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The problem of the scattering of an electromagnetic plane wave with arbitrary polarization and
angle of incidence from a perfectly conducting spherical shell with a circular aperture is solved
with a generalized dual series approach. This canonical problem encompasses coupling to an
open spherical cavity and scattering from a spherical reflector. In contrast to the closed sphere
problem, the electromagnetic boundary conditions couple the TE and TM modes. A
pseudodecoupling of the resultant dual series equations system into dual series problems for
the TE and TM modal coefficients is accomplished by introducing terms that are proportional
to the associated Legendre functions P, ™. The solutions of the TE and TM dual series
problems require the further introduction of terms proportional to P, ™, where 0<n < m.
These functions effectively complete the standard spherical harmonic basis set when an
aperture is present and guarantee the satisfaction of Meixner’s edge conditions. Having
generated the modal coefficients, all desired electromagnetic quantities follow immediately.
Numerical results for the currents induced on the open spherical shell and for the energy
density of the field at its center are presented for the case of normal incidence.

. INTRODUCTION

The number of electromagnetic boundary value prob-
lems that can be solved exactly is rather smali, especially in
three dimensions. The desire and the need for these canoni-
cal problems, however, is very strong. They reveal the basic
physics underlying the phenomena and help establish in-
sights that can usuaily be extrapolated to more general situa-
tions. Moreover, they act as valuable test cases for general
numerical approaches to related problems.

The scattering of an electromagnetic plane wave from a
perfectly conducting closed sphere is probably the best
known three-dimensional canonical scattering problem. Its
generalization, the scattering of a plane wave from a perfect-
ly conducting spherical shell with a circular aperture, is im-
portant from both theoretical and practical points of view. In
particular, when the circular hole has a relatively small an-
gular extent, this problem allows one to study the coupling of
a wave from an external source through an aperture into an
enclosed region. On the other hand, when the shell has a
relatively small angular extent, the problem describes the
scattering of a plane wave from a sphericai reflector. A com-
plete solution to this canonical mixed boundary value prob-
lem is given in this paper.

A Debye potential formulation is employed, but in con-
trast to standard treatments in spherical geometries, the as-
sociated Legendre polynomials of negative order (P, ™,
n>m) are utilized for the modal expansions. Enforcement of
the electromagnetic boundary conditions leads to a coupled
set of dual series equations for the TE and TM modal coeffi-
cients of each azimuthal mode. A pseudodecoupling ansatz
is developed to allow separate treatment of the TE and TM
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dual series systems. It requires the introduction of terms pro-
portional to the associated Legendre polynomials P ™ (m
being the azimuthal mode number) which are homogeneous
solutions of the boundary condition equations. Solutions of
the resulting “uncoupled” TE and TM dual series systems
are given. They require the further introduction of terms
proportional to the associated Legendre polynomials whose
degree is less than its order: P, ”, where 0<n <m. These
terms guarantee satisfaction of Meixner’s edge conditions
and effectively complete the spherical harmonic basis set in
the presence of the aperture. Infinite systems of Fredholm
equations of the second kind for the modal coeflicients are
obtained. A rigorous truncation procedure is given that
leads to a straightforward numerical evaluation of those co-
efficients. Results for the currents induced on the open
spherical shell and for an energy density ratio as a function of
the fundamental parameter ka (27X radius/wavelength)
are presented for the case of normal incidence. It is shown
analytically that the behavior of the currents near the edge of
the aperture are in agreement with Meixner’s edge condi-
tions; the graphical results further confirm this. The energy
density scans highlight the resonance features of the cou-
pling physics.

This paper is organized as follows. In Sec. II the coupled
dual series systems are derived for the scattering of a general
plane wave from an open spherical shell. The decoupling
ansatz is presented is Sec. 111, and the resulting TE and TM
dual series systems are solved in Sec. IV. The results are then
restricted to the normal incidence case in Sec. V. In Sec. VI
the currents induced on the open spherical shell are given for
various values of ka, aperture size, and the two allowed an-
gles of incidence. Their modal structure is exhibited with a
set of three-dimensional color figures. The energy density
scans are discussed in Sec. VIL
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There have been several reports of solutions to the nor-
mally incident case of the open spherical shell problem from
both analytical'~'* and numerical''~'* points of view. In the
numerical papers, various convergence problems and erro-
neous results are encountered. Of the analytical papers only
Ref. 9 seems to lead to correct results for the scattering prob-
lem. Unfortunately, direct comparisons for that case are dif-
ficult because the dual series systems and their solutions
(which were checked with our validation scheme) differ
from those obtained here and no current or field values were
calculated there. Moreover, the basic tenets of Ref. 9 appear
to be restricted to the normal incidence case. The errors in
Refs. 1-8 and 10 are either that the dual series systems were
solved incorrectly or, more fundamentally, that the wrong
dual series systems were solved. The latter stems from the
erroneous assumption that the TE and TM dual series are
completely decoupled. This error is identical to the one made
by Meixner in his original Debye potential solution to the
scattering of a plane wave from a circular hole in a perfectly
conducting ground plane.'® In analogy with our approach,
Meixner corrected that error in Ref. 17 by introducing addi-
tional potentials that were homogeneous solutions of the
equations resulting from enforcement of the electromagnetic
boundary conditions. The coefficients of these potentials
were chosen to guarantee that the fields satisfy the correct
edge behavior, hence accounting for the presence of the aper-
ture. The pseudodecoupling ansatz can be shown to be
equivalent to a gauge transformation, which in analogy with
Dirac string analyses, involves discontinuous potentials, the
gauge conditions being identical to the pseudodecoupling
constraint conditions."'®

The results for normal incidence were closely compared
with those generated with a general, numerical surface patch
scattering code; and these comparisons were reported in Ref.
19. The agreement is excellent; and since that code has been
validated with a variety of different scattering problems, this
lends further credence to the validity of the solution present-
ed below. The present work represents a generalization of
related aperture coupling work®®?* to three dimensions. A
more detailed presentation is available.” It includes many
complementary results that were omitted here simply be-
cause of length considerations.

Il. REDUCTION TO COUPLED DUAL SERIES PROBLEM

Consider the problem configuration shown in Fig. 1. A
perfectly conducting open thin spherical shell is represented
by the surface r = @, 0<0 < 6, in the spherical coordinate
system (r,0,¢) erected at the shell’s center. The negative z
axis of that system passes through the center of the aperture,
the latter being defined as {(r,6,8)|r = a and 6, <6<~}
The opening angle of the aperture, 6,,, is defined simply as
8., = m — 6. The medium inside and outside the shell is
free space. The unit vectors (7,6,¢) are defined in the stan-
dard manner in the directions of positively increasing coor-
dinate values.

Mathematically, we are seeking, for an arbitrary inci-
dent plane wave, the ficld scattered by the open spherica}
shell. This scattered field must satisfy the Sommerfeld radi-
ation condition as r— co. The total field (incident + scat-
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FIG. 1. Configuration of the scattering of an arbitrary plane wave from a
spherical shell having a circular aperture.

tered) must satisfy (1) the electromagnetic conditions,
E,,, = 0on the metallic shell and H,,, continuous over the
aperture; and (2) Meixner’s edge conditions,'”?° i.e., the

total energy of the field must be finite near the aperture rim.

A. Debye expansions

A plane wave with electric field strength E, is incident
on the open spherical shell. It is characterized by a wave
vector k, which for convenience is assumed to lie in the xz
plane; an incident angle 8 ™ with respect to the z axis so that
k-2 = cos 8™, and a polarization angle ¥ between E and the
projection of the positive z axis on the incident wave front.
The incident field has the form

{ Einc } - _E ﬂm{(COS w)?o - (sin Z/l)?o} (2 1)
ZpE) (sin ¥)6; + (cos P)go)”

where 90 and zzo are the incident polarization vectors and
where, as throughout this paper, an ¢ ~ ' time dependence
has been assumed and suppressed. The free-space impedance
Z, is related to the free-space admittance Y, = (e/u)’’? as
Z, =Y 'and the wave number k = w(eu)'/?, where € and
1 denote, respectively, the permittivity and permeability of
free space. The incident field parameters are indicated in Fig.
1. The incident electric field is polarized perpendicular to the
edge of the aperture when ¢ = Qand is polarized parallel to it
when ¥ = 7/2. Since any incident plane wave can be re-
duced to a linear superposition of these waves, only they
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TABLE L. The electric and magnetic field components in spherical coordi-
nates in terms of Debye potentials.

1 (a2 }
E = — — 1= 4 k23 (¥
’ lme[arz+ )
2
Ep= —— rdy——— 9"y
rsin @ 6¢ (iwe)r drdl
2
E =L oy L 9 4,
r a0 (iwe)rsin 8 Jr I¢
1 {d
H=-—_1{%. k2] P
’ iou {8r2+ r®
2
Ho=— 2 gy L9,
rsin 6 d¢ (iwu)r drdo
1 2
Ho=-tZ i -—L 2 (e
a6 (lwp)rsin 8 9rdp

need to be addressed explicitly. Moreover, with the intrinsic
symmetry of the field components in Maxwell’s equations,
the ¥ = 7/2 case is readily obtained from the ¢ = 0 case.
Consequently, we restrict our considerations to the ¢ =0
case with no loss in generality.

