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Gaussian beam propagation in a weakly nonlinear medium: A geometrical optics approach
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A geometrical optics method for solving wave propagation in weakly nonlinear, weakly inhomo-
geneous media is presented and applied to the propagation of a two-dimensional Gaussian beam. A
complex distorted phase ¢ is obtained. This complex phase is used to describe both the zeroth-
order amplitude and the nonlinear rays along which the energy propagates. This approach recovers
standard self-focusing and self-blooming effects in a quadratically nonlinear medium.

I. INTRODUCTION

The nonlinear propagation of electromagnetic waves in
media with intensity-dependent indices of refraction has
been studied extensively."'? For high-power beams vari-
ous nonlinear phenomena such as self-focusing®* and
mode locking® can occur. These phenomena are of long
and continuing interest. Self-focusing, for example, is of
great importance in studying the heating of plasmas by
intense microwaves.

In this paper we present a geometrical optics method
for solving the problem of electromagnetic wave propaga-
tion in a weakly nonlinear, weakly inhomogeneous medi-
um. Geometrical optics has been successfully applied to
wave propagation in linear weakly inhomogeneous
media.” However, much less has been done on the appli-
cation of geometrical optics to wave propagation in non-
linear media.

We make use of a perturbation method devised by
Choquet-Bruhat.® The solution is expressed as an asymp-
totic expansion in terms of a small parameter 8, which is
also a measure of the period of the wave. The method is
applicable if the nonlinear term is of the order of § or
less. It reduces the problem of wave propagation in a
nonlinear medium to two decoupled differential equa-
tions. The eikonal equation and the amplitude transport
equation are solved separately. Other methods such as
Whitham’s variational technique’ provide two coupled
equations for the phase and the amplitude.

The plan of the paper is as follows. In Sec. II we derive
the ray and the amplitude transport equations. These
equations are applied in Sec. III to the propagation of a
Gaussian beam in a quadratically nonlinear medium. As
in the case of a Gaussian beam propagating in a linear
medium, complex rays are used.!"'® We summarize our
results in Sec. IV.

I1. DERIVATION OF RAY AND TRANSPORT
EQUATIONS

We start with Maxwell’s equations in an inhomogene-
ous isotropic nonlinear medium,

VXB=-(€,(x)3,E+e,(x)3,[f (EE]} , (1)
C

VXE=—3,B . 2)

We assume the medium to be weakly inhomogeneous and
weakly nonlinear. The electric and magnetic fields are
expressed as asymptotic expansions in terms of a small
parameter § that measures the period of the wave

o

u= 3 8",(x,1,¢(x,1)/8) , A3)
n=0

where u is a six-dimensional vector whose components
are the components of E and B, respectively, ¢ is a phase
function, and ¢ /8 is a fast varying term and is henceforth
referred to as 6. Note that in linear geometrical optics
the nth term of the expansion can be expressed in the
form 8"u,(x,t)exp(¢/8). However, this form cannot be
generally used in our case.

We now use Eq. (3) in Egs. (1) and (2). The operators
ax' and 9, are replaced by axl +8_18xl¢89 and
9,+87'9,40,, respectively. The nonlinear term is as-
sumed to be of the order of & and is also expanded in a
Taylor’s series in terms of 6:

FB)=f(E))+8 3 E, 3; f+8 3 E; 05 f

2
+%2E:,1aE,anf+ T, 4)
i)

where the derivatives are evaluated at E=E,,

We proceed as in standard linear geometrical optics
and equate terms of order 8 '. The following equations
are obtained:

€
VéXx3,B,= C%MaeEo, (5)

VfbxaoEOZ _—at(tagBO . (6)
Using Eq. (6) to express By in terms of E;, Eq. (5) yields
M'39E0=0 > (7)

where the elements of the matrix M are
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— 2 € ) 28
Mij“(v¢) Sij_ax,.d’axj‘ﬁ_:z‘( 1) ij

Equation (7) has a nontrivial solution if the deter-
minant of the matrix M vanishes. This provides a partial
differential equation for the phase ¢:

€
(VgrP=—(3,4)7 . 8)
c

The preceding equation is the same as the eikonal equa-
tion of linear geometrical optics.” It can be transformed
from a second-order partial differential equation to a set
of first-order ordinary differential equations along a set of
characteristics referred to in geometrical optics as the
rays
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dt _

15 1
s ¢ ¢ (

where s is a function of the arclength along a ray; vy is ar-
bitrary.

