - _r. [ )f - I_r - _r. l/c), 
m=0 ..... N,•-I. n=0 ..... Nr-1- (15) 

Thus the total output of the ruth receiver sensor is given by 

N r-- I 1 

Xm(t)= • 4n-l_r • r•] f•(t--•m")' 
rn=0 ..... Ns--l, (16) 

where x,•(t): =x(_r,•,t):f,(t): =f(_r,,t);r,,,: = }_r,• 
-- _r• I/c. This relation is the so-called Huygen's reconstruc- 
tion • which shows us that the wave front at a given point is 
simply the superposition of all of the point sources propagat- 
ed through the medium and received at that point. 

Unfortunately, our signal processing model is more 
complex than this propagation model due to the response of 
the sensors and noise. The model of the experiment is shown 
in Fig. 3(b). Here, we see the nth water immersed trans- 
ducer ar (t) is excited by a preselected input signalf (_r,t) at 
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spatial location G generating t•e transmitted signal TCr, t), 
which propagates through the acoustic medium h•t (_r,t) and 
is received by the corresponding mth transducer a n (t) to 
produce the measured output s•gnal x(_r,,,t). 

Mathematically, we can characterize the experiment by 
the basic model of Eq. (9) and the following medium and 
transducer models. Since the transmit/receive arrays are im- 
plemented with individual transducers having finite band- 
widths, the array function must include a temporal response. 
Therefore, Eq. (13) becomes 

A (r,t) = b(_r)Xa(t) ---- õ(_r-- fj)Xa(t). (17) 
The array now performs a twofold operation: (1) spatial 
sampling using an impulse multiplier, and (2) finite band- 
width filtering using the transducer impulse response. For 
example, at the nth transmitter we now have 

T(•r,t) = at(t)* [f (_r,t)tS(•r- _r. )] = ar(t)*f(_r•,t), 
(18) 

where the * is the "temporal" convolution operation only. 
Comparing this relation to Eq. (14), we see that the impulse 
response of the transducer is now included. If the medium is 
homogeneous as before, then the total response at the ruth 
receiver becomes 

N•--- I 1 

xm ( t) = .--o 4rl_rm -- _rrn l 
m=O,...,Ns -- 1. 

[ar(t)*a • (t) ] *f, (t -- rm,), 

(19) 

Now it remains for us to characterize the various representa- 
tions of the transducers, medium, noise, etc. to complete the 
experimental model. The response of the piezoelectric pis- 
tonlike transmitter/receiver disk transducer can be modeled 

A•/• (_r,t) 

=õ(_r--_r•) [õ(t)--8(t-- cA•)] , j=O ..... Nx/. --1. 
(20) 

In this ideal model, two pulses emerge, one from the front 
surface of the crystal and one from its rear surface. The time 
separation between these pulses is determined by the travel- 
time A/c where A is the thickness of the crystal. An equiva- 
lent characterization utilizes the step function p(t} and is 
given by 

j=0 ..... N•-/• -- 1. (21) 

When the transmit/receive disks are identical and share 

the same centerline they are said to be on axis. The on axis 
model of the medium is given by the so-called Rhynefunc- 
tion, m'•l which characterizes the force on a circular piston 
(receiver) placed in a field of the radiating (transmitting) 
piston of equal size. The surface particle velocity at the rnth 
receiver when the transmitting piston is driven with a step 
function at the ruth transmitter is given by 
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0, Its• (_r,t) = 2ca 2 arccos [•/(ct): -- I_r{2)/2tz ] -- (ca/2)d ( t2 -- •l )( • - t 2) 

where a is the radius of the disks, [_r[ = z d is the on axis 
distance (range) between the disk centers, c is the velocity of 
sound and then 

rl = za/c, 

Note that this model includes the attenuation term (arccos) 
as well a the propagation delay (•q). The corresponding im- 
pulse response is given by 

