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Vortex Formation Near an Iris in a
Rectangular Waveguide

RICHARD W. ZIOLKOWSKI AND J. BRIAN GRANT

Abstract—The generalized dual-series approach to the capacitive and

inductive iris waveguide problems is presented. Currents on the iris and

plots of the fields and power flow in the vicinity of the iris are given for the

capacitive iris case. It is found that vortices form in the iris region when

higher order scattered modes are present. The formation of these vortices

and their properties will be described in this paper.

I. INTRODUCTION

T HE ANALYSIS of the electromagnetic fields in the

vicinity of a waveguide discontinuity is a classic mi-

crowave-engineering problem, for which many different

methods of solution have been suggested during the past

40 years. These include integral and singular integral equa-

tion approaches [1]–[7], modal analyses [8], [9], modified

residue-calculus techniques [10], variational calculations

[11] -[14], method-of-moment treatments [15] -[17], and

equivalent circuit formulations [18]–[20].

In a few exceptional cases, exact solutions have been

found. In general, however, this is not possible and some

degree of approximation must be introduced. These ap-

proximate methods are applicable to a wide range of

problems and can produce sufficiently accurate results for

most purposes. On the other hand, solutions to canonical

problems are valuable because they provide a means to

study, in detail, basic scattering phenomena. Moreover,

accurate solutions of this type provide standards to which

general numerical code results can be compared. In ad-

dition, they lead to general engineering analysis and design

“rules of thumb” for more general geometries and to the

development of improved numerical techniques, especially

near the discontinuities where those methods may encoun-

ter difficulties.

In this paper, we will introduce the generalized dual-

series (GDS) approach to rectangular waveguide iris prob-

lems. This method was introduced in [21] -[23] as it applies

to the mixed boundary value problems that characterize

the coupling of electromagnetic energy through apertures.

It is based upon the solution to the Riemann-Hilbert

problem of complex variable theory and allows one to

obtain essentially analytical solutions to a large family of

canonical problems.
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In contrast to most standard techniques, the GDS ap-

proach does not require an expansion of the field in the

aperture. Only the expansions of the fields on both sides of

the iris are considered. It thus avoids all relative conver-

gence problems [24], [25]. Moreover, it naturally incorpo-

rates the (singular) behavior of the fields and currents near

the edge of the iris. The GDS approach also allows one to

treat directly the dual-series systems, which are obtained

from the enforcement of the electromagnetic boundary

conditions in the iris plane, rather than by transforming to

a spectral domain, as is necessary for the modified

residue-calculus technique. Similarly, it is related to the

singular integral equation method, although it provides an

analytical and numerical capability not available with the

latter. As a consequence, it represents an attractive alterna-

tive to the solution of many of the problems proposed by

Lewin for the singular integral equation methods. Analo-

gous to the philosophy raised in [26] and [27], a technique

that accelerates the convergence of the current and field

series is utilized in the GDS approach. The asymptotic

behavior of the solution coefficients is identified and used

to produce analytically summed series that recover the

singular behavior of those physical quantities near the edge

of the iris.

This effort represents a generalization of earlier work by

K. F. Casey [28], [29], which solved the dual-series systems

with a Jacobi polynomial inversion scheme introduced by

Sneddon [30] for potential theory problems and only dealt

with the susceptance calculation. The Riemann-Hilbert

approach has proven to be much more straightforward and

robust. Furthermore, the results presented below go well

beyond the usual calculation of the susceptance. We pro-

vide the currents on the iris and the fields throughout the

waveguide, especially near the iris, for a variety of incident

wavelengths and iris configurations. We have found that

electromagnetic vortices are formed near the iris. In anal-

ogy with fluid flow near an obstacle, increasing the

frequency (corresponding to an increase in the Reynolds

number) leads to an increase in the number of vortices.

The formation of the vortices and their effects on power

flow past the iris will be described below.