Equating terms of order 8°, the following equations are
obtained:

Vo X3,E, +0,43,B,= —VXE,—9,B, , (12)

€ €
VéX3,B, — :;—a,(paaEl =—VXB,+ c—;a,Eo

€
+—2h(Eg)d,$94Ey , (13)
(4

where
4y, ©)
ds h(Eo):f(Eo)'*'[anf‘(Eo)]’Eo .
% =yVé, (10)  Equations (12) and (13) can be rewritten in matrix form
|
, ) €
A'"3,6+3F A9, ¢ ]aeu, =—14"3,uy+3 49, uy+ —i-h (Eg)3,49,u5 | (14)
[ 1 l i C
[
where uy is given by terms of the matrices 4'”, 4, and N:
u(’),izuo,ia 153 ) —di:LA“)R (17)
ug,; =0, i>3. ds
A'”and A" are symmetric 6 X 6 matrices given by % =LA"R, (18)
s
€ .
A:‘/”: ?Sij’ <3, where L is the left null vector of N.
Substituting Eq. (16) for u, and multiplying Eq. (14) by
A;,”:S,j, i>3, L gives
A(216)= A1612):_ A(3]5)=_A(513)=1 , L [A“’Ra,+2 A(i)Rax‘ a
AR =aR=— A =—ad=1,
+L- (4 (1) + (i)
A=A =—aY=—aP=1. [4"OR+Z 47O R Ja
All other entries of the 4 ' matrices are zero.
. €
From Egs. (5) and (é), it is evident that + C—ih(Eo)L'R'a:d’adﬂ =0, (19
A'"3,6+3 A9, ¢ |d5uy=0 . (15)
. ' where
Therefore we can express ug in the following form: R'=R., i<3,
u,=a(x,t,0)R(x,t), (16)
. . . R/=0, i>3.
where R is the right null vector of the matrix
o " Note that
N=4"93,6+3 A9, ¢ .
i 2 ' L-[4"R3,+3 4RI, |=09, . (20)

From Eq. (15), the determinant of N is zero. This pro-
vides the eikonal equation (8) that was obtained earlier by
setting the determinant of the 3X3 matrix M equal to
zero.

The ray equations (10) and (11) can be expressed in

Therefore we can express Eq. (20) in the following form:
d,a +Ph(Ej)d4a +Qa =0, (21)

where
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€, ,
p ZFL'R 3,9,
Q=L-[4'"3,R+3 A‘”axiR .

Equation (21) is a first-order quasilinear differential equa-
tion that describes the evolution of the zeroth-order am-
plitude.

In the linear case the second term of Eq. (21) is zero
and the linear solution is

a=g(£¢/8)G(E,s) , (22)

where £ is a parameter that characterizes a given ray.
The linear phase ¢ is determined by solving the eikonal
equations (9)—(11). The function g gives the wave profile
and is chosen to make the solution agree with the initial
conditions. The function G describes the evolution of the
amplitude along the ray due to the inhomogeneity of the
medium, and to changes in the ray geometry. It is given
by

G =exp . (23)

- [ ase

In contrast when the nonlinearity is present, it becomes
difficult to solve Eq. (21) along the linear characteristics.
However, along the nonlinear characteristics defined by

a¢ _ 24
L =Ph(E) (24)

the transport equation (21) takes the same form as in the
linear case

da

—=— . 25

s Qa (25)
This system, as we will now show, can be readily solved.
The amplitude is given by

a=g(£,¢'/8)G(E,s), (26)

where G is again given by (23) but ¢’ is the nonlinear or
distorted phase that is invariant along the nonlinear
characteristics. We use (26) in (24) and integrate, with
respect to s, to obtain the following equation in which ¢’
is defined implicitly:

¢'=¢—fosds’P(§,s’)h [g(&¢'/8)G (£, )R"], 27)

where R” is a three-dimensional vector whose com-
ponents are equal to the components of R that corre-
spond to E. We have taken the initial condition for the
distorted phase to be the linear phase ¢ =¢’. The integral
is taken along the linear rays. Equation (27) can be
solved by iteration. Higher-order terms u;,u,,..., can
now be obtained successively by solving linear systems of
differential equations.

