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1. INTRODUCTION

Spontancous emission results from the coupling of an atom to the vac-
uum modes of the electromagnetic ficld. However, an atom confined
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to a low-loss cavity exhibits radiative properties which differ radically
from its free space counterpart. Tuning or detuning the cavity to the
atom’s transition frequency, onc can enhance or inhibit the associ-
ated spontaneous emission (SpE) rate of the atom. Cavity quantum
electrodynamics studies how these Spk rates can be tailored by the
electromagnetic environment into which the atom radiates [1-13]. It
has led to a variety of potentially interesting applications including the
microcavity laser. Modifications of quantum mechanical behavior in
the presence of boundaries have also been studied in conjunction with
non-atomic transitions, for instance, with gamma ray emissions from
nuclei [14-16] and with the magnetic moment of the electron [17]. We
have also recently found that there is experimental evidence [18, 19]
of modifications in the decay of the nuclear isomer 2354207 when it is
embedded in silver {a good conductor).

For a cavity tuned near a transition frequency of an atom the SpE
rate of that atom is enhanced and is proportional to the @) of the cavity
and the wavelength Ay of the transition (1): T'igpury ~ Ff”,_g()\g/V)Q,
where I'fpp. is the SpE rate in vacuum. Similarly, for a cavity de-tuncd
from a transition frequency the rate is inhibited and is proportional to
the inverse of the € of the cavity (2): Ty ~ l"'f,f_{(__,(/\g/‘i/)Q*i.
As will be shown below with a quantum mechanical derivation, the
emissions from an atom or likewise from a nucleus enclosed in a perfect
closed cavity can be completely suppressed. They are replaced with
Rabi oscillations wherein the emitter-cavity system is in equilibrium;
L.c., there is an oscillatory exchange of a photon between the cavity
and the atom or nucleus.

In reality, the concept of enhanced and inhibited spontaneous emis-
sion 1s actually restricted to non-closed finite- () cavities. The SpE
rates must be modified if the cavity is in fact open since the avail-
able modes include partial bound cavity modes and partial continuum
free-space radiation modes. In addition, the coupling of the atom to
the free-space modes can occur even in a closed cavity with a finite
since coupling to the continuum can exist through the lossy walls of
the cavity structure. Thus, when the ¢ of the cavity is not infinite,
the modes of the cavity can be coupled to the continuum free-space
modes and the Rabi oscillation picture must be modified.

The emission of electromagnetic radiation from an excited nucleus
is but one of several channels in which that nucleus can decay from
an excited state to a lower energy state. Nuclear transitions having
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an cnergy on the order of 10.0 keV' or lower will preferentially decay
by means other than photon cmission. Internal conversion, like pho-
ton emission, 1s a decay channel for the nucleus which occeurs through
an electromagnetic process. The vicinity of electrons to the nucleus
opens the internal conversion (IC) channel which describes the indi-
rect transfer of the nuclear excitation energy to an clectron in one
of the various atomic shells and subshells via an intermediate virtual
photon transition and its subsequent cjection into an unbound state.
Internal conversion is thus a second-order process. It is independent of
the photon-emission channels of a nucleus and can be parameterized
into an electromagnetic interaction and a miclear structure part. It be-
comes a dominant decay chaunel when atomic clectrons arc near to the
nucleus and the transitions are on the order of 10.00 keV . For instance
120}, the IC rate is 1.35 % 10* larger than the photon-emission rate
for the 1.642 keV transition of the nuclear isomer 193-3P¢: and it is
3.23 x 107 larger for the 25.98 keV transition of the nuclear isomer
1245, 50 .

Even though it occurs via a virtual photon state, we will show that
the rate at which the IC process proceeds can be strongly modified by
the presence of a high ) cavity. The IC rates, like the rates for the
atomic emissions, depend not only on matching the allowed virtual
phioton energies to the nuclear transitions, but also on the position of
the nucleus. The cavity significantly modifies both of these dependen-
cles. [t impacts the size of the matrix coefficients through the position
of the nucleus relative to the nodes and anti-nodes of the cavity modes
and through the Lorentzian energy distribution of the virtual photons
which is peaked or not when the nuclear transition is close or not to the
virtual photons allowed by the cavity. The IC rates can be calculated
quantum mechanically by analyzing the exchange of the virtual pho-
tons that describe the current-current interactions between the electron
and nuclear currents. It will be shown that. in principle, the IC rates
can be completely suppressed within a porfect cavity if the nucleus is
located at nuils of the cavity modes. The more practical influences of
lossy cavity walls, hence a finite cavity @, on the suppression of the
[C process are then discussed. These modifications include the broad-
emng of the virtual photon transitions, hence the spacings between the
allowed 1C channels. Because we are proposing not only modifications
of the allowed virtual photon states, but also the transition probability
coefficients by the proper positioning of the nuclei, it is concluded that
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a practical realization of the cavity IC suppression could be made if
a cavity with a sufficiently high @ could be constructed. The Q of
the cavity needs to be high only near the nuclear transition frequency
under consideration. While still technologically difficult, several poten-
tial devices are suggested which would make the realizations of these
cavities highly desirable.

It should be noted that the experiments [18, 19] with the nuclear iso-
mer 2359007 suggest strongly that the local environment does indeed
have a major impact on the decay of nuclear transitions. Those exper-
iments indicate that an order of magnitude variation in the lifetime of
the 1/27 isomer state of 23507 at the 76V {170 A) transition can
be realized. Because the IC rate for this transition in 2354007 18 200
times larger than the corresponding gamma radiation {photon) process,
these experiments indicate that it is possible to modifv the IC rates
with modifications of the local electromagnetic environment. This fur-
ther justifies our considerations of the cavity-controlled modifications
of the IC rates.