II. PROBLEM FORMULATION

The problem configuration is shown in Fig. 1. The

dimensions of the waveguide are a across and b high. A

vertical iris of height c is located at z = O. The z direction
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Fig. 1. Capacitive ins problem geometry.

is taken along the length of the guide, x along its width,

and y along its height. The incident wave arrives at the iris

from the negative z direction. Because the iris is assumed

to be uniform across the guide, the problem is actually

two-dimensional; there is no scattering in the transverse

direction.

A. Dual-Series Derivation

The incident and scattered fields are first expressed in

terms of eigenmodes or, simply, the modes of the wave-

guide. It will then be shown that enforcing the electromag-

netic boundary conditions leads to a dual-series system

that can be reduced to an equivalent Riemann-Hilbert

problem which can be solved as outlined by Ziolkowski in

[22]. Although the formulation of the solution is carried

through for both the capacitive and the inductive iris

problems, only the capacitive iris case is solved explicitly

and the corresponding results presented and discussed.

The solution of the inductive iris case follows in a

straightforward manner from the one presented below and

is outlined briefly in Appendix I.

Without any loss of generality, we deal only with single-

moded excitations and choose to express the fields in

terms of modes that are either TE with respect to x: TEX

(EY = O) or TM with respect to x: TMX (HY = O) to

facilitate treating either the capacitive or the inductive iris

case, respectively. In particular, we assume that a

(1, p) which has the tangential field components

TEX Case:

H? = S& sin (lmx/a) cos ( pry/b) e–’~lpz

mode

\a}

.cos(pny/b)e–lYiPz

TIt4X Case:

E~ = T,~cos (lnx/a) sin ( pvy/b) e–’Y@

H;K = ‘C y Tinccos(17rx\a) sin(pny/b)e–’y’P’Iv 2 1P [P

(1
kz. —

is incident upon the iris. In contrast to standard treat-

ments, we will assume that these fields exist throughout

the waveguide. This avoids several coefficient redefinitions

and, hence, greatly simplifies the presentation. The time

factor e“” is understood and suppressed throughout this

paper. Correspondingly, the scattered fields are written as

TEX Case:

H;= ~ sgn(z)S,~ sin(l~x/a) cos(nzmy/b) e-’~lml=l
tn=o

\a}

.cos(rnry/b )e-’~/mlzl

TMX Case:

E:= ~ Z’l~cos(lrx/a) sin(mny/b) e-zY/mlzl
~=o

\a)

.sin(mmy/b)e-’~’~ lzl.

The definition of the propagation factor

( for evanescent modes

guarantees the proper decay away from the iris.

Enforcing the electromagnetic boundary conditions Etm

= O on the iris and H,m continuous across the apert~ire of

the iris, the following sets of equations are respectively

obtained:

? Y,.,s,m sin(lmx/a) cos(mmy/b)
~=()

= – S~sin(l~x/a) cos(pny/b)

~ T,~cos(lnx/a) sin(mry/b)
~=()

= – T,~cos (lnx/a ) sin ( pry/b)

~ S,~ sin(lnx/a)cos(mmy/b) = O
W=(J

~ny,~T,~cos(l~x/a) sin(mfiy/b) = O
n, =

(o<y<c)

(o<y<c)

(c<y<b)

(c<y<b).

Projecting out the x variation in all the boundary condi-

tion equations gives rise to two uncoupled sets of equa-\a]
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tions.

f s,mcos(n’s7ry/b) =0 (c<y<b) (la)
~=()

5 Y,m~,Mcos(~V/~) = - ~&cos (PV/~)
W2=0

(O< y< c) (lb)

S Y/mTlmSin(m~Y/b) =0 (c<.YSb) (2a)
??1=0

~ T,~sin(nzny/b) = - T,~sin(pny/b)
~=o

(O<y< c). (2b)

Each set comprises a dual-series problem. The first, eqs.

(l), corresponds to the capacitive iris case; the second, eqs.

(2), corresponds to the inductive iris case.

