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Dual Series Solution to the Scattering of Plane
Waves from a Binary Conducting Grating

YON-LIN KOK, ASSOCIATE MEMBER, IEEE, NEAL C. GALLAGHER, JR., FELLOW, IEEE, AND
RICHARD W. ZIOLKOWSKI, MEMBER, IEEE

Abstract—The problem of scattering by electromagnetic waves from a
perfectly conducting grating with periodic groove structure is considered.
A system of dual series equations has been derived by enforcing the
electromagnetic boundary conditions; this leads to a boundary value
problem that is successfully solved. The mathematics leading to the
solution of the dual series system is derived from the equivalent
Riemann-Hilbert problem in complex variable theory and its solution.
The solution converges absolutely and allows one to obtain analytical
results, even where other numerical methods, such as the mode-matching
method and the spectral iteration method, are numerically unstable. As
most papers consider only diffraction efficiencies in the grating problems,
we are also interested in the relative phase values for the diffracted fields.
The phase differences between the scattered fields resulting from two
orthogonally polarized incident plane waves can be explicitly determined
for any incidence angles and for any groove dimensions. Comparisons
with the results from the mode-matching method and the spectral-
iteration method are also given.

I. INTRODUCTION

URING THE LAST TWO decades several approaches

have been taken in studying the properties of light
diffracted by perfectly conducting diffraction gratings. Meth-
ods such as the spectral-iteration method [1] and the mode-
matching method [2] have been used to study the diffraction
efficiencies of those gratings. A thorough review of some of
these diffraction theories can be found in [2]-[4]. As most
papers consider only diffraction efficiency calculations, we are
also interested in the phase value calculations for the diffracted
fields. We find that the phase value calculations are much
more sensitive to numerical error than diffraction efficiency
calculations. Even so, can one trust a diffraction efficiency
calculation, when the phase calculation has large error?

In a previous paper [5], Kok and Gallagher employ the
mode-matching method in solving the phase variation associ-
ated with an arbitrarily incident electromagnetic wave dif-
fracted by a perfectly conducting, groove-corrugated surface
(Fig. 1). Starting with the electromagnetic wave equation, they
represented the field in terms of a Floquet-Bloch expansion in
the half-open region while the field inside the groove region is
expanded in a Fourier series. They found that purely numeri-
cal methods (e.g., spectral-iteration method and mode-match-
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Fig. 1. The perfectly conducting groove surface in a rectangular coordinate
system. The groove structure is periodic in the x-axis direction with groove
period d, groove width ¢ and groove depth k. The grooves are infinitely
long and uniform in the z-axis direction.

ing method) may encounter difficulties mainly due to the
discontinuous behavior of the associated field function at the
electromagnetic boundary.

Recent developments in the theories and applications of dual
series equations [6] and their relationship to the Riemann-
Hilbert problem [7] have made it possible to obtain analytical
solutions to families of canonical problems descriptive of
electromagnetic coupling via apertures into enclosed and open
regions [8], [9]. These coupling problems constitute only a
small subset of a large class of mixed boundary value
problems. Plane wave diffraction by a perfectly conducting
grating of infinitesimal thickness is one of the canonical
problems amenable to solutions from these techniques [10].
Once the boundary value problem is solved, one can easily
assure convergence and compute the modal coefficients and
the subsequent wave functions.

In this paper we will exploit the general dual series
equations and Riemann-Hilbert techniques in analyzing the
problem of plane wave diffraction by a perfectly conducting,
groove-corrugated surface. Wave solutions subject to the
boundary conditions imposed by the groove structures are
given in Section II. There we define a general electromagnetic
wave in terms of two orthogonal components: fast polariza-
tion and slow polarization; and the diffraction problem is
then treated for each of these cases independently. A system of
dual series equations is derived for each case. The connections
between the general dual series equations and the Riemann-
Hilbert problems will be given in Section III. Rigorous
solutions of the modal coefficients and the phase variations in
both the fast and the slow polarization cases are obtained by
solving a system of linear equations. In Section IV we discuss
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various aspects of the phase angle difference between these
two orthogonally polarized waves. The convergence in com-
puting the phase differences with dual series method is also
illustrated there. In particular, the solution to the Riemann-
Hilbert problem is generalized to the case where the forcing
function (Fy(z) in (24), Section III-A) is muitivalued in the
complex variable z-plane.