In Section 2 we introduce the ideas concerning the suppression and
enhancement of emission from atoms in cavities. While much of this
material is known, our presentation allows us to introduce the main
concepts and notations, including the situation when the walls of the
cavity are lossy. These cavity quantum mechanical concepls are then
extended to nuclei in cavities in Section 3. In particular we indicate
how the internal conversion process in nuclei can be suppressed by
a controlled modification of the electromagnetic environment. This
includes both the transverse and longitudinal photon processes associ-
ated with internal conversion. Several potential applications for cavity-
contrained nuclei that have suppressed or enhanced internal conversion
rates are suggested in Section 4. Conclusions are given in Section 5.
Many of the detailed calculations have been relegated to a set of appen-
dices so that we may cmphasize in these sections the physics of cavity
modifications of the internal conversion process rather than the asso-
clated mathematics. We would also like to emphasize that the Auger
effect, which is a second order decay channel for the atomic transitions,
can be similarly modified. The difference is that the Auger transitions
occeur only through electron current interactions. Nonetheless, all of
our analysis applies immediately to this case as well. The cavity sup-
pression of the Auger effect may have its own applications to realizing
long-lived pumped states for x-ray laser concepts.
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2. ATOM-CAVITY TRANSITION

Consider an atom in a perfectly conducting closed cavity, When the
atom radiates, the resulting photon must couple to the intrinsic modes
of the cavity to exist. This clearly modifies the emission process when
compared to emission into free space since in that case the photon con-
ples to a continuum of radiation modes. To understand the emission
process 1 a closed environment, we must first consider the clectro-
magnetic field in a cavity, Consider an atom in a perfectly conducting
closed cubical cavity with side-wall length L. Let the modes of this
cavity be labeled by the integers nlm corresponding to the z, y. 2
directions in the cavity. Since the walls of the cavity are assumed
to be perfectly conducting, any electric field within the cavity must
vanish on them. Consider the cavity mode functions corresponding
(respectively) to the x, y, 2z divections of the cavity:

53 32 ,
(1) _ (2 fnE N {r LT 1
atm =\ 7 CO8 (T:E) sin (Iy) sin ( 7 ,,) (la)
(2) 2\ Y2 n {r T
Fi = (E) §in ( 7 ;zr) Cos (-E-y) sin( 7 z) (1h)
2 _ ('n"r ) . T (:r'n.?r ) (10)
sin z)sin | —y | cos z c
L L)L

To achieve the EM constraints in a cubical cavity, the vector potential
takes the form

3

rim

nim Tim relrn ‘il

o ={e — € Z(e)* ;o €Yk g
Aty =3 |G AL et + Gl @Al e ] (2)
Tl
where the *-sign denotes the complex conjugate and the w,,p,, are the
natural resonances of the cavity being given by the expression

T . 1/,
i, = rEc: [712 + 1%+ 'm.“)} 172 , (3)

where ¢ is the speed of light in vacuum. The label e represents the
, . . , . . e

polarization state of the EM field. The vector coetficients G:_”)m arc

decomposed in terms of the orthogonal coordinate vectors €1, €2, €3 as

A1) o o ~ - )
Gnlm(m) = Ell{':l + 512(—’2 + 613(’-3 (4(!,)
=(2) o - -

T};zzn(’r) = &auly + §2300, (4b)
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the coefficients &; being linear combinations of the cavity modal func-

tions F( 7)

nim

where

(T):

Consequently,
Coulomb gauge; i.c., by construction V- A(Z, t) = 0 because the vector
coefficients satisfy the relations

€11 = —F (D) (50)
. +11\fng?.,-zﬁgi>,1(f) (5b)
£1 =+ Nty ) () (5c)
foy = +%M Fi(7) (5d)
€2 = - N Fi () ()

NMH:ﬁE%ﬁ. (55)

the vector potential satisfies by construction the

v .

nim

(F) = 0. (6)

We note that with these definitions the vector coefficients arc orthog-

onal:

1 +(2) -

( 'rrf'jm C’a(llm> = {) ((a)

(2) 1)
(( Trdrn £1£m> =) (Yb)

2

(1) A(1) n — (1) .

<GnlmC m> =1+ £2 I ‘1752 = Cnim (7()
b 2
~{2) T - 2}

<C?L!7n0n57ra> - 12 + me = Matm (Td)

where (e, ) represents the inner product over the cavity.
The magnetic flux and clectric fields follow immediately from the

vector potential:

I

Vx;l
= —~A.

B b
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With these expressions we calculate in the usual manner the energy of
the electromagnetic field:

mwr? DM O+ HBE P T, (9)

With 4 given by Eq. (2) and the orthogonality conditions (7), the
cnergy {9) follows from the field quantities (8) as

r 42 (e) (e) 4 (e}
DEM =0 Z “"’nfmcnlm (lAnim n[m + AanAnlm) : {IU)

nim
L3

To express this result in a quantum mechanical oscillator form, we
introduce the normalized quantities:

, —1/2
(e} _ ¢ (e}
Gl = J€) nim (11(1}
2EmemCi’u’-fm’l
N —1/2
(v _ ! Q)+ ~
nlm () milm (11bJ
QEOwnl?nCn[m
This allows us to rewrite the energy (10} as
. Fwnpm () (O (e}x (€}
Ugar = Z 9 (G‘n{m Cntm + Cptm® nim) : (12)

nim
E

To express this result in quantum mechanical (second quantized) form,

we identify the constants a! Z)m and a ?,);1 with, respectively, the an-
nihilation and creation operators ”Ezi and (L,E]Z)TT for a photon with

polarization e in the nlm-cavity mode so that the energy (12} then
gives us the quantum mechanical Hamiltonian for the photons:

HZMW(QWHJHU) (13)

fre“ndm nim nim
i

In addition, we obtain the quantum mechanical vector potential:

- ] nim ) 5 T Hinim
(@0) = Y AL (@ e nim by + K (e wmmtal, 0 (14)

nim
£

Tl
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where the vector coefficients are now

5 1/2
AlEd oy i e —
Anlm(‘r) - (€) 'TTLETH.(;L) (15)
26 Cn I Wnim

As shown in Appendix A, with these expressions one can calculate the
energy o the cavity and the @ of a lossy cavity. The volume stored

(;‘Ilefg}'
Ho Z /[/ 'Hfiim‘gdg:f = hw;c!m (16)
e e

gives the expected energy in the photon mode. Maoreover, if the walls
of the cavity are not perfect, the cavity modes couple to the wall and
to the continium through the walls. Thus, we expect that there will
be a broadening of the cavity resonances:

Walm = Whlyy — ?rnlm (1?)