Following standard analyses of problems in a spherical-
ly symmetric geometry, we employ a Debye potential for-
malism.?””~* In particular, the electric and magnetic fields
are expressed in terms of the two vector potentials ®r and Wr
as

E= —curl(®r) — (iwe) ™! curl curl(W¥r), (2.2)
H = + curl(¥r) — (iwu) ! curl curl(®r), (2.3)

where the radial vector r = r#. Their components are given
explicitly in Table I. The scalar functions ¢ and W may rep-
resent any combination of the incident and scattered fields.
The function @ defines the field TE with respect to 7, W the
field TM with respect to r. The descriptor ‘“with respect to »”
is assumed and suppressed throughout the rest of this paper.

The spherical wave expansion of the incident field (2.1)
with 3 = 0 given, for instance, in Ref. 30 or Ref. 31, can be
generated with the Debye scalar potentials, '™ and Wi,
defined below. Since the scattered potentials, ®* and ¥, as-
sume an analogous form, we have

Pine « (p::c )

( e ) = — E, my:O (q’; )sm me, (2.4)
ine . \l]":‘:

( " ) = Y,E, mzo (an )cos me, (2.5)

where the azimuthal modal coefficients

. oy k Pm Binc
P =2 Von [Z"—(?rm—)]fn(kr)P;’"(cos 6,
n=m n

(2.6)

pire — i ym{—(%P:‘)(cosei"c)ﬁ
XJn (kP)P =™ (cos 6), (2.7)
© m Ja(krYh, (ka) (r<a),
“ngmA"'"P" (COSH){jn(ka)h,.(kr) (r>a),
(2.8)
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= 3 B,,P™(cos6)

[j,, (kr)[kah,(ka)]' (r<a), (2.9)
{kaj, (ka) T'h,(kr) (r>a),

where

Yo = (= D" [(2n+ 1)/n(n + D]e,, (1 —8,,).

(2.10)

The terms j, and A, are, respectively, the spherical Bessel
and Hankel (of the first kind) functions of order n. The
associated Legendre polynomials of degree n, order + m,
are denoted by P * ™. The prime in an expression {xf, (x) ]’
denotes the derivative with respect tox. The term €, = 2 for
m#0 and €,, = 1 for m = 0. Kronecker’s delta §; = 0 for
i#jand §; = 1 for any . Because the term corresponding to
both m = Qand n = O s identically zero in the incident field,
we set the corresponding scattered potential coefficients
identically to zero: Ay,=B,,=0.

These representations of the interior and exterior scat-
tered potentials have been chosen so that ®* and d, (r%°) are
continuous at r = g, thereby ensuring the continuity of the
tangential scattered electric field components £, and E,
across that surface. The resultant fields satisfy Sommerfeld’s
radiation condition; the dependence of the scattered fields on
h, (kr) for r>a ensures their decay to zero as r— oo. The
modal coefficients 4,,,, and B,,,,, are the quantities that must
be determined.

B. Electromagnetic boundary conditions

The electromagnetic boundary conditions: E,,, = 0 on
the metal and H,, continuous in the aperture, are now en-
forced. Referring to Table I, £, = 0 on the metal if

cOS — (DT 4+ P )
,,,z,o m¢[sin 9(

Y, 1 32

iwe r Ordo
E, = 0 on the metal if

[rewme 4 w;)]} =0,

= J ;
sin —— (PP + D)
P m¢{ a0 ¢
Yo m 9
iwe rsin @ dr

(i + s, )]] =0,

r=ma

Hy is continuous across the aperture if for € -0

Z smm¢[ ° (Wine 4 s
m=0
1 1 82 _]r=a+s
_ ¢lﬂC+¢S =0’
iop r 3r89{r( )] r=a—e

and A is continuous across the aperture if for € —0

i cos mqﬁ[ - Yo—q— (Pine 492
m=0

r=4a- €
9 rrane 4+ @, )1] —0.

r=g—€

1 m

iop rsin@ dr

Because the azimuthal eigenfunctions sin m¢ and cos mg
form an orthogonal set over [0,27], these conditions must
be satisfied on a mode by mode basis. They require satisfac-
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tion of the following coupled set of dual series equations for the modal coefficients 4,,, and B,

ka3 {Apn o (kaVh, (k) = f, }mP ™ (cos )

n=m

=5in03dy S By, [kaj, (ka)]'[kah, (ka)]' — g, }P 7 "(cos 6) (0<B<0p), (2.11a)
S A mP"(cos6) = —ikasin0d, S By, PIT(cos8) (6,<0<m), (2.11b)
ikasin 03, S {Apn ju(kaVh, (ka) — £, YP 7™ (05 6)
= 3 {B,.[kaj, (ka)]'[kah, (ka)]' — g, }mP 7 "(cos8) (0<6<6,), (2.12a)
003, 3 AP ™(cos0) = —ika 3 B,mP I "(cos8) (8,<6<m), (2.12b)
I
where where the operator
Soin = Voun [MP ] (cOs 677) /sin 6] j, (ka), (2.13) L e=(sinBd,)(sinB3d,) —m* (3.2)
. . 32
g =y [( 539_ P,,"‘)(cos einc)] [kaj, (ka)]'. (2.14) They have the integral represenztatlli)zns o
P m™(cos @) = (— 1)’"(»—) —_
Equations (2.11) result from the E, and H, boundary con- 7/ T(m+1})
ditioys and are naturally paired because their 8 and ¢ depen- ¢ cos[(n + 1)t )dt
dencies are the same; Egs. (2.12) result from the £, and H, X o [cosz—cos @)™ (3.3)

boundary conditions. The absence of any spherical Bessel or
Hankel function in (2.11b) and (2.12b) results from appli-
cation of the modified Wronskian relation

Jn (X [xh, (X)] — A, (X)[Xj, (x)} =i/x.
Note that 9, =0 /90.

(2.15)

Ill. PSEUDODECOUPLING ANSATZ

In the problem of plane wave scattering from a solid
sphere it is known?’ that the TE and TM portions of the
problem may be decoupled. Satisfaction of independent
boundary conditions applied directly to the TE and TM De-
bye potentials leads to series defined over the entire 8 inter-
val, [0,7]; and orthogonality arguments then produce a
complete decoupling. Introducing the hole results in mixed
boundary conditions over partial 8 intervals and a coupling
of the TE and TM modes. Nonetheless, one might anticipate
some form of TE/TM decoupling even in this case if the
proper set of basis functions were employed.

Consider the associated Legendre functions of negative
order P~ "(cos ). Forall # and m they are known indepen-

dent sojutions to Legendre’s equation®**;

LoP 7™(cosf) = —n(n+ 1)(sin? §)P 7 ™(cos 6),
(3.1)

§

Lo S Ay (kadh, (ka) —frng}P 7 ™(c0s 6) =0

o om

Note that our definition of P, " differs from that in Ref. 32
by the factor ( — 1)™. The related functions

P " (cos @)
=(—1D"*"P " "cos(m — 9))

1/2 m

=(_1),,,(£) csc™d
T I“(m-}-%)

XJW sin[(n—+—5)t]dt

o [cos@ —cost ]2~

3.4)

also satisfy (3.1). For n>m, these functions are identical by
the standard symmetry relation
P, ™(cos 8)=(—1)"*"P~™(cos(m — 6))

=P "(cos 0). (3.5)

However, for 0<n < m, this relation no longer holds true. In
particular, P "(cos &) 1_s_ finite at € = 0 but infinite at
8 = 7. On the other hand, P, "(cos @) is finite at § = 7 but
infinite at 6 = 0. This behavior is immediately apparent for
n = 0 where

Py ™cos@) =[(—1)"/m!]tan™(6/2), (3.6a)

P ™(cos 0) = (1/m!)cot™(8 /2). (3.6b)

Return now to the dual series systems (2.11) and
(2.12). They are self-consistent if

(0<6 < 6,);

Ly S B ikaj, (ka) ) [kah, (ka)}' — g, }P =™ (cos 6) =0

n=m
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Lo i A,nP o "(cos8) =0

. (Bp < 0<).
ZLe Y B.Py"(cos) =0

nA=m
Bounded homogeneous solutions of these equations are ad-
missible and are proportional to Py "(cos8) and
P ; ™(cos @) over their respective intervals. Solutions to the
TE dual series system

S {Appain (k@)h, (ka) — £, }P 7 " (cos 6)

n=m

=qa, Py "(cos @) (0<F<b,), (3.7a)

i A, P "(cos8) =T, P; ™(cos ) (0,<b<m),
- (3.7b)
for m>1 and to the TM dual series system

S {B,, [kaj, (ka)]'[kah, (ka)]’ — g, }P ™ (cos 6)

n=m

=f,Ps "(cos ) (0<8<b,), (3.82)

S B, P "(cos 0) =B, Pg (cos6)  (6,<0<m),

(3.8b)

for m>0 are therefore solutions to (2.11) and (2.12) pro-
vided that the “decoupling” constants «,,,, 3,,, @,,, and 3,
are constrained by those coupled dual series equations. Since

Pi ™(cos 0)} [+P0""(cos 6)
=m

infd,|— _
sin B[Po_m(cose) — Py ™(cos 8)

], (3.9

the required constraint reiations for m>>1 are simply

B, =ikaa,,,

@, = ikap,,.

