Nondispersive accelerating wave packets
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Motivated by the work of Berry and Balazs and Greenberger on the 1-D Schrodinger equation, we
have investigated a class of nonspreading solutions to the 3-D Schrodinger equation involving
accelerating Airy envelopes. These solutions are characterized by an asymmetric structure, in
contrast to recently derived spherically symmetric packets moving with constant velocities. The
field of a characteristic Airy packet extends in an oscillatory fashion behind its peak amplitude,
while it quickly disappears in front of the packet’s center. A particle modeled by such a packet seems
to leave a wake of its field behind as it accelerates in a certain direction. On the other hand, a wave
packet moving with a constant velocity has a field which is symmetrically distributed in all
directions. Our work on Airy-type solutions to the 3-D Schrodinger equation has led us also to

analogous solutions for the 3-D scalar wave equation.

L. INTRODUCTION

It was realized by Berry and Balazs' that the force-free
1-D Schrodinger equation

ﬁZ
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has a unique nonspreadin; packet solution expressed in
terms of the Airy function,” viz.,
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where B is an arbitrary constant. The square of the envelope
|4|? of this wave packet travels in free space without any
spreading. It is interesting, also, to note that it is moving with
a velocity equal to B3t/2m? which increases linearly with
time. This means that the Airy packet (1.2) is moving with a
uniform acceleration even though the Schrodinger equation
(1.1) is force-free. Berry and Balazs provided an explanation
of this unusual behavior by resorting to an integral represen-
tation of Eq. (1.2) which is composed of a superposition of
plane waves, viz.,
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Assigning a particle to each plane wave and using an anal-
ogy to ray theory, they argued that the Airy packet corre-
sponds to an ensemble of an infinite number of particles. The
straight trajectories of these particles in a space—time dia-
gram are enveloped by a parabolic caustic. The curvature of
the caustic embodies the acceleration of the classically al-
lowed region, which corresponds to the point where
x=B3*/4m?>. Berry and Balazs illustrated, furthermore, that
if the Airy packet is allowed to evolve not in free space, but
in a linear potential
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the resulting force will be just enough to overcome the pack-
et’s natural tendency to accelerate and will bring its center to
rest.

An alternative interpretation was provided by
Greenberger® who argued that the Airy packet can be used to
represent a free nonrelativistic particle falling in a constant
gravitational field. Using the generalized Galilean transfor-
mation from a frame X to a frame X’ defined by the coordi-
nate relations

x'=x+§&(t) and (1.5)

Greenberger was able to change the forced Schrodinger
equation

t'=t,

ifid B +Bax 1
ihdpx(x,t) + 5 Sex(x,t) + 5 x(x,6)=0 (1.6)
to the force-free equation
hZ
i, (x’ 1) +5— 3Ly’ 1) =0. 1.7

The new function ¢(x',t) is related to the wave function
x(x,t) through the transformation

X(x,0)= ¢(x,,t)e—i(m/ﬁ)[£r)x’ ~Jdt §(1)72] (1.8)

In the last expression &(¢) denotes the time derivative of the

function §(); the latter is governed by the equation of mo-

tion

¢y  B?
> 2m-’

The wave function (x',¢) représenting a free particle is just

the Airy packet given in Eq. (1.2). The wave function x(x,)

has been transformed from the initial uniformly gravitating
frame of reference X to a free falling frame denoted by X'.

m (1.9)
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This is essentially the equivalence principle which states that
all forces disappear in a free-falling system; it explains Ber-
ry’s and Balazs’ accelerating wave packet solution to a force-
free equation. Using this reasoning, Greenberger concluded
that the Airy packet does not spread out because it is a sta-
tionary state in a uniformly accelerating reference frame,
such as the one associated with a uniform gravitational field.

II. NONDISPERSIVE ACCELERATING WAVE
PACKET SOLUTIONS TO THE 3-D SCHRODINGER
EQUATION

The work of Berry and Balazs discussed in Sec. I can be
extended to derive Airy-type, nonspreading solutions to the
3-D Schrodinger equation

2

h
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This can be carried out by considering the Fourier decompo-
sition

%2 +oo0 +o +o0
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where |k|?=k3+k2+k3. A direct extension of the spectrum
appearing in Eq. (1.3), namely,

F(K) = (ayayas) e’ Sajkj/38° (23)

yields the following nonspreading, accelerating 3-D wave

packet:
B
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where j=1,2,3. Such a solution corresponds to the gener-
alization of the Greenberger type solution to the 3-D poten-
tial

> Bxj/2ma;.
i
Another type of solution to the 3-D Schrodinger equation
can be derived directly from Eq. (1.3); specifically,
23 i
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where the 7y;’s are the direction cosines of the 3-D k vector.
Carrying out the integration over k, we get
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A simple rotation of coordinates reduces such a solution to
the 1-D one given in Eq. (1.2).

The solutions given in Egs. (2.4) and (2.6) are character-
ized by an oscillatory behavior for negative envelope argu-
ments. They rise to their maxima at points very close to the
zeros of the envelope arguments and fall off exponentially to
zero for positive arguments. For example, the solution given
in Eq. (2.4) has its greatest value at a point very close to
x;=B’*/4a;m?, while its field extends out behind it in a
direction opposite to the direction of propagation.