where wﬁ?_n is the real part of the mode frequency and the line width
(Half Width at Half Max) of this transition frequency is obtained per-
turbatively as

— Zt’ ][ RO(ZMC&H)Iﬁ;z!mP dS
po 2o S 1HE, [P d3E

The () associated with a particular nim -cavity mode follows from
this natural line width as Q = wéel?rl/F,Lg,,;_ )
Assuming that the clectric and magnetic fields are related through

the wall impedance, i.c., Fyuy = ZyaiHwwi , the line width becomes

(18)

Tibm

,’_.{J(]L 4 fE[)/i,DL L Z[)
where Zy = (po/ !F(])l‘/2 is the characteristies wave impedance of free

space. If the walls are made from metals with very high conductivity,
the wall impedance has a real part

5
Wilrn H0
20

RC(Z?.L'(IHJ - (2{})



Cavity modifications of nuclear internal conversion rates 293

so that J can be written as

 Wnbn L T /g 5
Q - — T A “aim (“lj
Coim 32V

As shown in Appendix B, this gquantum mechanical value agrees with
the classical result.

Now if we want to understand a little how the presence of the cavity
modifies the transition probabilities of the spontaneous emission, we
write the Hamiltonian in the form:

H= Hatom + qu + }fz’nt (22)

where H s 38 the unperturbed Hamiltonian of the atom and H.,
is given by (13). The interaction Hamiltonian operator Hi,, is, of
course, the second quantized form of the interaction terru

Hipy = — /dsf jaﬂo-m,(f) . zzi“w(?) (22")

The vector potential of the photon j":i,}. is given by (14); Tutorm is the
current associated with the electron transitions in the atom. Faor the
sake of simplicity we will restrict the discussions below to elecironic
transitions and deal only with electric dipole interactions. In the inter-
action picture we readily obtain the rate of transitions from an initial
atomie state ¢ with zero photons (labeled 4.0} )} to a {inal atomic
state f with a single photon propagating into the L direction with
polarization € (labeled |f, 1. }). In the frec spacc case the result is
simply the (Fermi) Golden Rule:

~free 2m i - 2
P = — > / d*F l( [ g [ Ho

2
i,0y| 8(Fz~Egq),  (23)

where the photon energy Ep = hw and the transition encrgy Fp =
Ef - E;. Note that we have summed over all possible polarization
states of the emitted photons. Let

o L \Y2
Gl (z) = (+> AR (24)
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be the plane wave vector expansion coefficient for a wave propagating

mnto the &k direction, € being the associated polarization vector. The
transition matrix in {23) has the form

A _ 2 2R L]
XE: '<f’ IF?,CHI””"L’ 0>' - ;7_1526()&);; g {CE |

SR FEE )-GO F), . (25)

where # is the momenturm of the transition electron and Ak represents
the momentum of the frec-space photon. The normalization constant
Céﬁ' = 1 for this plane wave case. Let us assume thal we have an
ensemble of atoms whose orientations are randomly distributed. If we
take the dipole approximation, i.e., we take the clectromagnetic field
variation to be small across the pomtmn of the n-th atom 7, . and if
we Integrate over these random orientations, we obtain

[‘!37 “?‘.H(-")r-z 1*‘ i 3 ’
PEIFD] - L @) = 516 rm\ PR
{ E « — 5
SO @O oo

where dy; is the dipole matrix element of the trapsition between the
initial and final states. Introducing the Einstein coeflicient for sponta-
neous emission

3 2
. F u) detl .
Aiplw) = —F 27}
‘ f(W) 3?1’6()5.(. ( :
the transition rate at the location of the atom becomes sumply
_-"'(E} - )
hre? 2|Gg (Za)] o
LI (Ea) = -;?Ai_.f(wk')z /dkk Té(gr Ep). (28)
& [ ’E

In contrast, the cavity supports ouly a discrete set of modes, thus
limiting the emission possibilities. The corresponding transition rate
from the initial atomic state with zero photons, [i,0), to the final
atomic state with a single photon in the nim -mode of the cavity with
polarization e, [f Lot ) - 1s simply

Fif—“.}iy - Z’ f lnimc mt‘? O)r ( i Ef:.)- {29“]

mnirr
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which gives in the dipole approximation the rate of emission

. hre ¢ Ta
Pif;ty(ng) = Ai__;f Wntm Z I_J}“L(_l(s( Eotm — Ff?) (ng)

w? {€)
nim nlm b
.

Clearly the difference in the transition rates into free space (27) and
into a cavity mode (29) lics in the difference in nature of the cavity

vector coeflicients, i.e., the differences between, respectively, (“E:)(:r A)

and Gnh (Za}, and the allowed transition encrgies Fr = hwp and
Etm = hwpns - It has been shown that these differences can lead to
inhibition or enhancement of the transition rates [3-13].
Now if the cavity is lossy, the Hamiltonian (22) must be modified
to the form
H = Hogom + Hy + Hi?™ + HpiH (30)

trit int

where HA™ ig given by Eq. (22') and

nt
vall / 85 s () - A () (30)

ju,a” being the currents associated with the electron transitions in the
walls. If we treat the atom-cavity system semi-classically, we find that
the effect of the wall interaction term H};ﬁ“ is to shift and broaden
the photon spectrum. We find that

H= JHaiom + Z ﬁ’ nlm Irn!m) ( (g)m RH + U’q( iy ( ) ) Hﬁfi}m

e ndn
nim
€

{31)

where wﬁm and I'pyy, are defined, respectively, by Eqs. (17) and (18).

This means that if we were to calculate the transition probability, the

difference between the conservation of energy in an infinitely narrow

line and the atom-cavity transition is the presence of the broadening
term

F?'alm
(Ef1 - h“”nlm) + mem

(32)

rather than simply the on-shell result 6{Ey; — huwnyn) corresponding
to the one present in Egs. (28) and (29). This is confirmed with a
quantum calculation in Appendix A and a classical circuits approach
in Appendix B.
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3. INTERNAL CONVERSION OF AND SPONTANEQUS
EMISSION FROM A NUCLEUS IN A CAVITY

In the case of a nucleus, the decay of an excited state can proceed
not only via spontancous emission of a real photon, but also via a
virtual photon transition. This process is called internal conversion.
In order to study the stability of an excited state of a nucleus in a cavity,
we must determine the cavity modifications of the internal conversion
process rates.