To summarize, the linear phase ¢ is determined by
solving the linear eikonal equation. Once ¢ is deter-
mined, R is found by solving a linear system of algebraic
equations given by Eq. (15). The amplitude is given by
Eq. (16), where a is defined by Eq. (26). The function G is
obtained from Eq. (23). The function g is chosen to agree
with the initial conditions. It depends on ¢’, the distort-
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ed phase, which is found by iteration from Eq. (27). The
method is subject to the standard restrictions of linear
geometrical optics. In addition, €;,A(E)/€; =0 (8).

III. APPLICATION TO GAUSSIAN BEAMS

We apply the method presented earlier to a two-
dimensional Gaussian beam propagating in a quadratical-
ly weakly nonlinear medium. For simplicity we assume
the medium to be homogeneous with €, =1:

ent.=1+6,(E?), (28)

where ( E?) represents the time average of the square of
the electric field. A quadratically nonlinear response can
be produced by a number of effects, such as the electronic
polarization of the atoms or molecules of the medium.
For an optical beam propagating in glass, €,~7X 10~ %
m2/V23!2 In our case, the glass medium is considered
weakly nonlinear if the power of the optical beam is of
the order of a few megawatts.
At z =0, the electric field is given by

—k0y2
2b

E,=Eexp —iot |, (29)

where ko =w/c; b is any length characteristic of the aper-
ture field. Since the nonlinearity is independent of time,
the time harmonic solution exp(—iwt) applies every-
where.

For a two-dimensional Gaussian beam there are three
field components E, By, and B,. Therefore the matrices
A 4" and N reduce to 3X3 matrices. We use
(1/iky)" as the expansion parameter 8. The fast varying
linear phase 6 is expressed as O=iky[¢¥(y,z)—ct]. The
eikonal equation (8) reduces to

(3, +(3,¥)=1. (30)

The left null vector is given by

L=BVe 1,%az¢,—_;1—ayw , (31)

where f3 is arbitrary. We choose S=1. Since the matrix
N is symmetric, R is the transpose of L. The amplitude
transport equation (21) gives

i€eyc
8.a+3(8y+da ———(a?)3,a =0, (32)

where 7 is an arclength along the ray. Note that if the
nonlinear term is neglected the solution reduces to that of
linear geometrical optics.” Along the nonlinear charac-
teristics, the amplitude transport equation reduces to

da

1
dr 2

The distorted (nonlinear) phase equation (27) gives

(@2¢+32)a . (33)

€ 1
¢':¢+72f0 dr(E?) . (34)

Note that if there is no field variation in the transverse
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direction, the solution is

e, E?
1+ 222

E_ =E,exp |ikyz —iwt (35)

This result can also be obtained from the wave equation
by neglecting the term of order (e,E2 )%

Following the method of Keller and Streiffer,!' the
eikonal equation (30) for the Gaussian beam is solved by
extending both the phase and the rays analytically to
complex space.

The following set of equations are obtained for com-
plex y and z along the rays

y=n+(an¢)r , (36)
z=[1—(3,¥)°]'"*r, (37)

where 7 is complex and is the value of y at z=0. From
Eq. (29), the complex phase at z =0 is equal to in?*/2b.
Equations (36) and (37) can then be expressed as

)’=77+l_;17’ (38)
2 12

z=|1+L | r. (39)
b

The rays are straight lines in complex space. Using (38)
we can express 7 in terms of y and 7:

_ Yy

=, 40
T 1+ (ir/b) 40

Eliminating 7 in (39):
21172

— y

= |1+ 41
z ! b+ir “D

We are interested in the value of 7 for y and z real. We
write 7 as 7 +i7;, where 7, and 7; are the real and the
imaginary parts of 7, respectively. It is then straightfor-
ward to show that Eq. (41) reduces to two coupled alge-
braic equations:

29 rpT =[2b7R(—1b +zz—f§ +3T%)
+arpr (th — T3 —2mpT2%], (42)

y(cm)

FIG. 1. rg vsyatz=6cmfor b =2cm.
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y(cm)
FIG.2. 7; vsyatz=6cm for b=2 cm.

yUrh —m)=[bUz* =1k +73)+2b7,(37% —22—7})
+zirp—mR)H R =) —4rkTi] . 43

Equations (42) and (43) were solved numerically for 74
and 7; by an iterative scheme for different real points

14 ———————————
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FIG. 3. (a) Linear contours k =10 cm; b =2 cm. (b) Non-
linear contours kK =10 cm; b =2 cm; ,E*=0.2.
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(y,2). Plots of Tg versus y and 7; versus y at a given z are
shown in Figs. 1 and 2. The linear phase ¢ is then deter-
mined by

_ i
Y b +7, (44)
where 7 can be obtained from Eq. (40).