(3.10)
3.11)

There is no m = 0 constraint relation because there is no
m = 0 TE dual series equation.

Consequently, although the TE and TM portions of the
dual series systems (2.11) and (2.12) have been decoupled,
the TE and TM modal coefficients are still coupled through
these “decoupling” constant constraint relations. This ex-
plains the connotation “pseudodecoupling ansatz.” The so-
lutions to the TE and TM dual series systems (3.7) and
(3.8) subject to the constraints (3.10) and (3.11) comprise
the desired result.

V. TE AND TM DUAL SERIES SOLUTIONS

The TE and TM dual series systems can be reduced to
more manageable and physically revealing forms with sever-
al manipulations. First, by introducing for n> 1 the functions
x2 and y? so that

(kaj, (ka)]'[kah, (ka) ]’ |
= —[n(n+ 1)/ika(2n + 1)1 (1 + y¥), (4.2)
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the dual series systems (3.7) and (3.8) can be rewritten as
» A
B R 29 )
2wy Y

=2ikaa,Ps " +2ka Y [P, ™ (0<0<6y),

no==m

S AP =T, P (By<0<m);
S 8, 2D (o

" S n+1

= — 2ikaB, P5 ™ — 2ika

X Z gmnPn.m (0<0<60)1

> BoaP " =B, P5" (6<6<m).

As shown in the Appendix, in the quasistatic limit

lim y? =0+ #((ka)?), (4.3a)
ka--Q
lim y¥ =0+ &((ka)?). (4.3b)
ka--G

Thus, in analogy with the dual series treatments of the two-
dimensional slit cylinder coupling problems given in Refs.
20-23, the static terms have been extracted. These TE and
TM dual series must now be solved subject to Meixner’s edge
conditions; i.e., one must account for the singular behavior
near the rim of the aperture required by the finite energy
condition. The large n behavior of the solution coefficients is
responsible for this edge behavior. Since, as shown in the
Appendix, for large values of this index
lim y¢~2(n™?),

n— oo

(4.4a)

lim y¢~#(n™?%),

n— oo
the terms proportional to y¢ and y¥ are of order n~* smaller
than the static pieces. To enhance the isolation of the large
index behavior in the TM systems, we introduce the addi-
tional functions

Fr=nn+DA+xH/(n+1)7>—1
= — {1 + {4ika/(2n + 1)1 { kaj, (ka) )’
X [kah, (ka)]'},
which exhibit the limiting behaviors

(4.4b)

(4.5)

lim = Z(n~?) and lim = — 2n+1)77,
-] ka0
(4.6)

and rewrite the TM dual series systems as

& 1 .

B, n+—) 1+y9P ™

3 Bu(rrg)asr
= — 2ikaf3,, Py ™ — 2ika

° 4.7)

vc

XS 8P (0<8<6,),

noEm

i anPn_ ” =Bmﬁ0~m

n=m

(G < 0<m).
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We then treat the terms proportional to y¢ in (4.2) and 7¥ in
(4.7) as forcing terms by moving them to the right-hand
sides. This isolates the pieces responsible for the singularities
near the rim of the aperture on the left-hand sides. Defining
the forcing terms

F,. =2ikaf,, — [A../(n+ 1) ]xe, (4.8a)
Gmn = - 2ikagmn _/i/:f(n + %)an’ (48b)
the TE and TM dual series systems for m>1 become
& Amn
pP-"
n=mn+}
= 2ikea,, Py ™ + z F..P7-™ (0£0<6,),
(4.9a)
A PTm=T,P;™ (6,<0<m); (4.9b)

Ms 1t

El
I
3
o

= —2kafP5"+ 3 G PI™ (0<B<6,),
B (4.102)
J

J9(6’¢) =H¢<(a!0:¢) —Hj(a,ﬁ,gb)

_ { -~ YOEQ} i cos mé i {Am" [M} + ikaB,,, [%P"_M(COS 9)”;
0

(ka)?
J,(0.¢) =H;(a,0,0) — Hj(a,b,0)

m = n=m

— [i_):q@z} iosin m¢ "Smlfim,l {%P;'m(cos 9)} -+ ikaan [

(ka)* i<

sin 6

S B, P "=B,Pg" (6,<0<m). (4.10b)

n=m

Equation (3.5) has been invoked to convert the P, ™ to
their duals P ™ over the aperture interval. This form of the
dual series systems strongly suggests the solution process we
introduce below.

For m = 0, the TM dual series becomes

i B()n(n + _;—)Pn

n=1

= —2ikaBy+ 3 Go,P, (4.102')

n=1

(0<6<6,),

i By, P, =By, (8p<6<m), (4.10b')

n=1

since P% =P, , Legendre’s polynomial, and By,=g,,=0.

The singular behavior of the fields near the aperture rim
(0 = 6,) is reflected in the corresponding behavior of the
current components

(4.11a)

mP 7 ™(cos 0) ]]
e |} (4.11b)

sin 0

where, for instance, H ; (a,6,4) [H e (a,6,¢)] 1s the ¢ component of the magnetic field for r<a (r>a) evaluated at » = a.
Because the angular dependence of the terms depending on 4,,,, and B, in these expressions is distinct, we use it to guide our
constructions of the physically correct TE and TM solutions. These solutions require several summation formulas:

i P "(cos 0)8{,0 cos(n + é—)ﬁo =0 (0gf<6,), (4.12a)
n=0
i P "(cos 6)3%, sin(n + -21-)6(, =0 (6,<6<m), (4.12b)
n=0
«© . oo __1 "IP -—m 6
S P m(cos gy Sn D0 _ (= D0 0co<6y), (4.12¢)
w=0 n+} n=0 n+}
© = P "(cos @
S B m(cosgy DO S PR g, (4.12d)
A=0 n—+4 o n+d
) . [ P_m 0
S Prmeos ) AN _ gy § (1 Z D oo 0y, (4.12¢)
n=0 (n + %) n=10 3
which are derived from the basic expressions [see Ref. 36, Eq. (3.71)]
— 1™ /2 1/2 — oS 0 m--1/2
- | (— D™(w/2)""? [cos ¢ cor 1 (0<b<8).
2 P " (cos @)cos{ n + > Y= L(m+1) sin™g (4.13a)
=0 0 (O<b<m)
(modified to our sign convention) and its dual
w i (O<¥ <),
Zﬁ‘m(cos 9)5in(n—+—»—)1/1= (7/2)'"?  [cos & — cos ]™ /2 (4.13b)
2 £ B<p<m),
n=0 2 r'im+1/2) sin™ @ v
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and the identities (see Ref. 36, 1.19 and 1.16)

o 1
S-S EDL_ T ogiem),  (4.14a)
n=:0 n‘*‘% 2

sin(n+ D8 _ T ocr<m). (4.14b)

zo n+% —_2—

n =

A. TE dual series solution

We would like to reduce the associated Legendre func-
tion dual series system (4.9) to one in sines and cosines. This
conversion would appear to be straightforward with the rep-
resentations (3.3) and (3.4) and with an interchange of the
summations and integrations. However, consider Meixner’s
edge conditions (see Ref. 26, Sec. 9.2), which, when applied
to the field generated by the TE Debye potential, imply that
as the edge is approached along the surface 7 = q,

H5(a,0,6)~3,(r®5 )|, o~ (6, — )12,
H5(a,0,0)~0,05(r®) |,y ~ (8 — 0) 2.

r=a

The corresponding portions of J, and J,; near 8 = 6, must
behave, respectively, as

o0

S AP " (cos 8)~ (6, — ) "7, (4.152)
S Ay 0P 705 0)~ (8o — O) %, (4.15b)

where m> 1. Analogously, the 6 dependency of Eq. (4.9a)
near 8 = 6, differs from that of (4.9b) by (6, — 6)*'. The
factor (n + 1)~ 'in (4.9a) is responsible for this difference.
Thus, with {see Ref. 37, (8.10.7) and (6.1.37) ]

lim P "(cos @) ~n "+ 12

5 cos{(n+ 1) — mm/2 — m/4)
(mrsin 8/2)"?
and (4.13), Meixner’s conditions are satisfied if

H m—1
lim A4, ~n .