B. Dual-Series Solution

Consider the capacitive iris case. To make the corre-

spondence to the results in [21]–[23], the angles @= my/b,

and 63 = we/b and the terms

(L
Am= 2 ‘Iml ‘orm+o (3)

s /0 form=O

ib
~ Yllmlrm=—

fm = – ;s;;,8.,

(4)

(5)

where Kronecker’s 8~P = 1 if m = p and O otherwise, are

introduced to reduce the dual series (1) to the form

~~=—w

The static components of

behavior) can be extracted

x ~ so that

(-<

these terms (their

by introducing the

form =()

This means for m # O that

small kb

functions

(8)

“.=FFEmF1
Clearly, x ~ goes to zero as (kb) 2 in the static limit.

Moreover, x ~ behaves like (kb/m)2 for large m, i.e., for
finite kb: limlnll+~xn - O(lm[-2). Thus, ~- Imlforkb<<

1 or for Im [ ~ cc. The resultant dual-series equations

jj Ame2m@=0 (l@l>@) (9a)
~=—~

~ xl~lml(l+ “~)eim+= f(+) (1$11< El) ($)b)

then conform to the ones treated in [22]. As described

there and briefly in Appendix I, it yields the infinite linear

system for the solution coefficients

J

(lea)

(lOb)

where

x~ z mA.. (1OC)

This system uniquely defines the desired modal coeffi-

cients. The coefficients V:, W 0, W‘, and S are all simply

combinations of Legendre’s polynomials Pm(COS8 ) and

are given in Appendix II. Note that in the static limit

where x ~ ~ O, the solution coefficients (10) are the exact

solutions of the associated” static” dual-series problem (9).

This is in distinct contrast with Marcuvitz’s “equivalent

quasi-static method” [12, p. 153] where “ . . . no attempt is

made in practice to obtain the formally possible exact

solution; . ..” In the nonstatic case, the component pro-

portional to x ~ is treated like a forcing term which is of

order m‘ 2 smaller than the static piece. Since the static

pieces or, equivalently, the large m terms are responsible

for the edge singularity, the solution of the “static” dual-

series problem contains all of the information about the

edge behavior of the “nonstatic” problem.

III. NUMERICAL IMPLEMENTATION

The solution system (10) is an infinite set of equations

representing a Fredholm equation of the second kind

which has the form

This infinite linear system can be treated in several ways.

The approach developed by Johnson and Ziolkowski [21]

is systematic and has proved to be very efficient. Because

A rapidly approaches zero for large values of n and

on!; fp and f_p are nonzero for single-rnoded excitation,

truncation of A ~~ for In\ greater than some value N can

be justified rigorously. Typically, reasonable convergence
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is achieved with

This truncation eliminates x. in the sums for In I > N.

Solving by Gauss elimination (or some similar technique),

the remaining 2N + 1 by 2N + 1 square system of linear

equations

N

where

Gnp = : rmnfn = rrnpfp + rm(-p)f-p (llC)
~=—*

and where m = – N, – N + 1,. ... + N yields good numeri-

cal approximations for the coefficients A o, x ~1,”””, x ~ N.
Additional coefficients x~ for M > Im I > N are easily and

accurately generated with (ha). As N approaches infinity,

this approximate scheme becomes exact.

The electric and magnetic fields and the current induced

on the iris may be readily computed from their modal

expansions once the solution coefficients A. and Ay =

x~ /m (m # O) are known. However, alternate expressions

are particularly useful in increasing the rate of convergence

of these sums and in studying their behavior near the edge

of the iris. They are described below. They are constructed

by introducing an asymptotic (large m) form of the solu-

tion coefficients x~

zm = ‘lpm + ‘2pm~l (12)

and a slight variation of it

m
z. = lqPm + lc~—P

m+l ‘n+l”

With

Fn = f, – :~nXn

(12’)

the terms

[ 1K2=–: &40+ f FnPn .
~z–N

(12b)

Note that the argument of the Legendre polynomials,

which is always cos @, is suppressed for notational con-

venience. To obtain (12), for instance, we have taken in

(lOa) an asymptotic form of the coefficients V;

1
r;= ~[pn+lpm – Pnpm+ll

L

so that

~=.N

The need for two asymptotic forms of the solution coeffi-

cients arises from a basic difference between the current

and HX sums and the Ey and E= sums, which reflects the

difference in the behavior of these terms near the edge of

the iris.