h•(_r,t) = •/tt•(_r,t). (22) 
Substituting the transmitter/receiver disk models at _r, and 
_r,•, respectively, as well as the Rhyne function model into 
Eq. (9) we obtain the complete system response at the rnth 
sensor from a source transmitted at the nth sensor as 

t<•'l, 

•'2 < t, 

I 

(8) at the appropriate propagation distance, that is, 
f(_r,t) =f(_r,t)[, ,d, to compare with the results obtained 
using the Huygen's reconstruction of Eq. (16). This is possi- 
ble because we modeled the process using the linear systems 
theory. We set the LW pulse parameters to be those used in 
See. I for the MPS pulse, but with a propagation distance z d 
= 0.25 m, the time interval At = 50 ns, and a transducer 
thickness A = 2/zm. The output of the simulator indicates 
the receiver output after the reconstruction has been per- 
formed and is shown in Fig. 4. As outlined in the diagram of 
Fig. 3, we show the wave functionf, (t) excitation at the nth 
transmitter, the corresponding impulse responses of both 
transmitter and receiver, the Rhyne function, and the overall 
system impulse response (h =/t r*hs•*/l R ). The noise-free 
response of the system to the wave excitation at the ruth 

3311•(t) --I• (t--•-)]*t•s•(_r,t) xm (t) = •t • 

*[t•(t)--I•(t--q)]*f•(t--r,•,), (23) 
where * is the t•poral •nvolution o•ration. Again calcu- 
lating the total respon• at the ruth sensor, we have 

x• (t) = (t)--• t-- *• (r,t) 
3t 3 ,=o - 

m=0 ..... N•-I, (24) 

which indicates that the overall effect of the transmitter/re- 

ceiver and on axis medium is to perform three derivatives, 
attenuate, and delay the excitationf (_r,t). Since we are using 
sampled data and planar arrays with discrete sensors, we 
note that t-, tk, _r-• _r,• and the corresponding distance metric 
is given by Eq. (12). 

Finally, we must take into account the effect of noise. In 
our case, we are generating the field at the receiver using a 
"synthetic" transmitting array and applying linear superpo- 
sition. It is, thus, reasonable to model the noise as indepen- 
dent and Gaussian at each receiver sensor, that is, 

y.,(t):=xm(t) +nm(t), rn =0 ..... NR -- 1, (25) 

where n. is zero-mean, Gaussian noise with variance 

A simulation of the experiment at a given transmit/re- 
ceiver location was developed for experimental and signal 
processing purposes. Besides its use for experimental design 
and signal processing analysis, the simulation can be used to: 
(1) propagate the wave function excitation and "predict" 
(within modeling assumptions) the measured output of the 
receiver; and (2) utilize the exact wave function from Eq. 
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FIG. 4. UTB simulation. (a) Disk impulse responses. (b) Rhyne and over- 
all impulse responses. (c) Wave excitation and simulated response. (d} 
Noisy response. 
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receiver x,• (t) is also shown in the figure. Note that this 
signal is "gated," that is, the overall propagation delay 
(r.,. ----r.,•/c) is not preserved in order to minimize the 
number of samples. Finally, we observe the response y., (t) 
contaminated with Gaussian noise of variance R. = 0.001. 

From the signal processing viewpoint, it is important to 
realize that for our experiments we would like to extract the 
wave functionf (_r,t) at the receiver outputß From our over- 
all experimental model, we see that the measured wave at 
one receiver can be characterized by 

N r -- 1 

x.,(t)= • h.•.(t)*f.(t), m=0 ..... Ns--1. (26) 

This can be rewritten as 

x,, (t) = [ h,,o(_r,t)'"h,,•T_ • (_r,t) ]* fo (t) ] Lf., (t) 

or simply as 

x.,(t) =h•,(_r,t)*f(t), m----0 ..... Ns -- 1. (27) 

Now expanding over the number of receivers, we obtain 

Xo (t) ' 

=[ høø (-r't) 
[h•, _ ,o (r,t) 

ho~r- • (•r,t) 

hN• _ •te•-- • (•r,t) 

,_f(t) 

or simply 

x_(t) = H(_r,t)*_f (t -- r), (28) 

for xr_R teRx •, HrR N"x~•, frR Nrx• 
For fixed z location, the Rhyne function/z•tCr, t) re- 

duces to a function of time enabling us to rewrite Eq. (28) as 

_x(t) = H(t)*_f (t -- r) = H(t -- r)*_f (t). (29) 
In the first case,_f(t -- r) is the LW pulse at fixed propaga- 
tion distance za, that is, the LW observed at the receiver 
array location. While in the second case, _f(t) is the LW 
observed at the transmitter array (z a = 0). 