Brief comparisons between the results from the iteration
method, the mode-matching method, and the Riemann-Hilbert
approach are also given. They demonstrate that the Riemann-
Hilbert approach works the best for all groove dimensions and
all spectral regions.

II. ANALYSIS
A. Field Solutions

Assume that a monochromatic plane wave is incident on the
perfectly conducting, groove-corrugated planar surface (x-z
plane in a rectangular coordinate system) shown in Fig. 1. The
grooves of rectangular shape are infinitely long in the z-axis
direction. They exist periodically in the x-axis direction with
period d. Groove width and groove depth are defined to be ¢
and A, respectively. The associated wave vector of the incident
plane wave k can be represented by R — §8o + 27, so that
the incident electric field has a phase variation of the form,
exp [i(aox — Bay + 7¥2)], where ap = k cos 6 cos ¢, By =
ksin® cos ¢, v = k sin ¢ and k = w(ue)'/2. This is
illustrated in Fig. 2. The incident electric field is assumed to
have unit amplitude. We decompose the electromagnetic wave
into two orthogonal components [5]: the fast polarization
component and the slow polarization component, in each of
the following two regions.

1) Region 1 (y = h)

(a) Fast polarization

isin ¢ AU 1isin ¢ AU
E= —, -, 2
[ X ox X 3y U cos ¢] 1)
—-idU i U
H=[——,——,O:| )
wu 0y  wu ox

where

U(x, y, z)=exp [i(aox—Boy +v2)]

+ 3 raexp [ianx+ By +72))

n=—o
27
an=ao+7 n, B.=(k*-aZ-—y?)'2

(b) Slow polarization

[i sin ¢ dV

1—_’V 2
K Tk gy s

[iaV -iav
E=|——,——,0
we dy  we Ox

i sin ¢ 3V
i sin ] 3

@
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Fig. 2. Definitions of the incident wave angles: ¢ and 6. K is the wave vector
of the incident plane wave. ¢ is the angle between k and its projection on the
x-y plane. 6 is the angle between the projection of k on the x-y plane and the
X-axis. ’

where

V(x, y, z) =exp [i(aox—Boy +7v2)]
+ i Sy exp [i(anx+ B,y +72)].

2) Region2 (0 =y < h)
(a) Fast polarization

[ = [ rr c )
2 a, sin [— <x+—>] sin (A,y)
o c 2

[
E(x,y,2)=< - exp (iv2), 0=|x|<5, )

where

The term sin (A4, y) is replaced by sinh (4, y) if

n \2 - 2
k2—<?> —92<0, sothat 4,= 72+(7r—n> — k2.
c

Other field components can be obtained directly from Max-
well’s equation;
—iwe OF, iwe OF,

_ iy OE, i_'yaEz _ OF: py _lue OE:
h? dy h? ox

"R BTy T

X

where i = k cos ¢.
(b) Slow Polarization

H,=Y} b, cos [n%r <x+§>] cos (B,y) exp (ivz),
n=0

c
O<|x|<= (6
Ix|<5 ©
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where 2) Slow Polarization:
Bkl nw 2_1(2 He0 12 e (z{) H(x, ¥, 2)|y=» is continuous f(?r 0 =< |x| < ¢/2:
n c ’ » 1y & . Referring to (3) and (6) for the wave function H,(6, 9, )| y=hs
we have

The term cos (B, ) is replaced by cosh (B,y) if

5 0 cos? ¢ {exp [i(agx —Boh+7v2)]
k2—<1r—”> —42<0, so that B,= 72+(1r_n> —k2.
c c

+ i S exp [i(anX +Bry +7v2)]

Similar to the fast polarization case, we can derive other field ne oo
components from Maxwell’s equations;
hed nw c
_iwp OH, £ iwp 0H, =Y, b, cos (B,h) cos [T <x+§>]
*“hz ey 7 R ox’ n=0
iy 0H, iy 0H, . c
== —,H==—. - exp (ivz), O=<|x|<=. 9
thax yh23y P('Y) ll ) ()
B. Matching the Tangential Fields aty = h (b) E.(x, ¥, 2)|y-n is continuous for 0 < | x| < d/2