A. Current Sums

The current on the iris is simply the difference between

the scattered magnetic fields on either side of the iris.

Explicitly,

J,= Hz – H; = 2sin(lrx/a) ~ S[~cos(m~y/b)
~=o

= 2sin(l~x/u)[2Ao+ J.] (13)

where, using the solution coefficient symmetry x~ =

—x_m, the sum

This sum is

form of the

J,= ~ A~e’m~
m#O

= 2~~1 ~ cosm+. (14)

preconditioned by introducing the asymptotic

solution coefficients x~ given by (12’)

—

()J,=~+2f ‘“–X” cos mq (15)
~=1 m

where the asymptotic sum

m=~ ,,*

can be handled analytically. It contains

component of the current near the edge

shown in Appendix III, the expression

j(+) = –2K2COStl -2[K1+K2COS@]

(16)

the “singular”

of the iris. As

ln(sin~[cos~+(c0s2~-c0s2~)1’’2])

m]+sin —

+2 K2sin@ sin-l ~ –~ (15’)

sin —
2

is obtained in a straightforward manner. The second sum

in (15) converges rapidly numerically and is truncated for

Iml>ll.

B. Electric and Magnetic Field Sums

The electric and magnetic field sums are preconditioned

in a similar manner. The resultant expressions for the
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components of the total (incident+ scattered) fields are

{
HX = sin(lnx/a) S&cos ( prey/b) e- ZY’P’

[
+sgn(z) 2 ~ (~ne–’~lmlzl – ~me–tml’l)

cos ( mny/b )

~=1 m

+ ~[oe–Weld + Q
x 1) (17)

al-l
Ey=–

(
sin ( lnx\a ) ylPS&cos ( p~y/b) e–iy’~z

kz_/~]2
\a)

+ yloS10e–’y’”121 + Qy
}

(18)

itip

Ez=–
(

~r z sin(lrx/a) ~S@

()

kz _ —
a

[

21i’ m
.sin(pny/b)e–’Y(Pz +sgn(z) — ~ (xMe–’Y’mlzl

b ~=1

- ;~e~mzl)sin(mny/b)+ Q. 1} (19)

where {~ = m ~/b. As shown in Appendix IV, setting

so that ]A + I <1 and IA_ I -=1 and introducing the terms

i

2
K(A) =ln

)
(20)

l–Acos@ +Jl–2xcos@+A2

K1+~–1K2

L(A) = (21)
J1–2Acos@+A2

the analytically calculated sums are

QX=(K1+AjlK,)~(A+)

+( K1+AE1K2)~(A_ )–2K2C0S@ (22a)

Q,=-; {L(~+)+L (A_)

‘2[K1+K2(COS@ +ea COST)]} (22b)

Q,=-~[L(~+ )- L(~. )+2iK2easin@]. (22c)

Note

thus,

that for z = O, the factors A+ = e’+ and A_ ~ e–’+;

near the edge of the iris, where @-0 – c, giving

Cos + - cos @ + c cos @, the field terms

(1-2 A+COS8 + A:)-1’2

= e-zo/2[4cos@-cos@)l‘1’2- ~-’”2
(1-2 A_cos@+A:)-”2

= e+z+/2[Xcosf+-cos@)l‘“2- ~-’/2c

This demonstrates that the square root singularity of the

transverse electric field components EY and E, near the

iris edge have been isolated in the QY and QZ expressions

and, hence, are treated analytically. The summations in

(17)-(19) are handled numerically without difficulty and

converge rapidly.