3.1 Internal Conversion for a Nucleus in Free Space

Internal conversion (IC) in an excited nucleus is a second order
process by which an electron which orbits the nucleus is ejected into
the continuum when the nucleus decays to a lower energy state. It
occurs via a virtual photon interaction between the nucleus and the
electron. To understand the basic physics of the IC process when the
excited nucleus is contained in a closed cavity, we proceed as we did
above with the atom-cavity system and consider first the Hamiltonian
for a nucleus-electron system in free space:

H = H,N’+He+H-y+Hi.nt (JJJ

where Hpy is the unperturbed Hamiltonian of the nucleus; H, is the
unperturbed Hamiltonian of the electron involved in the internal con-
version process; M, is again the Hamiltonian for the photon; and H;,,,
1s the interaction Hamiltonian which now has the form:

Hoi == [ [ Ax@ + Joie Ab@]as. @

We have chosen to omit for the moment the Coulomb force terms in the
Interaction Hamiltonian between the nucleus and the electron which
play an essential role for the K -shell electrons and when the IC process
is very weak or non-existent. We will come back to those terms below.

The terms in the interaction Hamiltonian (34) represent respectively
the perpendicular components of the electron current }}(F) . the nu-
clear current }%,(:F) , the vector potential arising from the electron cur-
rent AL{F), and the vector potential arising from the nuclear current
A;{}(Z) In the interaction picture the wave function for this system
can be expressed in terms of the interaction Hamiltonian as

ot
l ' e
Tr(t) =¥, (to) - 5/{ Hing ()W ()2, (35)
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The associated perturbation sequence to second order is

st
‘;D](f) %l]:f[(t()) - if Hgnt(f!)dt{lljj(fu)
| (36)

~rz dt / A" O — "V H o (P H oy (W (£0) +
i to

where @(t" — ") is the Heaviside function and guarantees the proper
time ordering. We set U (tg) = ¥, = |d,0) to be the initial state
consisting of the electron in the bound state ¢;, the nuclens in the ex-
cited state i, , and zero photons. We also set W (t) = Wy = (0 1i530/]
to be the final state consisting of the electrou in an unbound, contin-
uum state ¢, the nucleus in the de-excited state 15, and again zero
photons. The photons in the intermediate state occur in the free-space
case in a completely open region and are labeled by the continuum
plane wave wavenumber direction % and polarization state e. To de-
termine the rate of the IC process, we need to gencrate the matrix
clement A

<lpf‘ffmtllpl> <q’fszn«’ '11} > <‘1Jf}Hznt[lp ) (37)

where Hl(nz and H fm represent the first and second order interaction
opcrator terms in the perturbation sequence (36).
With several standard manipulations which mimic the procedures

given in Ref. 21, we obtain the first order expression

4
(WA == 1 [ 4 000\ Hus ()] 65620)
ta

= — 218 (0 ¢ | Bt |00 0Y 6 T (E i — Eng),

(38)

where Ey¢; = Ey — E; and E,3 = E, — Fj and where we have chogen
the times symmetrically as ¢t = 7/2 and tq = —7/2 so that we can
write the approximate delta function 877 (E) in (38) as

sin(ET/2R)
mE

Because the final and initial states contain no photons and the vector
poteutials contained in the operator H,,, contain single creation or
annihilation operators, the first order interaction matrix element (38)
1s identically zero:

(B = (39)

(| H ) =0 (40)
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The sccond order term follows in a similar but more tedious manner:

<\I; | ‘LTLT|\I}>
B dt / dt”o )( Uii@f‘Hmr( )Hmt(iﬁ)[@ﬂ;i‘a{))
to to
:——/ dt’ / dt" ot )ei(E:wf-s‘f)t’/h o HBat ENL /R
tn

<Oyl [ @2 (7@ 3@ + Thie) - A @)

e—z'(Ho+H it /!’1 i Ho+H )¢ /R

< [ @ @) AR + ) A oo (1)

X

In a manner similar to the treatment of the emission of a photon by an
atom we decompose, for example, the vector potential associated with
the electron currents into the allowed continuum radiation modes

FARE e (L G @ag+ G0 @l (42)
e \ 2eqwy kTR k TR
where we again have the vector coefficients E:E (Z} given by Eq. (24).
The sccond order interaction matrix element (41) then becomes

1 b e . ‘
(UG HEP = - szd'dk Xhalk, X p(E, oAl (. 10)

1 - - - (2
- }FZ‘[@% Xoalk, ) X3k, € )xﬁg lt. o),

(43)
where the individual nuclear and clectronic matrix elements are
ho\ 0
Xoolfo 9= (50 -) " [ @ islin@) 69 )
€(]w‘E
(44a)
- it ey - =(c)
Xtk 9= (5= ) [ @i ) S0 e
26(){4);; ' k

(44b)
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where FE., is the energy of the virtual photon which carries the in-
teraction between the nucleus and the eclectron. The time functions
explicitly yield the conservation of energy:

.t t
AE'}I())C f’t(f‘ to) :/t dt"el(Ef:._Ey)ﬂ /ﬁ. /t dt!.’(__)(tﬂ _ '.t”)eﬂE'V "f'Jn{f)!“/h
0 i

§TNEsy — E,,
=27h? lim (Eyi ‘3‘3)

=0y Eag— Ey +in
. t . N ; | -
Aa, lt to):f dtl 7B Eas )R [dt”@(t’t”)e"‘{Eﬁ—E»)t h

to

(45a)

g
STHE s + B,

=27k lim (Esit ﬁ? )

n=04 —(Eap + Ey) +in

(450)

where again we have explicitly taken ¢ = T/2 and ¢, = ~T/2. There-
fore we obtain

(0|20 =

mnt
Z/dBEX,Ga(R‘, €)X ik, F)é(T)(Eﬁ — Eng)
i . Eapg — Ey +in !
T
1Ton—0y . " i X
+Z/d3 Xﬁ ( E) f (A, F) (T) £ Ea’j)
{ : —(Eap + E4) + iy ’

J
(46)
This result agrees, modulo the Coulomb force terms, with Eq. (10.35)
of Ref. 22. The Feynman diagrams for the two terms in this matrix
element are shown in Figure 1.