N-w oo

(4.16)

The simple summation—integration interchange is then not
directly permitted because it will introduce terms that are
proportional to delta functions and their derivatives; i.e.,
with (1.135) from Ref. 36 one finds, for instance, that near
6 =0,

i n’ cos(rz + —1—)9 cos(n + —1—)9(,~5”)(0(, - 8),
n-0 2 2

the jth derivative of the Dirac distribution. Interchange can
be accomplished by preconditioning the dual series as fol-
lows.

We need to introduce terms into (4.9) that will cancel
the potential delta function contributions. This is accom-
plished with Eqs. (4.12)~(4.14). In particular, we define the
modified solution coefficients

~ m_ 1 ; . 1 Amn (”>m>1)!
A4,, = a,, 3’ sm(n +——)6 +{
&, 0 2/ o (0<n<m),
(4.17)
1299 J. Math. Phys., Vol. 28, No. 6, June 1987

and the modified forcing term coefficients

F,.=F,, (n>m=1), (4.182)
— (ka)? ™32 . cos{n 4+ 1),
—_ e—— a . a-’ _.__.__.._2__—..
mn 2 JZO mj+1) ba (n 4 %)2
Fon (n>m32),
(4.18b)
+ [0 (0gn <m),
so that the TE dual series systems for m>1 become
= A
mn Pn__m
n=0n +%
o ( _ l)nP;m
= 2ikaa, Py ™+ (a,, — k) _—
° ( ° n;o n +%
+ 3 FaPm (0<6<6y), (4.192)
n=0
S AP " =a,Pe" (B,<0<m). (4.19b)
n =0 .
The constants
0, for m =1,
2
= (ka)” (m—6,)a,,;, for m =2, (4.20)
" 2

(m—8,)a,, —a,,, for ms3.

The additional unknown coefficients a,, (j=0,
1,...,m — 1) provide the extra degrees of freedom needed to
remove the unphysical singularities and permit the desired
summation—integration interchange. In particular, their val-
ues will be fixed by our solution process so that for any m > 1

lim 4, ~&(n™"), (4.17")
lim F,,, ~&(n?). (4.18")

n— oo

Note that it can be inferred from the form of (4.19) that we
have completed the basis function set for this open geometry
by including the associated Legendre polynomials P~ ™ and
P77 for O<n <m.

Inserting (3.3) and (3.4) into (4.19) and interchanging
the summations and integrations, the desired TE dual series
are generated:

= A 1
): cos(n + -——) t
2

n=:0n+%

T (a,, —«E ) + 2ikaa,, cos L

[ 38

+ n}i:o?mcos(n + %) t (0<t<6y), (4.21a)

S A, sin(n +—;~)t=5z,,, sin—zt—— (8, <t<m). (4.21b)
n=20

A solution of (4.21) is constructed as in Refs. 20-24 by first
making the metal and aperture equations display the same ¢
dependence. Two possibilities exist: integrating (4.21b) or
differentiating (4.21a). Only the former guarantees satisfac-
tion of (4.17'). Applying {7 dt to (4.21b) leads to the dual
series system
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T

i A cos(n+ 1)t— 2
2

"=on+} 2 cos -
m
2

. t oz 1
— (@ — &5 ) 4 2ikaa,, cos > + > F,, cos(n + —-2—)t (0<t < by),

n=20

(4.22)
(B, <t<m).

Since the left-hand side of (4.22) is now defined over the entire [0,7] interval, Fourier inversion then yields the coefficients

A4

. . .
= (o — ) SRR+ ika, — 2, )M + 28 + § Al U=01,0), (423)
where the inversion terms
sin(n — /)6, sin(n + 1+ 1)6
2 (* 1 1 [ (n——l ; n+l+1)0] (n#D),
AE = —f cos[(n + ——) 1&] cos[(l + ——) v,b] dy = i (4.24)
7 Jo 2 2 [60+51n(2l+1)60} (n=1.
20+ 1

Explicitly, (4.23) means

'"E“:‘a 3 sin(/ 4 1)6,
= I+
= (2ikaa,, — 2, )AL + 2a,, 8, — K& i‘“—(;—*%l‘?&
+3
+ Y F, AL (U=01,.,m—1), (4.23")
n=>0

Am _ _’"i‘amj P sin(/ + 1)6,
I+ = ! I+

+ Qikaa,, — 2a,, )AL + 2a,,8,

S L o MY

I+% n=0
(=mm+1,.). (4.23")

Furthermore, inversion requires continuity of the right-
hand side of (4.22) across ¢ = @,,. This yields

Ao = KL, _2 [(2ikaam - 2c'1’z,,,)cos%‘2
ks

+ Y F,, cos(n + —;—) 60]. (4.25)
n=20

The system (4.23) and (4.25) is an infinite system of
linear equations for the TE solution coefficients. The first
(m + 1) of these, (4.23") and Eq. (4.25), would not have
appeared without the introduction of the terms a,,;, ,,, and
a,; hence, the terms cos(n + 1)@ and sin(n + 4)6 for
n=0,1,.,m—1into (4.21). The A}, (/=0,1,...) terms
originate in this completion of the expansion. Moreover,
since there are no solution coefficients 4,,, (0<n<m) in
those first (m + 1) equations, we may view them as ortho-
gonality relations. They determine the interchange coeffi-
cients a,,; (j=1,..,m — 1) and a relation between the de-
coupling coeflicients «,, and @,,. In a similar fashion, the
TM case generates a relation between 8, and f3,,. The re-
maining two degrees of freedom are determined by the con-
straint refations (3.10) and (3.11). The coefficient a,,, is
defined by (4.25) and is coupled to all of the other a,,;
(j=1,..m—1) through the relation for
(2ikaa,, — 2a,,). However, it does not contribute directly
to the solution coefficients 4, (I =m,m + 1,...). It only

1300 J. Math. Phys., Vol. 28, No. 6, June 1987

r
provides that degree of freedom needed to insure continuity
across the boundary between the metal and aperture inter-
vals.

Equations (4.23) are solutions of the original dual series
(4.9) subject to Meixner’s edge conditions (4.15a). They are
general solutions if these results are independent of the de-
coupling and interchange constants. This has been con-
firmed numerically for m = 1,2,3. A rich set of new associat-
ed Legendre polynomial identities is obtained from this
validation process.”” We consider explicitly only the m = 1
relations since they are employed for the normal incidence
case discussed below.

For m = 1, the solution system

A o
I-:l = (2kaa, — 2a)AE + z Fl"Afl (I=1.2,..),
n=1
§ (4.26a)
0= (dikaa, 28 )Ak + 28, + 3 Fi Ak,  (4260)

n=1

gives the coefficients

A o0
5= 3 Pl +28LE (=12, (4278)
I n=1
where
Tiu = AL — A AL/ A, (4.27b)
LY = —AG/AG. (4.27¢)

Substituting these expressions into the m = 1 versions of
(4.92) and (4.9b), the original dual series system is satisfied
since on the metal (00 < 0,)

S TP =P —LEPT =0 (n=12,..),

=

(4.28a)
g . AL —1

S LyP T ————P5'=0, (4.28b)

=1

and in the aperture (6, < 9<)

PINCZE) ¥ e '=0 (n=1.2,.), (4.29a)

I=1
S @+ DLE-Ps' =0, (4.29b)

a1
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When evaluated over the metal interval (0<8 < 6,), the left-
hand sides of Egs. (4.29) yield Egs. (4.15).

B.TM dual series solution

We proceed as in the TE case. Consider the dual series
systems (4.10) and (4.10'). Meixner’s edge conditions ap-
plied to the fields generated by the TM Debye potential im-
ply that near 8 = 6,

H;(a,9,¢)~(r‘l’f,,)',=a~(90—5
Hi(a’9!¢)~89(r\p-:n)lr=a~(80—6

Thus, from (4.11a) and (4.11b), the portions of J, and J,
generated by W;, near the aperture edge behave, respective-
ly, as

3
)+ /2’

)+1/2

i B, P ™(cos 0) ~ (G, — 6) 32, (4.30a)
S B, 35P ;7 ™(cos 0)~ (6, — 6)* %, (4.30b)

where m>0. Analogously, the 8 dependency of the metal
equations near 6 = ¢, differs from that of the aperture equa-
tions by (6, — ) . The factor (n + 1) in the metal equa-
tions is responsible for this difference.