IV. SAMPLE RESULTS

A large number of results for the capacitive iris case

have been generated with the dual-series solution. Repre-

sentative examples will be presented below that illustrate

the basic phenomena we have observed. Unless otherwise

indicated, all results pertain to a WR-284 waveguide (7.21

cm by 3.40 cm) and were obtained with the truncation

parameters N =50 and M = 200. These truncation param-

eter values were chosen to guarantee convergence of the

results in all of the given cases. Note that the cutoff

frequencies associated with this particular waveguide that

are of interest here are (~c)lo = 2.082 GHz, (~c) ~1= 4.876

GHz, (~C)12 = 9.060 GHz, (~C)13 = 13.389 GHz, (jC)20 =

4.164 GHz, (~C)21 = 6.064 GHz, (jC)22 = 9.751 GHz, and

(~c) 23 = 13.866 GHZ. AISO note that in the vector dots
discussed below, the vectors drawn depict both the relative

magnitude (the largest vector length is selected propor-

tional to the largest magnitude) and direction of the quan-

tity under scrutiny.

The currents established on the iris provide a definitive

check on the satisfaction of Meixner’s edge conditions by

the generalized dual-series solution. The real (solid lines)

and imaginary (dashed lines) parts of the current induced

on a 75-percent iris by a TEIO mode of frequency at 3, 8,

11, and 15 GHz are shown in Fig. 2. The corresponding

magnitude plots are given in Fig. 3(a)–(d). The requisite

“square-root to zero” behavior of the currents at the iris

edge is readily discernible. The number of peaks in Fig.

3(a)–(d) is correlated to the number of propagating

scattered modes. At 3 GHz, there is only the fundamental

mode present. At 8 and 11 GHz, the guide supports two

propagating modes. At 15 GHz, there are three propagat-

ing modes present.

Fig. 4 illustrates the efficacy of our field calculations

near the edge of the iris. Contours of the electric field are

given respectively for a 3-GHz and a 4-GHz excitation.

The large values of the contours correspond to the pres-

ence of a singularity in the field at the edge of the iris.

The interplay of the incident wave and the modes

scattered from the iris proved to be more interesting than

first expected. As demonstrated in Figs. 5–8 for a TEIO

wave incident upon a 50-percent iris configuration, the
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current induced on a 75-uercent iris bv a TE, ~ mode incident at
frequencies of (a) 3 GHz, (~) 8 GHz, (c) ~1 GHz,’&d (d) 15 GHz.

onset of the higher order, propagating scattered modes 4.95 -GHz, and 5.1O-GHZ excitations, respectiv~y. Vector

leads to the creation of vortices. Thehigher order modes plots of the real part of the Poynting vector P and the

provide the transverse power flow required for the vortex corresponding contour plots are given for each frequency.

formation. The vortices appear in a periodic manner for Notice in Fig. 5(b) that just prior to the TE12 mode

both the regions z <0 and z >0. However, in comparison threshold, the power pattern is very symmetrical about the

to the region z >0, the overall pattern of the vortices for iris while just past this threshold it is very asymmet~ical.
z < () is more complex due to the reflection of the incident Completely formed vortices are represented by nulls in the

wave from the iris. power pattern resulting from corresponding nulls in the

To illustrate these effects, consider, for example, the magnetic field. The contour boundaries were generated

- onset of the second propagating mode at 4.87 GHz. Fig. using linear interpolation of values on a rectilinear grid.

5(a)–(d) represent the response to 4.70-GHz, 4.85 -GHz, The sharp corners that are apparent in some of the contour
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Fig. 4. The presence of the edge singularity is observed in the contour
plots of the real part of the electric field for a 50-percent iris and a TEIO
mode incident at the frequencies (a) 3.0 GHz and (b) 4.0 GHz.
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Fig. 5. The formation of vortices in the iris region after the onset of
higher~rder scattered modes is illustrated with vect~r and contour plots

of ReP for a 50-percent ins anda TEIO mode incident at the frequen-
cies (a) 4.70 GHz~ (b) 4.85 G&.

plots are an artifact of this process and occur when varia-

tions exist that are smaller than the grid spacing.

As illustra~d in Fig. 6(a)–(c), where vector and contour

plots of Re P and contour plots of IHXI are given for

incident frequencies of 3.0 GHz (top plot), 5,0 GHz (mid-
dle plot), and 9.1 GHz (bottom plot), the number of

vortices present is directly connected to the number of

propagating modes scattered by the iris. Furthermore, as

shown in Fig. 6(a), the evanescent modes scattered from

the iris are responsible for “lifting” the power flow over

the iris. Without their presence, the power would simply

flow longitudinally along the length of the waveguide.