To calculate the distorted phase in Eq. (34) we
reparametrize the rays in terms of a real variable a. This
simplifies the process of carrying out the integral. The
ray equations can be expressed as

Yr=mrtyy—mpla, (45)
y=nl—a), (46)
R =zpa (47)

y(cm)

z(cm)

z(cm)

FIG. 4. (a) Linear contours k =10 cm; b =1.5 cm. (b) Non-
linear contours, k =10 cm, b =1.5 cm, ,E*= —0.25.
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z;=0, (48)

where the subscripts R and I refer to the real and imagi-
nary parts, respectively. The subscript f refers to the end
point; that is, the real point where we are calculating the
distorted phase. «a varies from O to 1.

We need to relate 7 to a. Equating yg +iy; obtained
from Egs. (45) and (46) to Eq. (38), it is straightforward to
show

= b
nk +n;

[y, +ilng tni—mgyp)la . (49)

The zeroth-order electric field is extended by analytic
continuation to complex space. It is expressed along a
given ray as

1.4 —
1.2-:__-_____—__”____,,/’/”1
1.0///
o.e————//

3
15 I
> 06 5
0.4} -
0.2 T
2 4 6 8 10
z(cm)
1.4 T . Y v T v T
(b)
1.2} =
1.0 E -
—~ 038 .
£ !
o
> 06f
04} .
0.2
2 4 6 8 10
z(cm)

FIG. 5. (a) Linear contours, kK =5 c¢cm, b =20 cm.
linear contours, k =5 cm, b =20 cm, €,E*=0.8.

(b) Non-
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J(n,0) e
E, oly(a),z(a),t]=E, }[—77177:((1—)] expliko[Yx(a)tivi(a)]—iwt} , (50)

where Yz and ¢ are the real and the imaginary parts of the distorted phase v, respectively. J(7,7) is the solution to
Eq. (33) and is given by the Jacobian of the transformation from the ray coordinate (7,7) to (y,z):

Jn,ma)]=[1+ (/b)) V2 {1+ (n/b)*+[ir(a)/b]} . (51)
The term { E?) is then expressed along a given ray as:
(E?)=1E}(a)v*(a)exp[ —2ko¥j(a)], (52)
where v (a)={J (9,0)/J [n,7(a@)]}!/* and v * is its complex conjugate. The product is computed numerically.
Separating real and imaginary parts, the distorted phase equation gives
sz(Z) b"h}’f a
ra)=v¢pla)— v(a'v*(a')exp[ —2ky¢i(a’)lda’, (53)
YR Yr 4 (”711}'2 +’7%) fo pl o¥7 ]
&E} b(n§+77%—7711)’f) a
la)=¢;(a)+ v(a v*(a'exp[ —2k ¥j(a’)]da’ . (54)
vy L7 4 (s +72) fo pl o¥r ]

Equations (53) and (54) are solved by an iterative scheme
that computes the distorted phase at meash points along
a. The distorted phase at the endpoint, where both y and
z are real, is determined by carrying out the integral to
a=1. This process is repeated for different real end-
points (y,z).

In the linear case, the phase paths defined by
¥; =const, represent the direction of energy propagation.
We plot these contours for different values of k and b in
Figs. 3(a)-5(a). We plot the corresponding nonlinear
phase paths, defined by ¥} =const, in Figs. 3(b)-5(b). In
Fig. 3(b), €, is greater than zero. The focusing effect
reduces the diffraction shown in Fig. 3(a). In Fig. 4(b), €,
is less than zero. The self-blooming effect increases the
diffraction shown in Fig. 4(a). Finally, in Fig. 5(b), the
focusing effect produced by a positive nonlinearity turns
the slight diffraction shown in Fig. 5(a) into a very slight

[

focusing. For stronger nonlinearities, this method is not
valid.

IV. CONCLUSION

In geometrical optics, the zeroth-order amplitude of an
electromagnetic wave propagating in a weakly nonlinear,
weakly inhomogeneous medium is described by a quasi-
linear first-order partial differential equation. This equa-
tion is solved along a set of characteristics that defines
the distorted phase of the wave. We computed the com-
plex distorted phase of a two-dimensional Gaussian beam
propagating in a quadratically nonlinear medium. This
phase describes the phenomena of self-focusing and self-
blooming. We plan next to study weakly nonlinear wave
propagation in dispersive media such as plasmas.
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