The requisite edge behavior (4.30a) is obtained if

lim B,,, ~

n— oo
Consider first the cases with m > 0. Anticipating the effects
of the operator interchange, we introduce the modified coef-
ficients

m—2

(4.31)

the modified forcing term coefficients

Gpp =G,y (n>m=1), (4.33a)
~ ka 2m-2 . sin(n + 1)6
G ( ) z brn(1+1) @.,—L‘O'
n—+4
G.n (n>m32),
4.33b)
+ {0 (0<n <m), (
and the constants
0, for m =1,
= . 433

o {[(ka)2/2lbm1, for m>2. (4.33¢)

The interchange constants b,,, (j=0,1,...,m — 1) will be

adjusted so that for all m>1

lim B, ~&(n™?), (4.32)
lim G, ~&(n™3). (4.33")
The dual series systems (4.10) become
z( )B P
= —2ikaB, Py ™+ i GoP ™~k
n=0
xS D" 0co<8y) (4.342)
H=0 n ‘+‘Ji o '
o __ - _ oo P”—m
Z B,, =BnP5 " by Py (8, < B<m).
= n=0
: (4.34b)

Introducing (3.3) and (3.4), interchanging summa-

'"i' b, &, cos(n + 1)6, i {an (n>m>1), tions and integrations, and applying the operator f; dt to
i n+14 0 (0<n <m), the resulting metal equation to attain similar ¢ dependencies
(4.3 for both equations, the TM dual series prior to inversion are
i
— 4ikaf3,, sm-2—+ 2 sm(n—{-%)t—x,’,,’lzr—t (0t < 6y),
S B, sin(n +%) ‘= Aom+) (4.35)
n=2~0 Bm Sini“*"bmol (00<t<77').
2 2
Introducing the terms
£, .
° 1 sin(/ +1)6, cos(!+1)8,
(9)=f tsm(1+—)t= 2.0 @ 270 (4.36)
Hi\Yo A 2 (+1)? () I+
si -1 i /
1 [sm(rz )80, _ sin(n+ [+ 1)00} (notl),
_ J"” 1 szm{(l )¢1d¢~ T n—1 n+l+1 (4.37)
A% = sm n+ 3 + _1‘{9 _sin(21+1)90] I '
ml’ 2A+1 | o
i
Fourier inversion leads to the coefficient expressions for  These contain explicitly 7 orthogonality relations
i ”i' b, 54, S+ DO
B, = — (4ikaB, + B, )AL + B, ™ I+ )
- -
b cos(/ + Z)0 — 0, (0 ~ (4ikaf3,, + B ) Aot + BoSor -
1
o O : + b COS(II +;)60 kb, (8,) + E A
+ 3 2T AE (1=0,1,.). (4.38a) + 3 +1
n=0 N4} (I=0,..m—1), (4.38b)
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and the coefficients

Bml = - (4lkaﬁm +Bm )Ag +Bm501 _Klr:/'tl(eo)
m-—1 ® G
_ z b (9’(',“ cos(/+1)6, + Gnn A
j=1 l+% aAzon+1
(I=mm+1,..). (4.38¢)

Continuity across ¢ = 6, of the right-hand side of (4.35)
gives

by = —ngo_i [(4z'ka/)’,,, +5,)sin 2
T 2
-3

sm(n + 1)00] .
n=o0 N+ 2

Note that b,,, does not contribute directly to the solution
coefficients B, (I =m,m + 1,...).

Equations (4.38) are general solutions of (4.10) subject
to Meixner’s edge conditions (4.30b). As with the TE case,
this has been confirmed numerically for m = 1,2,3. Explicit-
ly for m = 1 the resulting solution system

(4.39)

B, = — (4ikap, +BI)AOI + z P ”
ne=1 2
(/=1.2,..), (4.40a)
_ _ = G,
0= B, — (4ikaB, +B)AY% + 3 ;%A$(¢«m)
n=1N 5
yields the coefficients
bud Gln
Bll = lnl +B L (1= 1!2;--')9 (4-413)
n=1 + 2
where
i = An = AGAG/ A, (4.41b)
H= _AB/AE. (4.41¢)

Satisfaction of the m = 1 versions of the original dual series
system (4.10) is guaranteed since on the metal (0€0 < 6,),

S @I+ DY P — 2n+ P
I=1
—L¥Ps' =0 (n=12,.), (4.42a)
- Hp —1 A{,’O —1 ~1
S @+ LR — Py'=0, (4.42b)
= AL
and since in the aperture (6, < 9<),
SIiP = (4.43a)
I=1
S LiP ' —Ps'=0. (4.43b)

I=1

Finally, consider the m = 0 case. Introducing the modi-
fied coefficients

- B =0
m=B$§;”} (4.44)
and the modified constants
B o = Bo — Boo/4ika, (4.45a)
B4 =Bo+ Boo, (4.45b)
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the dual series system (4.8") can be rewritten as

i( ;)BO"P = —2ikaBPy+ 3 GonP,

n=0 n=1

(0<6 < 6,),

Z Eon ,,=B(')Po (6, <0<m).
n=20

(4.46a)
(4.46b)

Our TM solution process leads to the solution coefficients

Bo= 3 T4, (I=12..), (4.472)
n=1 N 3
where
1 1

P = Aot = w Ao (4.47b)
and the constant

— © GO

=" "~ Foio- (447c
Bo rm1 n+ % 0.0 )

The remaining constant 3, follows immediately from the
continuity condition:

Go, sin(n + 1),
sin 0,/2
(4.48)

(ikaBy +By) =dikafy + By = 3~

C. Coupled TE and TM solution systems

The modal coefficients of the original electromagnetics
problem can now be constructed from the TE and TM dual
series results. The TE solution systems for m> 1, (4.23), are
still coupled to the corresponding TM solution systems
(4.38) through the constraint relations (3.10) and (3.11).
For m = 0 only TM coefficients exist, and they are generated
from (4.47). For each m an infinite linear system of the form
(an invertible Fredholm system of the second kind)

VmI + 2() ‘ﬂm,nl an = i

n=0

mn[W (1=0,1,2,...)

(4.49)

is obtained and must be solved. A solution process analogous
to the one developed in Ref. 20 can then be applied.

The infinite linear system (4.49) is reduced to a finite
one by recognizing that as n — oo several terms rapidly go to
zero. In particular, the TE and TM solutions have been con-
structed so that for all m

im A, ~O(n7), (4.50a)
lim W, ~&(n™=¥*~"), (4.50b)

Let us assume that N unknown coefficients are desired:
V. 15 Vin- Truncation then occurs in (4.49) after the NV th

term and the following square system results:
N

N
le + Zo "”m,nl an = E <7 m.nl Wmn

n=0

(/=0,1,..N).
(4.51)

This system can be solved numerically, for instance, by
Gauss elimination. Any additional coefficients can then be
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generated recursively from (4.51) by setting =N+ 1,
N+2,.L.

To illustrate this procedure, consider the m =1 case.
Introducing the terms £ = — B,, 7 = a, f,, = 2ikaf,,, &,
= — 2ikag,,/(n+1), and A, =4,,/(n+ 1) and com-
bining the constraint conditions (3.10) and (3.11), the or-
thogonality relations (4.26b) and (4.40b), and the coeffi-
cient expressions (4.27) and (4.41), one obtains the solution
system (/ = 1,2,...)

Z Fllg.nl .717”

n=1

(ikal ¥)E + Ay + S ((TEA,, =
n=1

(4.52a)
(LE+ B, + Z (x'ri.)B,, = > T &
n=1 n=1
(4.52b)
[2ika(1 — Ag) ]€ + ( — 2ikaAgy)7
+ i (WAL, = 5 AL T, (4.52¢)
n=1 n=1
(1= AE+ [ —4(ka)’ Al |
+ 3 WADB, = 3 AL E. (4.52d)

n=1 n=1
These equations clearly are coupled and take the form of
(4.49). The infinite system (4.52) is reduced to a finite one
by noticing that

hmx,,l",,,,~hmx Hi~0(n™?), (4.53a)
hmf1n~hm B~ (n= "), (4.53b)

Assuming that the coefficients 4,, and B,, are desired for
n = 1,...,N, the truncated solution system is

sm—— N -
(2ikaLl $)E+ A, + Y (TEDA,,

n=1

N —
= 2 r'f:.nlflln (l= 1’2""JN)’ (4.543,)
n=l
N
(LIEI)§+BII+ Z (i/:‘r{i.nl)Bln
n=1
N
= 3 Piug, (=120, (4.54b)

[2ika(1— AE) € + ( — 2ikaA)n + Z (Y*AENA,,

n=1

N
2 AL Fins (4.54¢)

— Ax)f + [ —4tka)*Ad I + Z (X Am0) B,

n=1
i ‘ (4.54d)

Numerical results generated from this system will be pre-
sented below.

V. NORMAL INCIDENCE CASE

The plane wave is normally incident when 8™ =0 or
6" = 7. The 8™ = 0 geometry is illustrated in Fig. 2. The
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FIG. 2. Configuration of the scattering of a normally incident plane wave
from a spherical shell having a circular aperture: (a) side view, (b) top
view.

restriction to normal incidence provides a great simplifica-

tion because
mP 7 (cos ) .
_— (6 = @ = O)
sin @

= { +—(%P:,"(cost9)} (6=0™=0)

_ nn+1) 5
2
[mP,,”‘(cos )
sin @

ml (51)
] (6=6inc=77)

= [ —-%P;”(ces&)} (0=6"=m)

yn(n+1)
2

As a result, the potentials reduce to single sums involving
only the m = 1 azimuthal mode:

(ﬂ)inc ¢inc ]
(d)‘): —Eo(q)ls] )sm¢,

(3)- ()

Consequently, the coupled dual series systems for normal
incidence coincide with the m = 1 case treated in Sec. I'V; the
modal coefficients 4,, and B,, are numerically generated
from the solution system (4.54) with 8 '™ = O or 7. The field
components for normal incidence in terms of these coeffi-
cients are listed in Table I for convenient reference. These
expressions 1solate the coefficients, the », the 6, and the ¢
dependencies; hence they are very useful for current, energy
density, and cross section calculations.