3.2 Internal Conversion for a Nucleus in a Cavity

Recomnsidering the IC process in our cubical cavity, the modes avail-
able to the virtual photon are now restricted by the presence of the
perfectly conducting walls. In particular, the possible energy of the
virtual photon is now restricted to the natural resonant frequencies of
the cavity Ey,pn, . The first order perturbation result is again identi-
cally zero. The corresponding cavity second order interaction matrix
clement is straightforwardly obtained in the same manner as (46):
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free

e
bound

N 1a) First term in Eq. (46)

1h) Second term in Fy. (46)

free

bound

Figure 1. Feynman diagrams corresponding to the internal conversion

ProOCess.

Selnlmy €)X pi(ndm; «)

2T . Ecrﬁ - Enim + f'r.?
- litn Z ) .
L no0s | £ X (nlm; €)X 7 (nlm; E)(c}(T}

_(Ecz;’ﬂ - En.lmj + i1

éﬂ) (Ef?, A -Ef'.t,fl’)

(Ef? - Er).-?)

(47)
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where the individual nuclear and electronic matrix elements are now

h 172 PRI RN =2 (AN ‘
Xgalnlm: €) = (—) ]dsar"('tpgij)%(:ﬁ’) . G‘i}m(;ﬁ’)|'Ul-‘a>

2€0Wnim
{484}
A vz p . e
Xpi(nlm; €) = (é—) /d3§¢’f<¢fjt}(i’) : ;;;[)m(f)k.-‘)l).
f0Wnim .
{4%h}

Clearly the differences in the transition matrices between the free space
and the cavity environments again appear, respectively, through the
field coefficients, ég)(f) and :‘E:,)m(f) , and the transition frequencies
wip and wypm . These differences will be lead to different IC rates.
Calculating the current matrix elements (48a) or (48b), we find
that the IC process can be completely suppressed when the nucleus is
confined to a closed, perfect cavity and placed in particular locations.
As shown in Appendix D, if we introduce the nucleon transition current

= . i 3 33— 3= — - - —
Jgo = —ih (—) E FEPE, . LT A, [z,’;(m e Ty )
‘ M/ N - g
1]
ey — [ — =
X6 — TV Ty, T, ,.z,,l)] . (49)
and recognize that because the nucleus is highly localized in the cavity

so that it experiences only minute variations in the field, then the
nuclear current matrix element becomes

YR
—_— ~ Ale) oo 3 -
Xﬁu (TIZNL, E) -~ —.—) Gnim(‘f‘Nj ’ Jda' (')O)
C0Wnim
Therefore, for example, when the nucleus is located at Ty = (L/2,

Lj2, L/2}, the IC matrix element is zero and, hence, the IC process
is completely suppressed. Simply by locating the nuclei at a null or
at a peak of the cavity modal cocflicients, one can inhibit or enhance
the IC electron emission rate. We note that for the perfect cavity
the IC suppression is also true for the extremely high mode numbers,
For these high mode numbers, we would return to (48a) and recognize
that the field coeflicients will be highly oscillatory over the position
of the nucleons and, hence, would give zero in general. Morcover, it
is apparcnt from Eq. (47) that it is not important to include these
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high mode numbers in the sum since they contribute little to the final
result. In fact we find that if the nuclear transition frequency is not
close enough to a cavity mode frequency, then the coupling to the
cavity modes will be weak and the IC matrix element will again be
very small. It is important to note that if the walls are lossy but
the @ of the cavity remains large for the nuclear transition frequency
of interest, this result will change little because the cavity’s modal
functions will remain essentially the same. The transitions acquire
widths corresponding to a particular density of states, but will remain
highly localized.

Thus we find that the value of the IC matrix clements for a nucleus
in a cavity will be highly position dependent. By simply locating the
nuclei at a null or at a peak of the cavity modal coefficients, one can in-
hibit or enhance the IC electron emission rate. These results obviously
imply that the presence of the cavity walls can significantly alter the
IC process. We emphasize that this occurs even though the exchange
process involves a virtual photon emission and reabsorption.

When the cavity is open, the matrix elements of the IC process
will attain values somewhere between Eqs. (46) and (47). Suppression
or cnhancement of the IC rates will be possible as one approaches
the cavity case. If the cavity is only slightly open, the modal functions
experience little modification and the matrix elements will attain valucs
very close to those in (60). The normal IC process oceurs within the
near ficld of the radiation modes associated with free space, i.e., near
the nucleus. In the cavity IC process the radiation modes are restricted
to the “ncar field” since the modes are confined to the cavity region,
even if it is slightly open. Nonetheless, these modes are connected to
the region exterior to the cavity via its aperturc. Real photons are now
realizable in the exterior region, particularly at the resonance modes of
the cavity where resonant coupling to the exterior is possible [23-24].
[f the nucleus was placed at a peak of a cavity mode and the transition
frequency were matched to the resonance frequency of that mode, we
can actually anticipate an enhancement in the IC process so that one
could realize a large number of electrons from a large sample of excited
nuclei placed at that location. A large sample should be possible since
for the lowest mode numbers there will be little variation in the cavity
wave functions over the location of the nuclei so a larger packing density
could be achieved.
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As noted above, the IC process is generally dominated by the virtual
photaon exchange mechanism. A virtual transverse photon is emitted
and immediately absorbed. However, in the instance where we com-
pletely suppress the IC process, excursions of the electrons into the
K-shell and the Coulomb processes become more critical to the IC
process. The transition matrix element with the Coulomb forces be-
tween the nuclel and the electrons present has the form

(U | Hia W) = (W[ H TN 4 (a0 | EXEN 00
“1]\‘ J‘E'

¢itla).  (51)

As shown in Ref. 22 for the free-space case, the transverse photon terms
cancel the longitudinal photon contributions oxcept for the
spherically symmetric modes, the largest contribution coming from
the £ =0 mode. It is also shown there that these longitudinal photon
contributions are generally quite small in comparison to the transverse
photon values. This is also true for the cavity case. The eigenfunctions
for the potential in a cavity which are zero on all the walls have the
form