Consider the tangential fields in one period of the groove Referring to (4) and the partial derivative of (6) with respect to
structure (i.e., 0 < |x| =< d/2). At the interface between  for the representations of E,, we impose the condition of
regions 1 and 2, y = h, the electromagnetic boundary ~ continuity:
conditions require that the tangential [E-field be continuous for ;
all x while the tangential H-field be continuous within the (—> {(— iBo) exp [i(cwx — Boh +v2)]
aperture of the groove (i.e., 0 < |x| < ¢/2). For each of the we
two orthogonal polarization components one then obtains the
following results. o ) )

1) Fast polarization + 2 5, (iBr) exp [i(cnx + 5nh+7z)]}

(a) E,(x, ¥, 2)|y=n is continuous for 0 < |x| < d/2: n=-e
Referring to (1) and (5) for the field function E;(x, ¥, 2)|y=h>

we have (<iwy.> = (—b.B,) [mr( +c>]
cos%&{exp [i(aox— Boh +72)] ) = nBn) €08 7 * 2

- B L . - c
+ 3 rnexp[i(ananhwz)]} =4 csn@Bep iy, 0=ixi<z (10

n=-o

c d
(= —_— 0 <=3

Y, asin [7 <x+5>] sin (A,h) L

n=l Now we have two pairs of unknowns, r,, @, and S,, b, in

= - exp (i72), 0=<|x| <E ) (7)-(10). In the following sections we formulate these equa-

2 tions into a dual series form for both the fast and the slow

¢ polarization cases. Then we apply the techniques borrowed

L 0, E< |x|= 2" from Riemann-Hilbert problems [11] in solving for the
unknowns.

(b) Hy(x, ¥, 2)|,=n is continuous for 0 < |x| < ¢/2:
From (2) and the partial derivative of (5) with respect to y, we
have the wave function H,(x, ¥, 2)|,-4 Imposing the 1) Fast Polarization Case: Rewrite (7) and (8) in the

C. Dual Series Representation

condition of continuity then yields; following form. For 0 < |x| < ¢/2,
—i . . -
(w_;l> {(_'B") oxp [i(eox=fu 72 (cos? ) {exp (~iBoh)+ 3 1
£ S i) exp [i(anX+Bnh+72)]} o
ne oo - exp [i (—d— nx+B,,h>]}
—iwe\ & nw c
= nAn i - +- hd
< n? >§ i S0 [ c <x 2)] = a, sin (4,h) sin [E <x+5>]
c = c 2
- cos (Aph) exp (ivz), 0< |x|<5 . ®) . exp (~ iaox), an
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oo

S (i)

n=-oo

(cos? ¢) {(—iﬂo) exp (—iBoh)+

- exp [i <2§ nx+Bnh>]}
()

=E a,A, cos (A,h) sin

n=1

- exp (—iogx). (12)
For ¢/2 < |x| < d/2,
(cos? ¢) {exp (—iBoh)+ 5: ry
[ 2
- exp [1 <—d~ nx+ﬁ"h):|} =0. (13)

A system of dual series is derived from (11), (12), and (13)
(Appendix I);

i Nm €xp (imy)=0, for Yo<|¥|=m (14)

m=—-o

i Im|m| exp (imy)=Eno+ f} Sm exp (imy)

m=-o m=-~o

+ i gnexp Li(nv—1)Y, for 0= |y|<yo (15)

where
no=exp (—iBoh)+ry exp (iBoh)
Mn="rn exp (iByh),  n#0
£=idBy/2m,

fom {—idﬁo exp (—iBoh)/,
"l mem,

0, n=0

m=0
m+0

—-d <
&n= (E) An cot (A"h) 2 Mm

m=-o

n+0

unm ’

_V(=Drexp [—i(amc+nm)/2],
"= Uexp [—i(anc+nw)/2],

. tnm'

n>0
n<0

+1, amC= £ nw
Unm={ (—i27n)[(—1)" exp (iapmc)—1]
(am€)?—(n7)?

, amC#+ tnm

v=d/(2c),
r=aod/2w,
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¢0=Cﬂ/d,

em=1—V[(apd/2wm) + 112 = (dh/2wm)?.

Equations (14) and (15) constitute a dual series system with
unknown coefficients 3,,, m = 0, 1, +2, -, for the fast
polarization wave.