Animportant analytical property of the dual series solu-
tion 1s simply revealed by the normal incidence case results.
This is its trivial recovery of the scattering coefficients for the
closed sphere case when 6, = 7. Let 8™ = 0. The terms

AEH (G, =m) =6,, (5.4)

=(—-1"" 8- (5.2)

(5.3a)

(5.3b)

R. W. Ziolkowski and W. A. Johnson 1303

Downloaded 21 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



TABLE II. Electric and magnetic field components for normal incidence.

Field components

Z,(kr)
P '(cos B)cos ¢

E =E, S in(n + Dr,
=1

- keZ, (k

E,=E S [a,nln(kr)ﬁ,,,(Q)—iTl,, ————[ rZ, (k) ] w‘,,(G)](.osoﬁ
n—1
. krZ, (k

E,=E, % {a,,,Z,, (kn),, (8) — ir,, -[rk—(r)]—-v,”(ﬁ)]smaﬁ
n—1 r

Z, (kr)

H, = — YE, 3 in(n+ Do, P, '(cos B)sin ¢
" 1

= krZ, (k
Ho= —Yofy 3 [r,,,Z,,(kr)b',,,(G) —io,, i'—k(’iw,"(e)]smd;
n_1
> krZ, (k
Hy= + Yk, 3 [r,,,Z,,(kr)ﬁJ,,,((?) - l—r;(—il—‘h(e)}cow
e |
Incident field
Z, (kr) =], (kr)
inc n ’ 0'“:0
a|"=1(2n+l){(_1)n+ly 9'""=Tf
mnc n - » elnc—o
Tl"~1(2”+l)[(_l)n+l’ ginc — o
Scattered field for r < a
Z,(kr) =j, (kr)
o =A,,h, (ka)
7, = By, [kah, (ka)]'
Scattered field for r>a
Z, (kr) =h, (kr)
oi, =4, j,(ka)
i, = By, [kaj, (ka)]’
Terms
5. (8) = ) '.(cos [2)) — 1 P:,(.cos 8)
sin & n(n+1) sin@
W,,(0) = —JpP 7 (cos ) = d,P ! (cos 6)
nin+41)
so that the modal coefficients
v= = ’ .
1+ ¢ h, (ka)
— 4ika (2
B”: gll- — l( 1+1) - (S.Sb)
I+ 1)1+ 39 [kah (ka)]

Referring to Egs. (2.4)—(2.14) and to Table I, this means
that (1) for r<a, ., = — ®" and ¥j_ = — ¥ so
that the total potentials, hence the fields, are identically Zero
there and the boundary conditions E,, (r=a)
= — E X (r =a) are satisfied and (2) for r> a, the stan-
dard results for the scattered potentials—fields given, for
instance, in Ref. 38, Sec. 6.9, and Ref. 39, Sec. 16.9, are re-

covered.

VI. CURRENTS ON THE SPHERICAL SHELL

The most stringent test of the dual series solution is the
calculation of the currents J, and J, on the open spherical

1304 J. Math. Phys., Vol. 28, No. 8, June 1987

shell. Verification of the required current behavior near the
aperture edge is immediately apparent from graphical re-
sults. Moreover, the vanishing of the current in the aperture
is an excellent test of the results and reflects the satisfaction
of the corresponding TE and TM dual series equations in
that region. For normal incidence the current expressions
(4.11) simply become

—eh) . P (cosf)
To(6:6) = E (ka) °°S¢,§-. sin 6
+ ikaB,, dgP ' (cos 9)} , (6.1)
J,(60.6) = {ﬂoﬂ} sing S ﬁA," 3,P = (cos 0)
(ka)* n -1
e 1
+ ikaB,, w] . (6.2)
sin @

A. Analytical preconditioning

Consider first the quasistatic case where ka = 0.01,
6, = 120°. In all of the examples 2 = 1.0. Simply performing
the sums in (6.2) with the solution coefficients generated
from Egs. (4.54), we find that the number of terms required
to track the square root singularity in J, is large. The poly-
nomial sum 25_ | A4,, d, P, ' is the cause of this difficulty.
However, the truncation number N (Sec. IV C) need not be
large; and the remaining coefficients n = N + 1,...,.L are re-
cursively defined from (4.54a) and (4.54b). This is demon-
strated in Fig. 3 where the real part of
J,(0,7/2) [ (ka)?/YE,} is given for various truncation
numbers. In Figs. 3(a), 3(b), and 3(c) the truncation
numbers N =5 and L = 50, 500, and 5000, respectively.
However, the results may be improved by treating the singu-
larity analytically as follows.

Inserting the coefficient expressions (4.27a) and (4.41)
into (6.1) and (6.2) and referring to the definitions given in
Table III, the current components

— YK, N K (6)
Jy :&—Z(ka)z( cos ¢ ["Zl [F,,,

sin 6

. Gln
+ dika J,K1(6)
2n +1

5(6)

sin

— 2ka g[ a,,K{,'(e)“, (6.3)

+ 7Y, =0 :
Jy= 2(ka0;:0 sin ¢ {,,z [F,,, dKE(6)

G, K"
+ 4ika — 2 ——"()]

2n+1
il
sin &

result. Two advantages of these expressions are immediate.
First, the coefficients obtained from the matrix inversion can
be used directly without calculating any additional coeffi-
cients by recursion. Second, the currents vanish analytically
in the aperture. The terms proportional to F,, and G,, give

sin &

— 2kaé [a KE®) + (6.4)
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FIG. 3. Brute force summation of the J, (8,m/2) current expression requires a large number of terms to eliminate the numerical Gibbs' phenomena: (a)

N=5L=50(b) N=5,L=500; (c) N=5, L = 5000.

TABLE III. Special functions and relations for the current expressions.

= P, (&) (6, < B<1)
KOy =S L¥%(8,)P; cos ) =1 _ 0
0 ()= 3 LilOP oSO = | B v(0) 45,(8) (0<6<6y)
" ) + P Yo (8, < <)
KE@O) = 22U+ DLEGHP '(cos ) = | -
2O =2, QI+ LGP (s 6) {+P(;'w)+sg(0) (0<6 <6p)
0 (G, <0< m)
H e} o
KM = Z T (8P, '(cos 8) = { SHO) + A5, (8) (0<6<b0)
0 (6 < 0<m)
£ p)) G)P ;" [ 0
ko= Z< + P P08 6) = {gr ) 4 ALs,(8) (0<O<by)
where
172 N
sy (8) = - { (cos — —cos’ 2 bo ) ’ —cosz—e— [arccos(c—m—(—w—)-)”
#A{,{, sin @ 2 2 cos(6/2) /]
. .60, 6 cos(8,/2)
‘ (oot oot ) o L fareso( )|
se(0) = AL S [ 5 — cos? 5 + cos 5 arccos s/
_ 172
un(0)=_4_cos(,,+ i)oo [2(cos 6 —c0s 6]
T 2 sin 8
SHO) = 3 ALP[(cos 8) + A% PG (6)

-1

SE@) =u,(6) + (2n + ST (6)
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TABLE IV, Derivative relations employed in the current calculations.

+ -2— arccos

cos(Bo/Z))] 1 (005(00/2))}
cos(8/2)

cos(6/2)

1/2
Bosy (6) = —4 {:—C,ig [cos bo (oos2 9 _cos —09) — cos® -Q-arccos(
aAL 1 sin’ @ 2 2 2 2
4 [—cos@[ eo( , 0 ,90)'/2
a 0) = = cos =2 [ cos” — — cos® =
e O =T e 2 2 2
+ cos? LA arccos (—COS(BO/Z) )] -1 arccos (005(90/2) ) —
2 cos(8/2) 2 cos(8/2)
— B cos(n + 1)6,
g, 9) =
ottn (6) ﬂsinZO(cosz(B/Z)—cosz(e‘/Z))”zl. 2

- P!
eSO =Y AP — Al —
65 1 (0) z 1Tgl 1 'osine

=1

3,SF(0) =3pu, (6) + (2n+ 1)3,5 ¥(8)

c0s(8,/2) }

2(cos* (6 /2) — cos?(6,/2))'"?

g 86

[cosz 9 (cos2 9 _ cos? 29) + sin® — cos’ —”]
2 2 2 2

no contributions in the aperture because K Z and K ¥ are zero
there. The terms proportional to £ also reduce to zero there
by (3.9).

Restricting now our attention to the behavior of the cur-
rent on the metal, (6.3) and (6.4) yield

N

S |Fu 2K 0

n=1"5

YoE,
2(ka)?