.y 12 | J
D (T) = (W_SE) sin (7—?.:) sin (%U) sin (%ﬁz) . (52)

Thus the Green’s function for the Poisson equation in this eavity yiclds

(Vs &M—Q Ditha)
|y — Zel
> 1
= Y e ) ) [ ()
nlm=1
o
1 ~ 3 N /= 3 e o —/
~ Z ménim(wﬂf) d Ipa;’j(;r) d°F pi,f(I )(I)?'lftl’l.(:;{: )
o in=1 ’

(53)

Since pfﬁ (¥} is expandable into spherical harmonics, the integratinn in
the first brackets is zero except for spherically symmetric modes. The
largest value yielded is for the £ = 0 mode. Nonctheless, we sec that
if the transverse photons are completely suppressed bv the location
of the nuelens, then additionally the longitudinal photon or Coulomb
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contribution will be completely suppressed. The Coulomb terms can
also be made negligible by the choice of the nuclei. For instance, the
£ =10 transition is very rare for the choice of a long-lived spin isomeric
state. We will make such a choice for all of the applications considered
below.

3.3 Proof-of-Concept Experiment

To test the efficacy of suppressing the IC process, we consider a
cavity that has a side length L = 10.0 nm = 100 A. This length corre-
sponds to an energy of 124 ¢V . The {1, 0, 0} -mode will correspond
to this wavelength. The {10, 0, 0} -mode would correspond to an en-
crgy of 1.24 kel . The mode separation in this cavity d(fiwpry, ) /dn =
fic/{nL) for these modes is, respectively, ~ 100 ¢V and ~ 10 eV .
The @ of this cavity is related to the width of the transition by
I' ~ (hwpim)/Q . Thus in cither of these two-cases one would need
Q) ~ 10-100 to have a line width much smaller than the transition
frequency. We believe that cavities of this size and this Q for the indi-
cated transition frequencies are possible with current micro-fabrication
processes [25]. In particular, it appears [26] that a cavity with a suit-
able (} can be constructed for transitions near the 1.0 kel range
with crystals or for energics below 10.0 €V with high-cncrgy multi-
layer mirror components, but not in the range between 10-100 el .
These constraints in turn require the selection of nuclear isomers with
transitions near 1.0 kel and below 10.0 eV . The cavity would then
be constructed in such a manner that it is grown with a large number
of nuclei of those isomers embedded at selected locations. This would
provide the conditions necessary for the complete suppression of the IC
process. Mecasurement of the IC transition rates could then be made.
Sensitivity to the location of the nuclei could be tested by constructing
these cavities with the nuclei embedded in other specified locations.

Such an experiment would require some additional analyses. Rect-
angular cavities would be much easier to fabricate. This would require
redoing the above IC analyses using the cavity lengths L., Ly, L.
The experimental choices of the modes to be used, their separations,
and the relationships to the actual ) of the lossy cavity should be
modeled. This can be achieved with a variety of available computa-
tional electromagnetic simulators. Issues of adequate mode separation
may be critical to minimize the available channels for the IC process
to occur.
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4. POTENTIAL APPLICATIONS

There are several potential practical uses for localized excited nucle
which have their IC decay process suppressed. These include long-term
containment of excited nuclear material, high energy nuclear batteries.
and neutron detectors.

4.1 Containment of Excited Nuclei

One very interesting application of the suppression of the IC process
would be the ability to stare excited nuclei for long periods of time. In
fact, one could anticipate a nano- or micron-sized closed cavity with
walls fabricated with multilayers to form a photonic band-gap structure
tuned to the virtual photon emission frequency. Then one would have
to ecmbed a large number of nuclei in this closed cavity and excite them
by transporting an energetic neutron beam through the walls. If the
cavity () is immense, the nuclei will remain in their resulting excited
states alimost indefinitely it their [C and SpE rates are suppressed.

4.2 Nuclear Battery

Since we can now control the IC and SpE rates of the nuclei, let
us consider a partially open, high ) cavity with a large number of
nuclei embedded within it, say a cubical cavity with two small circular
apertures on one pair of juxtaposed sides. We drive the nuclel into
their excited states with a neutron beam entering the cavity through
those apertures. If the nuclei are positioned on a peak of the divergence
of the cavity modal cocflicients, we can enhance the emission rate of
clectrons from the nuclei. If we were to superimpose a static magnetic
field over the cavity orthogonal to two suspended metallic collection
plates within the cavity, the emitted electrons would be directed by
the magnetic field towards these collection plates and could then be
captured by them. These excess electrons can then be used to drive
currents in an cxternal circuit connected to the collector plates, This
process is essentially a neutron to electron convertor. The nuclei-cavity
system thus acts as a source of a large number of clectrons, hence, is
a large current battery. This nuclear battery configuration is shown in
Figure 2.

Another variation would be to emit the electrons more slowly with
a controlled rate so that a low current battery could be obtained.
This could be accomplished by modifying appropriately the size of
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Figure 2. Nuclear battery configuration.

the cavity, hence, its modal coefficients. This size modification could
be achieved by driving the cavity with an energetic proton beam intro-
duced in an offset position {through another juxtaposed pair of aper-
tures) which would effectively short-out the cavity at the position of
the proton beam. The rate of emission of the clectrons could then be
modulated directly in such a configuration with a modulated proton
beam.
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4.3 Neutron Detector

The nuelear battery configuration could also act. as a neutron detec-
tor. Consider a partially open cavity containing nuclei in their ground
state that are located at the peaks of the divergences of the modal
coeflicients. If these nuclel are exposed to a beam of neutrons that
excite them, they will quickly emit electrons via the 1C process. The
collector plates would then collect these electrons and a current would
be measured that was directly proportional to the number of neutrons
in the heam. This system would act like a photomultiplier tube which
converts photons into electrons.

5. CONCLUSIONS

We have shown in this paper that onc can control the major mech-
anising leading to the decay of excited nuclel by controlling the elec-
tromagnetic environment into which they must radiate ecither virtual
or real photons. It was demonstrated that the value of the IC matrix
elements for a nucleus in a cavity will be highly dependent on the po-
sition of the nuclei in the cavity. By simply locating the nuclei at a
null or at a peak of the cavity modal coefficients, one can inhibit or
enhance the IC electron emission rate. These results obviously imply
that the presence of the cavity walls can significantly alter the IC pro-
cess. This occurs even though the exchange process involves a virtual
photon emission and reabsorption. A proof-of-concept experiment was
suggested to test these suppression and enhancement results.