Expanding Eq. (29) we than have 
L--I 

x_(t) = • H(l)_f(t-- r-- !). (30) 

Our problem, therefore, is to estimate the LW pulse-fat z = 0 
or z = za given the impulse response matrices and measure- 
ment data. This is a multichannel deconvolution problem 
that we address in the next section. 

IlL MULTICHANNEL DECONVOLUTION 

In this section, we briefly develop the multichannel deconvo- 
lution technique. A deconooloer is basically a processor that 
can be used to estimate or reconstruct an excitation and 

eliminate extraneous noise from uncertain measurement 

data. •244 The deconvolver utilizes an independent set of 
channel or impulse response data along with measurement 
data to provide an estimate of the required excitation. 

The fundamental deconvolution problem arises by as- 
suming that the desired excitation has been obtained from 
the following measurement model: 

x_(t) = H( t),,f ( t) + n_(t), (31) 
where x is the Ns-measurement vector, f is the Nr-wave 
excitation vector, n is the Ns-random noise vector, H is the 
Ns X Nr impulse response matrix, and * is the convolution 
operator. 

This vector input/output model enables us to define the 
multichannel aleconvolution problem as: 

Given sets of vector measurement sequences (x_ (t)} and 
impulse response matrices (H(t)),find the best (mini- 
mum error variance) estimate of the corresponding sets 
of wave excitation vector sequences (./(_ t) ). 
The solution to this problem is straightforward using 

the vector-calculus approach. First, we define the estimator; 

8(0 = • H(t--k)•(k). (32) 
&=o 

Note that from the previous section, we stated that linear 
systems theory enables us to include the propagation delay 
either in H(t -- r) orf(t -- r) depending on whether we 
would like to estimate the LW at z = 0 or z = %. In practice, 
either choice is possible. In this development, we assume 
r = 0 to simplify the notation, but remain aware that the 
delay will be accounted for when actually processing the 
data. 

The multichannel minimum variance estimator is ob- 

tained by minimizing the mean-squared error criterion 

J= E{_e'(t)_e(t)}, (33) 
where the error is defined as 

e(t) = x_(t) -- • H(t-- k)_•(k). (34) 

Using the vector calculus, we minimize the criterion func- 
tion by differentiating it, setting the result to zero, and solv- 
ing the remaining equation. This gives 

min• J = 172,/= 2E{V2re_'(t)e(t)} = O, 
where 

V•'(t)= --H'(t--j), j=0 ..... L--I. (35) 
Substituting into Eq. (35) and using Eq. (34), we have 

V2J = -- 2E {H'(t --j )x_(t) 
-- • H'(t--j )H(t-- k)_•(k) = O, 

•--0 

j=O ..... L-- 1. 

Taking expectations and rearranging, we obtain the multi- 
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channel normal equations 
L--I 

k=O 

for 

where Run • N, x•v,; 
Expanding over k we have 

R.:(o) ... 
Run --L + I) '" 

(o) .•m (L -- 1 ) 

j= 0 ..... L- 1, 

(36) 

Run (0) L•(L - 1 ) 

(37) 

which can be written more succinctly as 

RHa (L-- 1)[ (L-- 1) = _Ray (L- 1), (38) 
for [,R_m •_R wv, x • and RHa •_R wv,.x •s,. being block Toe- 
plitz. Thus the optimal multichannel deconvolver or equiva- 
lent the Wiener deconoolution solution for this problem is 