2) Slow Polarization: Rewrite (9) and (10) in the follow-
ing form. For 0 < |x| < ¢/2,

cos? ¢ {exp(——iﬁoh)+ 5: Sy

n=-~o

- exp [i <2§ nx+6nh>]}

>, nw c
= b, cos (Bh il
Z:O cos (B,h) cos [ - <x+2>]

- exp (—iagx), (16)
cos? {—Bo exp (=iBoh)+ 3 Buss
) [ 27 h>
exp |/ <—; nx+ 4,
= . nw c
=§o ib,B, sin (B,h) cos [_Z" <x+§>]
- exp (— iagpx). (17)

For ¢/2 < |x| = d/2,

cos? {—ﬁo exp (—iBoh)+ S Bash

n=-—o

- exp [i <2§ nx+6,,h>:|} =o0.

Similar to the fast polarization case, we have a dual series
system derived from (16), (17), and (18) (Appendix II):

(18)

S Gexp im)= 3 hyexp LiGm—nYl,

n=-o n=-o

0={y|<¢o (19

S 6 exp (iny) =0,

n=-o

Vo<l¥lsr  (20)

where
So=—Bo exp (—ifoh)+ Boso exp (iBoh)

$n="Bn5n exp (iB,h), n#0
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(Guo+ DB, tan (B,h) &
hy=
3 >

m=—oo

° [25m0 €xp (_ lBOh) +é_mj| tim

i |ame|=nm

(anc)(—1)" exp (iame)— 1]
(am€)?—(nm)?

Equations (19) and (20) constitute the dual series problem for

the slow-polarization case. The solution unknowns ¢{,, i.e., n

=0, +1, *2, ---, can be obtained with the Riemann-
Hilbert problem techniques.

, |amc| #nm -

III. A RIEMANN-HILBERT APPROACH TO THE DUAL SERIES
PROBLEM

By matching the tangential fields at the electromagnetic
boundary, we derived the following dual series systems for the
unknown coefficients in the previous sections: (14) and (15),
for the fast polarization case, and (19) and (20) for the slow
polarization case. In this section we apply the Riemann-
Hilbert problem techniques to solve each of these dual series
systems.

A. Fast Polarization Case

Differentiating (14) with respect to ¥ and substituting x,,, =
mn,, (m # 0), in (14) and (15), we obtain the following
equations:

S xoexp(ind)=0, Yo<|¥|sm. (I
n#0

3 xn%exp i) =Eno+ S fu exp (imy)

n+0 m=—
+ 3 sexplitw-nyl,  O<|¥|<vo. (2)

n=-oo

With the condition

= Xn .
~mo=3 Zexp (iny),

n#0 n

n=-o

two functions are introduced

X ()= xm2z", X_(2)=-Y Xmz".

m>0 m<0

We assume that x, and x_ are analytic functions on the
interior and exterior of the unit circle S (Fig. 9), respectively.
Rewrite (21) and (22) as

X.(2)-X_(2)=0, 2z € L={exp ()|o<|¥|<m}

(23a)
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X, (2) - T(2)X_(2)=F(2),
z € T={exp (W)|0=[¥|<¥o} (23b)

where

T(2)=—1and FQ)=fmo+ 3 fuz”

+ f: 2,27, forz €T.
Then let
R- {0 €T,

An imhomogeneous Riemann-Hilbert problem [11] with a
discontinuous coefficient Ty(z) and a multivalued forcing
function Fy(z) is defined by (23a) and (23b):

X (2) = To(2) X _(2) = Fo(z),

Riemann-Hilbert problems treated in the literature [6]-[10]
involved only a single-valued forcing function. Since the
number (nv — 7), the exponent of z in the above series F(z), is
not necessarily an integer, the function in our case F(z) has a
branch point at the origin and becomes multivalued in the
complex variable z-plane. This multivalued forcing function is
responsible for the edge behavior of the field function [9].