Note, however, that as the frequency increases, the domain

of influence of the evanescent modes becomes more local-

ized to the vicinity of the iris, thus diminishing their role in

the field patterns or power flow. Consequently, the vortex
formation is found to be purely a consequence of the

interplay of the propagating modes.

The view of the 5.O-GHZ case is expanded in Fig. ‘7(a)

and (b) to demonstrate ~he periodic location of the vorti~es.

The vector plot of Re P and the contour plot of IHXI are

given in Fig. 7(a) for – 13.0 cm< z <0.1 cm and in Fig.
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Fig. 5. (cont.) (c) 4.95 GHz and (d) 5.10 GHz.

7(b) for – 0.1 cm < z <13.0 cm. Because a vortex arises

solely from the superposition of the propagating modes, its
location in z depends only on the phase difference be-

tween the propagation factors and the phases of the modal

coefficients associated with those modes. Thus, the vortex

locations appear periodically in z relative to the vortex

nearest the iris. Behind the iris, an increase in frequency

causes the location of the first vortex and, hence, all the

other vortices to move in tandem away from the iris. This

apparent movement of the vortex centers behind the iris

creates the effect shown in Fig. 8, where contours of ]HXI

are given for incident frequencies of a) 5.0 GHz, b) 6.5

GHz, c) 7.5 GHz, and d) 9.0 GHz. The iris appears to be

shedding vortices with increasing frequency. On the other

hand, for z <O, as the frequency increases, the additional

interaction of the reflected wave with the incident and

propagating higher order scattered waves causes a breakup

of the larger vortices present at the lower frequencies into
clusters of smaller ones at the higher frequencies. More-

over, after the appearance of the second propagating mode,

there is always a well-defined vortex located directly in

front of the iris. Its location actually slightly approaches

the iris as the frequency is increased. The other vortices in

this region are then periodically located relative to this

vortex.

The vortices appear even f~r small irises, as shown in

Fig. 9, where vector plots of P are given for a 30-percent

iris and for incident fields of frequencies 3.0 GHz and 9.5

GHz. As demonstrated in Fig. 10(a) and (b) for a 6.O-GHZ

TEIO wave incident, respectively, on a 50-percent and a
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num+ber of vortices increases. This is illustrated with (a) vector plots of
Re P for a 50-percent iris and a TEIO mode incident at frequencies of

3.0 GHz (top), 5.0 GHz (middle), and 9.1 GHz (bottom).

70-percent iris, the vortex directly in front of the iris

matches its height to the height of the iris. This appears

necessary to channel the power flow above the iris. As is

apparent in all of the above cases, when vortex formation

occurs, the power flow along the guide can be drastically

altered from the uniform flow found in an empty guide. To

emphasize this point, the small (middle) and large (bot-

tom) power contours are included in Fig. 11 along with the

vector plot (top) of the 70-percent iris case given in Fig,

10(b). One turbulent vortex and several weaker vortices

have been established that create a very nonuniform chan-

neling of the power flow in the vicinity of the iris.

Because their structure is more complicated, more com-
plex vortex patterns occur when higher order modes are

incident upon the iris. This is demonstrated in Fig.

12(a)–(d) for an 8.O-GHZ signal. A TEII mode is incident,

respectively, upon a 50-percent and a 70-percent iris in

Fig. 12(a) and (c). A TE20 mode is incident upon the same

irises in Fig. 12(b) and (d). In contrast to the TEIO mode
\

incidence case, the TEII mode pattern creates several more

smaller vortices directly in front of the iris. The TESO cases

are very much the sam-e as for the TEIO mode exc~pt that

the vortices appear at different frequencies due to the

different cutoff frequencies of the TEz~ modes.