[(L- 1) =RHH -•(L- 1)R_Hx (L- 1). (39) 
Wiggins and Robinson, •s exploiting the block Toeplitz 
structure of Run, developed an efficient solution to this 
problem based on Levinson's algorithm. The technique is 
called the Levinson-Wiggins-Robinson (LWR) algorithm 
and has the property of being order recursieve. Therefore, we 
define a new notation for the excitation, f(i,k) as the ith 
vector of the k th-order deconvolution solution. The algo- 
rithm is shown in Table I. Note that a subset of this tech- 
nique (the latter part of the table) is the well-known multi- 
channel Levinson-Durbin algorithm for linear prediction '4 

TABLE I. Multichannel LWR deconvolver. 

Initialize: Pv(0) = Ps (0) = Run(0), F(O,i) = B(0,i) = I, 
•o.o) = R ,7,•(o)•_,(o) 

For i = 0,...,L 

A/(i) = • Run(i--j+ I)•(2, i) 
_K•(L + 1) = Pi•(i+ 1) [A•(i) -- R_n•(i+ I)] 

•(i+ 1,i+ 1) = -- _Kz(C + 1) 
•(j,i + I) =•(j,i) -B(i-i+ 1,i+ I)_K/(L + I) for i=O,...,i, 

where BUd) and P ;•(i) are obtained from the multichannel Levinson- 
Durbin recursion: 

For i = 0,...,L 

A(i) = • F(j,i)Rmt(i--J+ I) 

Ks(i+ 1) =A'(i)P•t(i), 
F(i+ 1,i+ I)= --Kr(i+ 1), 
B(i+ I,i+ 1)= --K•(i+ I), 

F (j,i + 1) = F(j,i) -- Kr(i + 1)B(i--j + 1,i) forj=O,...,i, 
B(j,i + 1) = B(j,i) -- Ks(i+ 1)F(i-j + 1,i), 

PrO + 1) = Pt(i) - Kr(i + I)A'(i), 
Ps(i + 1) = Ps(i) - Ks(i+ l)A(i). 

with forward and backward predictor coefficients given by 
{F (i,k) } and {B (i,k) }, respectively. We briefly develop the 
initial part of the algorithm because the required vector solu- 
tion is somewhat different than the standard multichannel 
approach. •: 

Assume there exists an L th-order solution with ith coef- 
ficient• (i,L) that is 

R.u (L) = 

[•r (L,L)J 

(40) 

and we would like to obtain the (L + 1 )th-order solution: 

R,, (L + 1) = 

(œ + l,L + l) (œ + 1) 
41) 

Suppose further that the optimum solution for the 
(L + 1)th-order filter is given by the L th order, 
then [(L+ 1) = [[ (L)]O]' and R_m(L + 1) 
= [_R m (L)[A/(L) ]' with A•(L) = R_m (L + 1). We can 
rewrite Eq. (41) in terms of the L th-order solution as 

R.• (L) , Ruu(L + l)l [•(•) ] ß " Run(0) J Run( --L -- 1) 

La(L)J 

(42) 

which immediately gives the relation 
L 

Af(L) = • Ru•(L-i+ I)_•(i,L). (43) 
i=0 

Assume there exists an (L + 1 )th-order solution to the 
backward prediction problem with coefficients 
{B(i,L + 1 )}, that is, 

R..(L+I) = . (44) 

L B(O,L+ 1) _l Pa( + 1) 
Multiply this equation by a constant vector _K• and subtract 
the result from Eq. (42). This gives 

'•(O,L) --B(L,L + 1)K_•(L + 1)' 

RHi t (L + 1 ) 
•_(L,L) --B(I,L + I)K_•(L + 1) 

- _Kf(L + 1) 
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•n•(O) 

R_.• (L) 

A/(L) --Pa(L + I)Kœ(L + t) 

, (45) 

which implies that 

A/(L) --Pa(L+ 1)_K/(L + 1) = R_,•(L + 1). 
Solving this equation for K/, we obtain 

_K/(L+I)=p•-I(L+I)[A/(L)--R_,•(L+I)] (46) 
and combining with Eqs. (43) and (45) we obtain the first 
part of the multichannel LWR recursion of Table I. 