J, =+ sin¢[

Gln
2n +1

Ko
+ 4ika —"(—)—]

sin @

i
7 h (0<6<6,).

0
_ 2kaf [a,,sﬁ(e) L3O
S

(6.4")

Near the aperture edge 8 = 6, the terms K £(9) and K 7(0)
behave, respectively, as (6, — 8)'/?and (8, — 6)*%. Conse-
quently, the square root singularity in J, is generated by the
term J,K £(0) and, referring to Table IV, by the term
Jy55(0). If the former is generated numerically, a large
number of coefficients are required. However, referring to

P —— pm——

YoE, [ il t K ()
= — cos F,, —
¢ 2(ka)? ¢ n;l " sin 6
G
+ dika —" aer(e)},
2n +1 |
5z ()
— 2ka§[ £ + 89s,,(6)” (0<£6<86,),
sin @
(6.3")
o
£
o [ =
£ 28 — 2 28
S (a) 5 L{b)
° [ |
[ =4 rF 2 n
S 20| & 20!
e | T |
2 16} L 16}
ER ] = i
2 12} T q2f
3 | ] o I
£ 8} £ 8
=] r z "
» 4 E 4
E =2 s
L = 0
£ * S
3 —4 T SV S SO S W S " PR 3 _4
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FIG. 4. The Gibbs’ phenomena is removed by handling the edge singularity analytically. The dominant sum in the J, (6,7/2) expression (a) without

analytical preconditioning, and (b) with analytical preconditioning.
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Tables 111 and IV for 0<8 < 4, the relations
KE(0) =SE(0) + ALz (8)
= Q2n+ DSHO) +u,(0) + Alsg(8),  (6.5)

3K E(0) = (2n + 1035 H(0) + Fpu, () + AE, 345, ()

(6.6)
indicate that one only needs to evaluate S #(8) and 3,5 #(9)
numerically. Since S#(8) = K¥(0) — A s, (8) over the
metal and near the aperture edge d,K (8) ~ (6, — 8)"/?
and 8,5y ~ (6, — 0)'/%, the term 3,S7(8) ~ (6, — 6)''?
near 8 = 8,, which circumvents the numerical difficulties.
The square root singularity is handled analytically through
the terms d,u, and dys.. A comparison of d,K £(8) evalu-
ated directly and with (6.6) is given in Fig. 4. Each sum
included 800 terms. As desired, the (numerical) oscillations
were removed by the analytical preconditioning.

B. Numerical resuits
Because the current components
Jo(8,8) =J,(6,0)cos ¢,
J, (6,8) =J,(8,m/2)sin @,

(6.7)
(6.8)

1.6
=)
s 12t
\m
S o8}
@
v
2
c 04
o
[
=
0
-0.2
0 30 60 90 120 150 180
9 (deg)
28
24

20
16

Magnitude ouf(e, /2)
)

LO& -}

0 30 60 90 120 150 180
6 (deg)

FIG. 5. The magnitudes of the current terms # ,(68,0) and # ,(8,7/2)
induced on an open spherical shell with 6, = 120° when ka = 0.01 and
8™ =0.0.

1307 J. Math. Phys., Vol. 28, No. 6, June 1987

their important features are illustrated succinctly by consid-
ering J,(8,0) and J, (8,7/2). Examples of the scaled cur-
rent terms #, =J,(6,0)] —2(ka)’/Y,E,] and 7,
=J,(0,7/2)[2(ka)?/Y,E,] are given in Figs. 5-10 for var-
ious ka, aperture sizes, and angles of incidence.

Values of | /4| and | # | are given in Figs. 5 and 6 for
the quasistatic limit (ka = 0.01), the angle of incidence § '™
= 0.0, and, respectively, the aperture angles 8, = 120° and
6, = 170°. For both cases the truncation number N = 10.
Essentially the same results were generated with N = 3. This
low truncation number is typical for quasistatic cases be-
cause the n =1 term dominates the behavior. The term
|# 6| is given in Fig. 7 for 8™ = 0.0, 8, = 120°, and the ka
values 1.0, 3.0, 5.0, and 10.0. The corresponding graphs of
| # 4| are given in Fig. 8. For all of these cases the truncation
number was taken to be N = 10(ka). This choice yields con-
vergent results. The plots in Fig. 7 clearly demonstrate that
our solution reproduces the required (8, — 8)'/? behavior of
Jo near 8 == 6,; Fig. 8 demonstrates that the required square
root singularity of J, near § = 6, is present. In Fig. 9 the
terms Re(#,) and |/ ,] are plotted for 6,= 120"
ka=10, 6™ =0, and 6" = 180°. Very different be-
haviors are obtained. When the wave is incident on the sheli

1.6 J
=y
- 1.2
<
\&\GD r
s 08
w N
hel
o §
= 0.4
o
o
(]
= 0!

-0.2: .

0 30 60 90 120 150 180
0 (deg)

20
S 16
< L
© i
o 8-
o i
= " J 4
found |
Z Al u
o)
S /,J .
= 0‘

ot

0 30 60 90 120 150 180

6 (deg)
FIG. 6. The magnitudes of the current terms #,(6,0) and £, (6,7/2)

induced on an open spherical shell with §, = 170° when ke = 0.01 and
& = 0.0,
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F1G. 9. A comparison of the real part and the magnitude of the current term # , (8,0) induced on an open spherical shell with 8, = 120° when ke = 1.0 and

the angle of incidence 8 '™ = 0° and 8" = 180°.

(6™ = 180°), | # 4| is much more uniformly distributed
over the shell. The hump near the aperture edge which ap-
peared when 8™ = 0° is no longer present. In Fig. 10, | #, |
is given for #™ = 0" and ka = 1.0 when 6, = 120° and
6, = 170°. The latter case exhibits a more pronounced hump
near the aperture edge.

The distributions of J, and J,, over the entire spherical
shell for ka = 3, ' = (, and 6, = 120" are shown in Figs.
11and 12, In Fig. 11 the values of | # ;i and | 7, | are replot-
ted in more detail to provide a reference for Figs. 12. In Figs.
12(a) and 12(b) 7, is viewed from the directions (6 = 0,
¢ =0) and (8 = 76", ¢ == 125°). Dark red represents the
largest values; dark blue the smallest ones. The characteris-
tic cosine pattern and nul} at the aperture edge are very ap-
parent. The corresponding views of 7, are given in Figs.
12(c) and 12(d). The associated sine pattern and edge sin-
gularity are nicely reproduced.

The current results have been validated with a totally
independent method'®: a completely numerical solution
based upon a method of moments (MoM) analysis of the
problem. It has been demonstrated that the MoM solution
converges to the dual series results when the former is appli-
cable.

1308 J. Math, Phys., Vol. 28, No. 6, June 1987

VII. ENERGY DENSITIES

To provide some measure of the degree of coupling of
the incident field into the spherical cavity, the energy density
at the center of the shell normalized to the incident field
energy density there was calculated. This also allows a direct
comparison with Senior-Desjardins results.'* "

Consider the normal incidence field expressions given in
Table LI for r = 0. With the small argument relations in the
Appendix, one obtains (75£0)

Jn(O)EO9 {[xjn (x)]‘/x}xu() =%6’|"
[I‘n (x)/x]x==0 :Zlitsnl‘
Moreover, P '(cos 8)/sinf = — } and — P '(cos )

= c0s(6 /2). Therefore, the general electric and magnetic
field vectors at the origin are

(E..E4.E,)(r=0)
= (i/3)E4r,,(sin 8 cos ¢, cos 8 cos ¢, — sin @), (7.1)
(H,,Hy,H,)(r=0)
= (i/3) Y Eq0,,(sin € sin @, cos @ sin ¢, + cos @),
(7.2)
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where
Ullzo'ilnlc"'al(l = v1n1C+A|1hl(ka)v (7.3)
T|l=7'iln|c+7'1(1 =7J1nlC+Bn[kah|(ka)]', (7.4)
the incident field terms being
. 3i, 6" =0,
o = ) 7.5
! {3[, 6 =1, (7:5)
. — 3 @™ =0,
7 = ) 7.6
" [31’, g = g, (7.6)

Consequently, the associated energy density relation is sim-
ply
U(r=0)=(E]> + |ZH|*)(r=0)
=E§(lon|*+ 7,1))/18,
which leads to the desired energy density ratio
Uy (r=0)
U, (r=0)
oY + o tz + MY+ 7S lz
o[ + AT
= %{|3i + A4,k (ka)|* + |3i F B, [kah,(ka)}?}
= {{1 — (i/3)A4,,h,(ka)|® + |1
+ (i/3)Blkah, (ka)]'|*}.