Since the frequency scans discussed above can be ex-

tended to a much finer scale, one can construct the trans-

fer function for the capacitive waveguide iris configura-

tion. Then, using an FFT algorithm, time-domain field

configurations can be made. We have actually made movies

for a limited number of cases involving narrow-band,

pulsed excitations. As one would expect, these time-

domain results mimicked frequency-domain results for the
carrier frequency. Vortex formation was apparent as the

pulse interacted with the iris.

V. SUMMARY

The generalized” dual-series solutions to the capacitive

and inductive waveguide iris problems were presented.
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Fig. 6. (cont.) (b) Contour plots of Re ~

Numerical results were given only for the capacitive iris

case, They were used to investigate the formation of vortices

near the iris and the effect these vortices had on the local

field configurations there.

This study actually originated with the desire to analyze

the local field enhancements near the edge of the iris for

gas breakdown studies in progress at our laboratory. In

addition to enhancements near the iris, our studies have
demonstrated that the local “ hotspots” created by thi

vortex formation may have significant roles in that experi-

mental work. Moreover, the vortices themselves may play

an important part in the transport or trapping of the

breakdown plasma in the vicinity of the iris.

With regard to experimental verification, vortices have

been observed by Liska and Meinke in rectangular

waveguides having step discontinuities [31]. Meinke and

his coworkers also investigated the use of energy flow

diagrams to describe the operation of a variety of micro-

wave devices and antennas in the 1970’s. Energy flow

diagrams for the step discontinuity measured in [31] ap-

pear in [32].

APPENDIX I

RIEMANN-HILBERT PROBLEMS

The Reimann–Hilbert problem is a classical problem in

complex variable theory. It concerns the construction of

the analytic function x whose limits x+ and x_ from the

inside and the outside of a closed curve satisfy the transi-

tion condition x.= gx+ + h on an open segment of that

curve. Consider first the “capacitive” dual-series system

(9), which is repeated here for convenience

jj An,eim”= O (1+1 > (3) (9a)

Recall that (9a) and (9b) are associated with, respectively,

the field components HX and Ey. Therefore, they behave,

respectively, like (@ – +)1/2 and (@ – +) – 112 near the

edge of the iris. To make both series equations display the

same singular behavior, (9a) is differentiated with respect

to @. Introducing the coefficients x~ = rnzl~ (note that it is
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the dual series (9) can then be written simply as

x+(ei@)–x_(eio)=O (P#Il> ~) (Ala)

x+(eio)+ x_(e’+)=F(ei+) (l@l < G). (Alb)

This system represents the equivalent Riemann-Hilbert

problem. Equation (Ala) reflects the continuity of the

magnetic field across the aperture; equation (Alb), the
transition condition the electric field must satisfy across

the iris. As explained in [22], its solution is the Fredholm

equation of the second kind
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where (m = O, +1, t 2, ”-” ). This infinite

completed with the auxiliary condition

which is obtained from (9a) &th d = r; it

linear system is

(A3)

is introduced to

account for the constant eliminated in the differentiation

that led from (9a) to (Ala). This constraint leads to the

expression

( Inl

)
–Ao=$AoWO+ ~ fa–yzaxn Wn–2Sx_1

~.—~

(A4)

where

Wn= ~ (-)m (-)mp
—V: and S=: z —

m+O m m#o m ‘“

Equations (A2) and (A4) uniquely define the desired modal

coefficients.
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Now consider the inductive iris dual-series system

It differs from the capacitive iris case by the presence of

the yl~ term now in the aperture relation (2a). Recalling

that (2b) and (2a) are associated with, respectively, the

field components E, and HY, they behave like (6I – @)li2

and (6 – +) – 1/2 near the edge of the iris. As in the

capacitive iris case, the YIM term is responsible for this

difference. Nonetheless, the dual-series system (2) can be

reduced to the form (Al) as follows. Let the angles ~ = n

– @ and * = r – @ and the coefficients

~1~ = Tl~ + T[~8~P and

sgn(m)
gr =

2
8TmT[~ mp.