Next we have both the backward prediction coefficients 
{B(i,k)} and the power {Pa (k)} in order to complete the 
recursion. This leads us to the multichannel Levinson-Dur- 

bin algorithm that is developed in a similar manner and 
shown in Table I. This completes the section on the multi- 
channel aleconvolution development; next we discuss the de- 
sign of the processor for the transient-wave estimation prob- 
lem. 
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IV. TRANSIENT-WAVE ESTIMATION 

In this section, we discuss the design of the processors 
for the transient-wave estimation problem. First, based on 
the models developed in Sec. III, we design the processors 
following the model-based approach using simulated data to 
give an indication of performance. Next we investigate per- 
formartec on experimental data. 

In order to solve the transient-wave estimation problem 
using the multichannel aleconvolution estimator, we require 
both the vector measurement sequence {x_(t)} and impulse 
response matrices {H(t)}. We have two choices to obtain 
the impulse response matrices: (1) construction from the 
simple parametric models of Sec. III, or (2) identification 
directly from independent experiment. Unfortunately, the 
first choice can only be partially accomplished because the 
Rhyne function model of Eq. (22) is valid only when the 
transmit and receive sensors are on axis, that is, when 

p,, = p, The latter case corresponds to the diagonals of the 
multichannel impulse response matrix H. Therefore, we 
choose to perform multichannel identification in conjunc- 
tion with, but independent of the actual propagation experi- 
ment. We excite each transmit sensor with the "maximum" 

MPS pulse signal, that is, the temporal signal f(p•,a,t) 
where n,•ia is the middle sensor index at which the maximum 
amplitude pulse occurs. After exciting each transmitter, the 
temporal response at each receiver is measured, then using 
the transmitted {f•,•a (t) } and received sequences {x,• (t) }, 
the impulse response matrices are estimated using the multi- 
channel LWR identification technique? '•5 

FIG. 5. Minimum variance estimation. (a) Deconvolved and true wave es- 
timation. (b) Estimated and true Rhyne function. 

Using the models of the transducer, medium (Rhyne 
function), and noise developed in Sec. II, we can investigate 
the performance of processors for identification and decon- 
volution. Typical results for one channel of our simulated 
noisy data set (see Fig. 4) are shown in Fig. 5(a). Here, we 
see the actual wave excitation and the minimum variance 

deconvolution estimate. We note a negative bias in the esti- 
mate, but the overall shape of the transient excitation is rea- 
sonably preserved. 

Note also that using this apl•roach we can estimate the 
Rhyne function (impulse or step response) as a by-product 
for further analysis into the disk coupling problem.'ø Since 
we have the overall impulse response (scalar case) h,•,• (t) 
and we desire •t (t), therefore from Eq. (23), we have 

h.•..( t) = aa ( t) *ar( t)*• Izst( t -- r, ) 
or simply 

hm• (t) = w(r)*lz•(t- ri ), (47) 

where w(t): = an ( t)*ar(t)*3 /at. 
Since we have [{h(t)},{to(t)}] from identification and 

our models, we can obtain the model-based estimate/• (t). 
Again using the LWR deconvolution technique with ha. , as 
output and to as impulse response, we estimate the Rhyne 
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FIG. 6. Independent experiment for impulse response identification. (a) 
Raw excitation and measured output. (b) Raw input and output spectra. 
(c) Identified impulse function. (d } Validation: Estimated versus raw mea- 
surement. 

function from the simulated data. The results are shown in 

Fig. 5(b), and again indicate a reasonable performance of 
the model-based approach. 