Several potential applications for nuclei with their 1C processes sup-
pressed or enhanced were suggested. These applications require the
construction of extremely small cavities with walls that have a high
¢} at large photon energics. Such cavities appear to he within reach
of current fabrication methods dealing with multilayers or crystals to
form photonic band-gap structures. However, we fully appreciate the
practical difficulties of achieving these requisite high ) ’s at the pho-
ton encrgies associated with nuclear transitions. We are currently an-
alyzing such multilayer cavities in the anticipation of providing some
ideas as to what material parameters will be required and how they
may be designed effectively for these applications. While the theoret-
ical possibility of the suppression of the nuclear IC process has been
demonstrated here, its ultimate practical realization and the ability to
achieve the proposed applications rests on the success of designing and
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fabricating these cavities. Nonetheless, we hope the theoretical possi-
bility of suppressing the nuclear IC process will stimulate experimental
interest.

As we noted in the introduction, another virtual photon (radiation-
less) process that may be suppressed in a cavity environment is the
one associated with Auger transitions in an atom. The suppression
of this atom-electron process may also be of interest for the develop-
ment of a near-term proof-of-concept experiment. Since thev deal with
lower cnergy photons than those associated with the nucleus-electron
IC process, one could deal with these Auger transitions to reduce sub-
stantially the demands on a realizable cavity from those required for
an IC suppression experiment. This possibility is also currently under
investigation.

APPENDIX A: QUANTUM CALCULATION OF ¢

Previously we defined the broadening of the cavity modes due to the
coupling of the EM field with the walls:

Walm = ‘J-"R- — L nim (A'l)

niwmn

where

Z Jj RE‘ “‘fl” r L!m‘zds
,LL()Z fjji ﬂlde&f

This result can be generated by inserting into the expression ;:oH =
rotA the definition of the cavity vector potential (2). With a slight
manipulation of the coefficients one obtains

(A.2)

nlm =

Z Krnlm twmm '4( )m + c.c. (AS)
nim
where
f_(’:zlm( ) “ﬂ“mfm(T m( ) (A.zla)
5 1/2
=\" 4 A4
Hrim (QEOC{\’-Uan) ( ))

The definition of de( ) is given in terms of the £, . The re-

sulting expansion for K oy, then takes the form

T

K¢ (2) Zam i (F)e (A.5)
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the e; are the unit vectors in rectangular coordinates and the coeth-

clents:

i I :
Xt = _.U"nim&f] (AG&)
1,2 . [ m . .
Xt = ]\‘?lfﬂltu;a.im !:_ésl + _652] (A(J]J)

i T
1.3 _ m { _
Xt = ‘f\rnfm”'.(rlhn {_561 - _6c2] (Ab()
T mn
91 o
anim = T Tidnim (AG(])
2,2 . : y
Xpim — lhﬂlmv“;z im (A.O(,)
0y ,
Xpim — mi, Rﬁm”nlm (A(Jf)

The expression of the components of the magnetic field H can be
written now as

”OH?(::?; = Gnlmkajimw nl’mv nim (AT)
Using the expressions for the Ffim we find
2N\¥? 7 nw Im /mT
,uoHnEm =17 [Eam,m mamm]qm (fﬂr) cos | 7y | cos (Tz,)
(A.8a)
Y - 2\ 2 o 3 ynmoy ymw
ito mm =\z E[m“ném mymm] cos T‘E sin fy cos TZ
(A.8D)
N 5 nmw Ir . /mr
!“UHnlm = (E) E[n&;im — Erxnlm} Cos (fr) CO8 (Ey> sin (Tz)
(A.8c)

The power loss in the walls is obtained by a surface integral over only
the walls of the cavity. On the other hand, the energy is a volume
integral over the entire cavity. These quantities can now be calculated
and vield

Z/fin 12dS 22] / ds, Z\HMJ“:U

8 hwn i

L#o

(A.9a)
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Ii()fo/\ﬁ;[migd&T: hwll (A.9b)
€

Therctore the transition loss-width is:

SR'C(ZTIJCL”) _ SRC(ZwaM) _‘5_0_ - (i) R-C(Zu:a!i)

r = =
nim Ny VeoitoL 140 L

(A.10)

r
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where Zy = (ug/eo)¥? is the characteristic wave impedance of free
space. Notice that the dimension of [y, s the same as inverse time.
This means the quantum mechanical ¢ of the cavity is

wh 3 2y volume of cavity 1
Q — —mim _ Y7 - v
| A 2 Re(Z,q) interior surface area of cavity Aﬁzm
(A.11)

This shows that the cavity () increases with the mode number or
correspondingly with the cavity size. For cavity walls made from very
good metallic, conducting metals

Re(Zyan) = (A12)

50 that the line-width

v 32 wrf‘i 0
pol o

L o ‘
Q@ = Ne P f ;B\/wjfim (AL

These results indicate that the quantum mechanical € increases with
increasing conductivity and mode number (iLe., from {A.11) we know
that Q increases as the ratio of the cavity volume to its surface area)
as it does classically (see Appendix B).