Differentiating (2a), one then obtains

~ ll~~~e’m+= ~ g~eim+ (]~1 < V)
nl+o m#o

~ ~Bme’~+=O (l~l>w).
m#O
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Finally, set

.Y~ = sg~( m )rnBm and

( )G(z) =~$##xrnymZm.
m+o

With the definitions of y+ (z) and y_ (z) the same as in

the capacitive case except, of course, for y~ replacing Xw,

this dual-series system takes the Riemann-Hilbert prob-

lem form

y+(ef*)–y_(e’*)=O (1+1>*) (A5a)
y+(ei*) +y_(ei$’)=G(e’*) (Iii < *). (A5b)

The desired solution then is simply

( lnl )Y.= z g.–;xnYn K’+ Y-1PM. (A6)
n+O

Since there was no constant lost in the differentiation of

(2a), no auxiliary conditions are required here and (A6)

uniquely defines the inductive iris solution.

Note that a formal solution of a Riemann-Hilbert prob-

lem involving singularities of the type r-a, where O < a <1,

exists [22]. The thin-iris problems naturally embody the

r – 112 case. The particular form of (Al) and (A5) reflect

this property.

APPENDIX II

COEFFICIfiNT DEFINITIONS

The inversion coefficients V; for m # n are given by the

expression

‘+1 [Pm(u) Pn+l(zf)- Pm+l(u)Pn(u)].‘:= ‘qm, –.n)
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The special case when m=nis givenby The remaining coefficient terms are defined as

v:= +[un(u)Pn+,(u)-un+,(u)Pn(u)]
where

Uo(u) =0

Ul(u)=u–l

z4Pn(u)-Pn_1(z4) 2n+l
Un+l(u)= —Uun(tf)

(n+l)z + ~+1

–-&ln_l(u)

and

P_n(u)=Pn_1(z4)

u_n(zJ)=uE_l(zf).

w=-zpn+l(u)h (): +:[M+L1(U)I
R.=;Pm(u)

R~(u) l+U
s= ~ (–)m—=–

()
~ln —

rsr+o m 2

where

u=cos(@)

and

po(u) =1

Pi(U)=–Pi(U)=–U

~n(u)=~n(u)–zu~n-l(u)+ ~n-z(u) for(n> 2).
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APPENDIX 111

CURRENT SUM FORMULA

The current sum formula (15’ ) follows from the summa-

tion formula [33]

1–sin~[2(cos@ –cos@)]-l’2 (@<@)
. (A7)

–cos; [2(cos@–cos@)]-l’2 (+>@)

[

+ Cos ; [2(COS + – Cos@)] ‘1’2 (+<e)

—— (A8)

– sin ~ [2(cos@ – cos 0)] ‘1’2 (l$>@)

and from the integrals

1 l+sin~

+

l)
4

COSj-d+ sin —
2

= sin–l —
e“12= ~+ [2(COS @– cos@)] 1’2

sin —
2

Applying the operator jr to the expressions in (A7) and

(A8) corresponding to the iris interval 0<$< @ yields the

sum formulas

With (12’), the asymptotic current sum is

=–2K2COS@ –2[K1+K2COS@]

ln{sin~[cos~+(cos2~-c0s2~)1’2])

sin – 1

APPENDIX IV

FIELD SUM FORMULAS

(15’)

Consider first the asymptotic HX field sum, which has

the form

A “generic” sum is immediately recognized and evaluated.

Because of the generating function of the Legendre poly-

nomials

1
M(A) = = ~ PmA”

dl–2Acos@ + A2 ~=o

one obtains

~d.$

M

1—— –1
0’$ l–2.$cos@+<2 )

(
2

= in
l–Acos@ +Jl–2Acos@+A2 )

=K(A). (A1O)

A combination of (A9) and (A1O) yields the asymptotic
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sum formula

QX=(Kl+ ~i’K2)~(~+ )+( Kl+AZ1K2)K(A_ )–2K2P1.

The asymptotic field sums Q, and Q, follow in a similar

fashion. In particular,

—--; {L(A+)+L(L)
‘z[Kl+K2(COS@ +6?a COS+) }

where

Kl+?t ‘1K2

L(A)=
&2 Aces@ + A2 “

(21)
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