Next we investigate actual experimental data obtained 
from the "independent" transient wave runs with the receiv- 
er placed 0.25 m from the transmitting array. In this case, we 
transmit the wave with a synthetic (21 X21) square array 
and use a 21-element line receiving array, therefore, Nr 
= 441, and N R = 21. Practically, we must first estimate or 
identify the impulse response matrix from noisy measured 
data. We use the maximum pulse to excite the medium and 
identify the corresponding impulse response. A typical run is 
shown in Fig. 6. In Fig. 6(a) we see the raw localized wave 
(maximum pulse) excitation and measured response after 
low-pass filtering at 4.5 MHz. The corresponding spectra are 
shown in Fig, 6 (b). The identified overall impulse •response 
•oo(t) along with the estimated output So(t) = hoo*fo(t) 
overlayed on the measured output Xo(t) are shown in Fig. 
6 (c) and (d), respectively. Note the excellent fit indicating a 
valid estimation. This process is repeated for all 11 on-axis 
receivers in direct path to obtain the entries of H. (Note by 

symmetry we need only half of the receivers to reconstruct 
the wave function. ) We show the 11 identified impulse re- 
sponses in Fig. 7 (a) along with their corresponding frequen- 
cy spectra in Fig. 7(b). Note the repeatability of the impulse 
response functions (except for the corresponding propaga- 
tion delay) and transfer functions. A typical validation run 
of x versus • is shown in Fig. 7(c) for a L = 256 length 
impulse response function with a regularization parameter 
of•r•, = ß = 0.001. [Here we regularize the Toeplitz matrix 
or equivalently RHH(O )--*RHH(O ) + Oann• r modeling the 
noise variance of Eq. (25) }. We used this run to "tune" the 
algorithm and then automatically performed the batch iden- 
tifications on the measured receiver array data. The valida- 
tion results for this run are shown in Fig. 8. Here, we see the 
measured response at each receiver sensor as well as the fit 
produced by the identified impulse response. In each case the 
fit is quite good. We used the estimated impulse responses 
{•:,,,, (t)}, m = 0 ..... 10 along with the corresponding mea- 
surements {x,, (t)} to solve the on-axis decon.volution prob- 
lem. The results for all 11 sensors are shown in Fig. 9, where 
we see the raw localized wave excitation and the optimal 
deconvolved excitation validating the performance of the al- 
gorithm. Again, after tuning the deconvolver for L = 185, 
e= 10 -? [see Fig. 7(d)], the deconvolutions were per- 
formed automatically. We use this approach to "remove" 
the effects of the experimental system (sensor, noise, etc.) 
from the measured data to provide the Huygen reconstruc- 
tion algorithms with the processed wave data. A typical 
wave front estimation using the models and simulation re- 
sults are shown in Fig. 10 for a transient MPS pulse received 
at z = 25 cm. In Fig. 10(a), we observe the true noise-free 
wave at z = 25 cm, while in Fig. 10(b) we observe the simu- 
lated measurement including the effects of the instrumenta- 
tion, medium, and random noise (SNR = 20 dB). Applying 
the LWR algorithm to the data, our recovered wave estimate 
is shown in Fig. 10(c) using the multichannel deconvolution 
approach. Here, we see a reasonable similarity between theo- 
ry and the estimate. This completes the section on the tran- 
sient wave experiment and associated signal processing. 

V. SUMMARY 

A multichannel deconvolution technique has been ap- 
plied to estimate a spatially varying, transient acoustic wave 
from noisy experimental array measurements. Using a mod- 
el-based approach to analyze the wave propagation and the 
experiment including instrumentation and noise, a signal 
processing model was developed. This model was used to 
develop a simulator for experimental design and analysis as 
well as to analyze the performance of the corresponding al- 
gorithms using both synthesized and experimental data. 
After designing the multichannel processors for impulse re- 
sponse identification using the LWR technique, the optimal 
multichannel deconvolution problem was solved using the 
vector LWR algorithm. The final results appear quite rea- 
sonable. 
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FIG. 10. Transient wave estimation (a) Theoretical MPS at z: 25 cm. (b) 
Measured (simulated) MPS at z = 25 cm. (c) Estimated wave at z--- 25 
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