(7.7)

(7.8)
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FIG. 11. The magnitudes of the current terms # ,(6,0) and / ,(8.7/2)
induced on an open spherical shell with 8, = 120° when ka = 3.0 and the
angle of incidence ™™ = 0",

The upper sign is appropriate for 8 ™ = 0; the lower sign for
g inc T

The quantity 10log,, [U,, (r =0)/U, . (r=0)] is
plotted in Figs. 1315 for the aperture angles 10°, 30°, and 60°
(i.e., for g, = 170°, 150°, and 120°) and for the angle of inci-
dence #*™ = (°. Several interesting features are apparent im-
mediately. For 6, = 170° the open spherical shell acts very
similarly to a spherical cavity of the same size. The peaks in
the data at ka = 4.49, 2.74, 3.87, and 4.97 closely corre-
spond, respectively, to the lowest TE and TM modes of a
closed cavity (see Ref. 36, pp. 268-271); i.e., to the lowest-
order zero x,, of {xj,(x) ] and to the zeros x},, x},, and x;,
of {xj;(x)]". They are slightly offset (detuned) from the
closed cavity values because of the presence of the aperture.
Extensions of the discussion in Sec. V for 8, near 7 and for ka
small lead to the approximate coefficient expressions in this
ka region,

2:’3 lfln ::l
Ji(ka)
zj:ml (3., r5”1/2)1 + 1)

B\ lkah (ka)]" — [kaj, (ka) |’ ,
| KdJy

A, b (ka) — (7.92)

(7.9b)

which readily explain the locations of the observed features.
At higher ka peaks corresponding to the roots x,, of
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(¢)

(b)

(d)

FIG. 12. The modal structure of the currents induced on an open spherical shell with 8; = 120° when ka = 3.0 and the angle of incidence € '™ = 0" is revealed
with three dimensional graphics: (a) a top view of the magnitude of the current term £ ,(6.4); (b) a side view of the magnitude of the current term
# 4(6.8); (c) a top view of the magnitude of the current term _#°, (6,4); (d) a side view of the magnitude of the current term £, (6,4).

[/, (x)] =0andx,, of [ %/, (x)]" = 0 appear. The antire-
sonance form of the peaks at ka = 3.87 and 4.97 was not
anticipated. In fact, only the TE, and TM,, modes
{n=1,2,...) develop the resonance form of the peaks; all
others have the antiresonant form. This behavior is a result
of (1) the modal patterns induced in the open cavity—all
TE,,,J and TM,,,, (ps%£1) modes havenullsat r = 0,and (2) a
reradiation effect that occurs because the aperture is backed

1311 J. Math. Phys,, Val. 28, No. 6, June 1987

by a resonant cavity.*® The important features in the ka
scans of (7.8) for larger apertures are associated with the
modes effecting the antiresonant behavior.

Detuning of the cavity by the larger aperture is notice-
able in the 6, = 150° data. The resonance peaks are broad-
ened and the antiresonance peaks have become broad de-
pressions. The resonance locations are downshifted to lower
ka values (lower frequency); the antiresonance locations are

R. W. Ziolkowskiand W. A, Johnson 1311
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FIG. 13. A scan in ka of the total energy density of the field at the ongin
normalized to the energy density of the incident field there for an open
spherical shell having an aperture angle of 170° and a plane wave incident at
6™ = 0°. The solid line is generated by the dual series solution, the dots by a
MoM surface patch code.

upshifted to higher ka values (higher frequency). The de-
pressions at the antiresonance locations indicate that this
slightly open cavity may have poor energy storage character-
istics, hence a large scattering cross section at those points.
Energy storage and cross-section calculations are also in
progress to study this {for instance see Ref. 40).

The largest aperture (6, = 120°) data shows nearly a
complete detuning of the cavity. The observed depressions
are shallower and broadened. They correspond to the origi-
nal antiresonance locations ka = 3.87 and 4.97, thus demon-
strating the considerable upshift in ka of their locations as
the aperture size increases. The data also indicates a focusing
of the energy near r =0 over a large range of kg. This is
expected since the shell is beginning to look largely like a
spherical reflector when 6, = 120°.

Comparing these results with those of Senior and Des-
jardins, very distinct dissimilarities are evident. Although
the resonance peaks at ka = 2.74 and 4.49 are present in
their results, the antiresonance peaks at kg = 3.87 and 4.97

40

20

° E/f“\y/ \r

—-40
—-60 1

~80

Power density at r = 0

-100 =76 2.0 30 40 50

ka

FIG. 14 A scan in ka of the total energy density of the field at the origin
normalized to the energy density of the incident field there for an open
spherical shell having an aperture angle of 150" and a plane wave incident at
@™ = 0°. The solid line is generated by the dual series solution, the dots by a
MoM surface patch code.
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FIG. 15. A scan in ka of the total energy density of the field at the origin
normalized to the energy density of the incident field there for an open
spherical shell having an aperture angle of 120° and a plane wave incident at
@' = 0°, The solid line is generated by the dual series solution, the dots by a
MoM surface patch code.

are not. Similarly, the antiresonance depressions in the
6, = 150° data are absent. Also, the levels they predicted for
small kg are close to 50 dB smaller in the 8, = 170° data and
20 dB smaller in the 8, = 150° data than ours. Analogously,
their resonance peak levels are higher than those we predict.
Qur results again have been validated with a method of mo-
ments calculation.'® Sample data points from those checks
have been included in Figs. 13-15. Agreement is very good.

Viil. SUMM.ARY

A complete solution of the scattering of a plane wave
from a spherical shell having a circular aperture was devel-
oped in this paper. The angle of incidence and the polariza-
tion of the plane wave were arbitrary. This solution was con-
structed with a dual series equations approach and was
validated in several different ways. Numerical results were
given for the case of normal incidence. Induced currents on
the open spherical shell were presented and it was demon-
strated that they satisfy Meixner’s edge conditions. Energy
density scans in ka were also given; they were dominated by
resonance features characteristic of the open spherical cav-
ity.

Several new concepts and techniques were reported.
The associated Legendre functions P, " for O<n <m and
their duals P,”” were introduced to produce a system of
pseudodecoupled TE and TM dual series equations and to
insure satisfaction of Meixner’s edge conditions. Procedures
were described in detail that generated an analytical sofution
of the resulting, previously untreated dual series systems and
a numerical solution of the resulting infinite system of linear
equations for the modal coefficients. Analytical precondi-
tioning of the current sums led to results free of any Gibbs
oscillations. The resonance features in the ka scans of an
energy density ratio at the origin were observed to be pre-
dominantly of an antiresonant form.

Cross-section and stored energy calculations are cur-
rently in progress. Preliminary cross-section results are also
dominated by antiresonance features and suggest that they
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are characteristic of a cavity-backed aperture. These studies
are summarized in Ref. 40.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE TERMS
X5 AND 3

The small argument and large index behavior of the
terms y? and y? will be developed for 7 > 0. The spherical

Bessel function expansions (see Ref. 37, Egs. 10.1.2 and
10.1.3)

1/2 n
jn(x):= (ﬂ/4) <X/2)
C(n+3)
x2 _x4
Dot @) W
{ iy O GE (AD)
i — (a4 1) 1
h =:——_—L__(j£) I‘( __)
"(x) (477.)1/2 2 n+ 2
x? x°
et (D)
2(2n — 1) n
and the identity
Cn+b={[@2n—1) - -53-1]/27}7'?  (A3)

provide the necessary expressions. Equations (Al) and
(A2) yield

e (T\ it D) 5_)"
1%, (0] *(4) r(n+g)(2

{]_ (n + 3)x?
2(n4+1)(2n +3)

7))

(A4)

. ,‘ —1—_ ;x_ —(n+1)
[xhn ()] = (4m)'/? "r(”Jr 2)(2)

. 2 4
x[l L= L, (j—)] (AS5)

2n(2n — 1)
Combining (A1)-(A3) gives
1
. n, -
Jn ()1 () i(2n + 1)x
2x? x*
X1 o (-)];
' { +(2n——l)(2n+3)+ n?
(A6)

1313 J. Math. Phys,, Vol. 28, No. 6, June 1987

combining (A3)-(AS5) gives
[X. ()] [xh, ()]

nn+1)
—i(2n + Dx
2 2 4
[]_ (2n* + 2n + 3)x +ﬂ(§—)].
nn+1)(2n —1)(2rn + 3) nt
(AT)
Consequently, for small arguments
lim y? = lim {{{(2n + Dxj, (x)h,(x)] — 1} ~0, (A8B)
x-+0 x—-0
lim ¢ = lim “—-————‘ i2n + Dx
x—0 X0 nn+1)
X [xj,,(x)]'[xh,,(x)]'} - 1]~0, (A9)
and for indices larger than the argument
lim y2(x) = lim & (x*/n*)~0, (A10)
lim y?(x) = lim & (x*/n?)~0. (A1)

e oo n—w
Note that this limiting behavior is responsible for the num-
ber of terms required for convergence of the solution. In
particular, for large enough N, the terms

X (ka) ~y% (ka) ~ (ka/N)?

and the elements of the matrix .# ; in (4.49) are small. This
explains the choice N = 10 ka for the examples.
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