Fm’m =

(A.13a)

and the cavity's

APPENDIX B: CLASSICAL CALCULATION OF ¢

A classical cavity with lossy walls acts like a lossy resonator circuit:
i.c., a circuit consisting of a capacitance (', and inductance L, and a
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conductance G = 1/Ryan in parallel, Ry,p being the wall resistance,
driven by a voltage source of strength Vo at the frequency w. The
total impedance seen by this source is thus

-]
mel — I:G — 1 (W‘C - %)} (B.l}

At resonance the electric and magnetic energies are cqual so that
Woored = 2We = 2W,, = CV§# = LIZ. The power loss in the walls is
simply Ploss = GVi# . Thercfore the @ of the cavity is

woWsiored C

Q= ———F=w

0= B.2
Ploss OG ( )

where the resonant frequency wg ' = V/LC'. The total wall impedance
can then be rewritten as

(w(}/Q)

Zwall = ?‘Rwa“w‘z — WU + ?uJ(uUD/Cg)

(B.3)

If we identify the line-width of the resonance to be its full width at
half-maximum and denote it as I'pw g . we find that (B.3) gives

W
Crwpar = 2—. (B.4)
Q

If the source frequency w is tuned near the resonance wy, the im-
pedance can now be rewritten as

(Trwrunm/2)
Zell & unall ‘ T . (B.E))
—woll =4 Tpwanm/2wo)
If we set 'y = EF—‘%‘L“A . this means the circuit now can be viewed as

having a resonance frequency
w o~ woll =i Cpwaa/2wo) = woll —1/Q) =wo — i Lo (B.6)

as was determined in the quantum mechanical caleulation. Note that
thesc results can be obtained directly from the equivalent classical
electromagnetic field expressions. In particular we note that the line
width of the nim-mode 1s

jj Re wall IH m‘
0 ff[ |Hnlm‘ 2d3%

nlm =
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Recall from Appendix A that this is the same, modulo the sum over
the equally probable polarization states, as the quantum mechanical
EXPression.

APPENDIX C: @ OF A CAVITY HAVING LORENTZ
MEDIUM WALLS

For cavity walls consisting of a Lorentz medium, the associated polar-
ization vector satisfies the damped harmonic oscillator equation:
d* - d = o
dt? “dt
where the plasma frequency w, = Nutome?/meg and the polarization
P — —NgomeZ . The corresponding polarization current is J = 3P
For a time hdlmonlr driving field with angular frequency w, this

Means .LJ —4wP, and
2
— €] - —
o [ I . -
P, = 5 5 By = eolXr T ixim) By (C.2)
wi —w —iw I

where the complex amplitude quantities are labeled explicitly by the
angular frequency.
If we now identify the conductivity of the walls as

Twalt = ']w/E = _LWPJ,/E_;, = EO“"(XWL - "JX?) (CJ)
the average power loss density in the walls is
1 = =, 1 ,
Pogs =§Re(lw. LBl = ERC( ” 2)

: (C.4)

B T
= L Re(oua) B = [iemﬁ] xim

The average energy stored in the cavity is

. } o
Wiored = ‘2" /[[ 43z E{_)‘bw|2 (CS)

Again, at a resonance the stored electric and magnetic cnergy densities

are equal; le., (1/2)5()[Ew[2 = (1/2};5(][§w[2 s0 that the line width

associated with the cavity losses is simply.

JJcmn'ty walls ds P’EUSS _ f[ dS(WXi'mNgw‘z
I’Vstor(’.d jf‘ dej;'u——jm ‘2

rwuﬂ — (C())



Cavity meodifications of nuclear internal conversion rates 313

This quantity is completely determined in terms of the imaginary part
of the susceptibility of the walls

. w Ty 2
Xim = (wé _ :,LJQ)Q n (w FL)zuzp:

(C.7)

where I'y, is the line-width associated with the transition in the wall
medium. Near a resonance wq of the wall medium one then hag
2

wp

T, (C.8)

Divait ~ WO Xim ~

This means the @ = wf_ /T . of the cavity mode associated with

R

the angular frequency w’%

will be proportional to
- R 2
(‘9) ~ wnimrla/wp' (CQ)

Thus if the line width of the wall transitions is large (small) in com-
parison to the resonant frequency of the cavity, the cavity's @ will
be large (small}. In gencral, we expect that the linewidths. hence, the
cavity’s @ will be small if the walls appear as dielectrics to the cavity
fields, i.e., if the resonant frequency is very high and the clectrons in
the walls can not respond fast enough to the ficlds.

APPENDIX D: NUCLEAR CURRENT MATRIX ELE-
MENT

We need to calculate explicitly the matrix element (48a) for the cavity-
enclosed nucleus, which we repeat here for convenience:

hi 12 St 1Tl Al o
—;; A’z <2-'"I’15’j;’\"(£ )'G’;zlﬂz(:l: )

2equwy,

Xga(nlm; €) = ( W), (D1

‘The nuclear current operator jﬁ: has the form
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where the Z; are the locations of the nucleons in the nucleus. The
matrix clement in (D.1} then becomes

<fd’d\33\( ’)l’f,(ﬁ =
. q o RYN kg - -
— i (Hﬁ)v Z/dg.’r; A3 AT, Wgl(Fy o T Tn)
T

X (T — TV e (FL, o Ty En)d3E AT AT,
{D.3)
where #i,....%,...,Tn arc the positions of the n nucleons in the
muclei. Therefore the IC matrix element

Xga(nlm; €) =

1/2
. q ) E 3 fd?)—' di-* 3= :(1) =
ih (ﬂf <2€OUJnIm) /d - d i C'mm(xl)

—

x [$5(T1,. .., T .,:ﬁn)é‘(ﬂf ~ TV 0Ty, Ty )] (D4)

Consequently, because the vector potential in the cavity varies slowly
over the dimensions of the nucleus located at T, we can extract the

field coefficients Gnl)m from the integral to obtain

¢ b 1/2
X po(nlm; €) ~ —m(M) (___) G (En)

Qfﬂwnlm
> /d-’*fel.. o dPE [ B E)E(E = F)
—~

szflr@"ljtx[ml: o gy e -In)l
(D.5)
where the nucleon locations 7; = Fn + &, & < |In|. We introduce
the nucleon transition current

Jgo = —ih (ff‘_) Z PEPF T PR [P T )
M/ N &
1
x 8(F — T)VewalZy, .. Ty o En)]
(D.6)

to write

AN s
Xagl(nlm; €) =~ (——) Gnm( Tat- I;a (D.7)
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As aresult, we can control the values of the IC matrix elements through
the location of the nuclei in the cavity., In particular. for instance,
if the nucleus is located at the center of the cavity so that Fa =

(L/2, L/2, L/2), then we know from Eqs. (1a)-(5f) that

éifz}m(ff\’) =0 (D 5)

and thus, the IC matrix element will be zero. It is clear that the value
of the resulting IC matrix elements will be highly position dependent.
These results obviously imply that the presence of the cavity walls can
significantly alter the rates of the IC process.
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