It is interesting to compare the solutions given in Egs.
(2.4) and (2.6) with recently derived nonspreading packets
moving with constant velocities. One such solution to the
3-D Schrodinger equation (2.1) assumes the following form:*

W(x,0)=jo{ N2 ulp?+x3— pt/m)*]'1?}

X gipxalh e—i(p2/2M)t/ﬁ o~ imPNh. 2.7
Here j, denotes the zeroth order spherical Bessel function,
p=x3+xDHY2, w=mc/h, and p=mvg; v,=agfi/m, a,
being an arbitrary constant.

The accelerating Airy packets given in Egs. (2.4) and (2.6)
are characterized by an asymmetric structure, in contrast to
the spherically symmetric, constant velocity solution given
in Eq. (2.7). The field of a typical Airy packet extends in an
oscillatory fashion behind its peak amplitude, while it
quickly disappears in front of the packet’s center. It seems
that a particle modeled by such a packet leaves a wake of its
field behind as it accelerates in a certain direction. On the
other hand, a wave packet moving with a constant velocity
[e.g., the one given in Eq. (2.7)] has a field which is sym-
metrically distributed in all directions.

II1. NONDISPERSIVE AIRY-TYPE SOLUTIONS TO
THE 3-D SCALAR WAVE EQUATION

Our results in connection to the 3-D Schrodinger equation
have motivated us to search for analogous solutions to the
3-D wave equation

[c™2d7 = V?1(x,1)=0. (3.1)
The Brittingham ansatz’
Y(x,1)=G(p,{)e'P", (3.2)

where {=x3;—ct, p=x;+ct and $ is an arbitrary param-
eter, reduces the 3-D scalar wave equation (3.1) to the 2-D
Schrodinger equation

i4B 3,G(p,)+V1G(p,0)=0.

Here V2 is the transverse Laplacian. For the 2-D Schrodinger
equation we can derive an Airy packet solution analogous to
that given in Eq. (2.4); specifically,

G(p,0)=Ai[2B8(x;—38{*/4)]
X A2 B(x,—3 BL2/4)]ei2F {1+ 02=28813) (3 4)

(3.3)

It should be noted that the a; coefficients of Eq. (2.4) are
chosen here to be equal to unity. Using this result, in con-
junction with the Brittingham ansatz (3.2), we arrive at the
following Airy packet solution to the 3-D scalar wave equa-

tion:
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Y(x,1)=Ai[28(x; — 3B 4)AI[28(x,~ 3 BL*/4)]

« @i2B2L(x1 +x2=2BL%13) 4B, (3.5)
This solution is bidirectional: It consists of a plane wave
moving in the negative x; direction with speed ¢ which is
modulated by an Airy-type wave packet; the latter moves
with speed ¢ in the positive x5 direction and remains invari-
ant under translations along this axis.

IV. CONCLUDING REMARKS

Berry and Balazs have established that the accelerating
Airy wave packet given in Eq. (1.2) is a unique nonspreading
solution to the 1-D Schrodinger equation. In this paper, it has
been shown that a host of solutions of this type can be found
for the 3-D Schrodinger equation. Two such have been ex-
hibited explicitly and their salient features have been com-
pared to those of the recently derived spherically symmetric
nondispersive packets moving with constant velocities.

Benefiting from Brittingham ansatz, which maps the 3-D
scalar wave equation into a 2-D Schrodinger equation via a
reduction of dimensionality, Airy-type, nonspreading solu-
tions have been found also for the 3-D scalar wave equation.
In contradistinction to those for the 3-D Schrddinger equa-
tion, these solutions are bidirectional.

The use of nondispersive wave packets in modeling par-
ticles (e.g., electrons, photons, etc.) emphasizes the impor-
tance of their localization over the finiteness of their total
energy content. However, the 3-D Schrodinger and scalar
wave equations are linear; as a consequence, the nondisper-
sive Airy packet solutions derived in this paper have infinite
total energy content. Finite energy solutions can be obtained
by further superpositions over the free parameters entering
into the Airy packet solutions. This approach has been ap-
plied successfully to the 3-D scalar wave equation and has

yielded a large class of solutions characterized by a high
degree of localization.® On the other hand, it has been
demonstrated’ that if the localization of particles is given
more priority, one can circumvent the infinite energy prob-
lem by utilizing the energy of the central portions of the
nondispersive wave packets. With an appropriate choice of
parameters, these packets can be rendered bumplike, with
very large amplitudes around their centers compared to their
tails.
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disagreement it must agree with nature.

RECOGNIZING TRUTH

One of the most important things in this ‘guess—compute consequences—compare with experi-
ment’ business is to know when you are right. It is possible to know when you are right way ahead
of checking all the consequences. You can recognize truth by its beauty and simplicity. It is always
easy when you have made a guess, and done two or three little calculations to make sure that it is
not obviously wrong, to know that it is right. When you get it right, it is obvious that it is right—at
least if you have any experience—because usually what happens is that more comes out than goes
in. Your guess is, in fact, that something is very simple. If you cannot see immediately that it is
wrong, and it is simpler than it was before, then it is right. The inexperienced, and crackpots, and
people like that, make guesses that are simple, but you can immediately see that they are wrong,
so that does not count. Others, the inexperienced students, make guesses that are very complicated,
and it sort of looks as if it is all right, but I know it is not true because the truth always turns out
to be simpler than you thought. What we need is imagination, but imagination in a terrible
strait-jacket. We have to find a new view of the world that has to agree with everything that is
known, but disagree in its predictions somewhere, otherwise it is not interesting. And in that

Richard Feynman, The Character of Physical Law (M.LT. Press, Cambridge, 1967), p. 171.
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