The problem formulated in (24) is reduced to one with
continuous coefficients by introducing the characteristic func-
tion (1/G(z)), which has the same singular behavior as X (z)
aty = =+, That is

z € S(=T+L). (24

1
—_— = Ty(2) —— , e 2
G WG *ES @3)
where
G(z)= {G_(z), [z|>1"
Multiplying (24) by G.(z), we obtain
$,(2)=P_(2)+¥(2), zE€S (26)

where

2(2)=G(2)X(2), ¥(2)=G.(2)F(2),

®,(z)= lzijg ®(z2), ®_(2)= Eiirsl ®(2).

jzl<1 jzl>1

Equation (26) represents the transition condition of a
Riemann-Hilbert problem with continuous coefficients de-
fined on the unit circle S. The solution given by Gakhov [11,
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TABLE I
DEFINITION OF SOME IMPORTANT PARAMETERS THAT HAVE BEEN
DERIVED IN APPENDIX IV

Variables Index’ Closed form expression"
Rp m (any integer) % m(0)
o m], 1to
2 2
WY
r#0 5 sin(¢o)P; (o)in ‘—;ﬂ]+;—,lv,(o) —P,_(0)
m 3| P P a(@)Pr (o) — Pas(oIPilo)
vi m=r>0 B P 1(0)Ua(0) — Po(@)Upa1(0)
m=r m=r=—1 0
m=r<-2 PP sV —p2(0) = P o0)U_1(0)
Y no index —%]ln ‘.l%
* r is a real number and m is an integer.
i o = cos(¢y) and ¢ = o
pp- 96-99] is Fourier inversion of (28) then yields as follows.
(1) m#0
1 4
®(z)=— S L d\+co, where ¢, is a constant. 1t 2 1
2mi Js A— Xm=5— | 55
27 Y-y (Gy(e¥) | 2mi

Consequently, the desired solution of (24) is defined as

1 1 +OOFON
X(2)=— SFG ()\_)z( )d)\+ %

27 G(2) G(z)’ @7

The characteristic function G(z) is also given by Gakhov [11,
p. 424];
G()=V(z-a)z—a),

where a=exp (iYy) and a=exp (—i).

From (26), (27) and the Plemelj-Sokhotskii conditions [11]
(Appendix III),

X (2)+T(2)X_(2)

2 [ 1 S G.(NF(N) d)\+c:|
U 0
r

TG.(2) L 2mi Nz
=X,(z2)-X_(2)= ‘2 Xm €xp (imy), z€T.

28

. S G.(MF(N)
r A—ev

d)\+C0:| } emv d¢
Substituting F(A\) from (23b) into the above equation gives;

Xm=V0Eno+ D vifut Y vE g, +2Rpco, (292)

n=-ow n=—-o

where
1 (vo e im¥ 1 ¢ G.(MO)N
= [ 2 = GON | ay,
2% Y-v G.(e¥) | wi v N—eW¥
1 S\ﬁo e~ imy
" 2w Vv G (e¥)
Closed-form representations for v/ and R, are given in Table

I. The proofs are given in Appendix IV.
2) m=20

ay.

0=vdtne+ Y, vifat 3 v{" 7g,+2Roco. (29b)

n=—oo n=-o

Now impose the auxiliary condition:

> X,
=Y ;"eXP (iny),
Ty

Yo<|y|=m.
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We substitute x,, obtained in (29a) and let ¥ = = to give

_’70=on7[0+ E wif,+ E W(mvf)gn+2Yc01 (29¢)

n=—-o n=—o
where
2 vp(=D)” & Ru(=1)"
wi= 2, Y= _
m—E—m m mgm m
n;*O m#0

Closed-form representations of w” and Y are given in Table I,
and the proofs are given in Appendix IV.

Equations (29a), (29b), and (29c) constitute an infinite
system of linear equations. We truncate the infinite series in
each equation at some value N and use Gauss elimination to
solve the remaining finite system for the unknowns co, 79, 7+ 1,
- -+, n«n- Typically, reasonable convergence is achieved with
N = 100 d/\ [9], where the coefficients of x,(or ny,), n >
N, in the right-hand side of (29a)-(29c) are negligible.

B. Slow Polarization Case

Consider the dual series problem, (19) and (20), presented
in Section II-C:

f} $nexp (ing) = i hy exp [i(nv—1)Y],

n=-—o n=-o

0=[¥|<¢o (19)

S Goexp(m))=0, wo<l¥|=m.  (0)

n=-o

It can be reduced to a Riemann-Hilbert problem as follows.
Introduce the functions:

Y. ()= E mz™, Y (2)=-— 2 Sm2™.

m=0 m<0

Assume Y, and Y_ are analytic on the interior and exterior of
the unit circle S, respectively. Rewrite (19) and (20) as

Y.(2)-Y_(2)=0, z € L={exp (iP|do<|¥|=7}
(30a)

z € T'={exp (W)|0=<|¥|<vo}
(30b)

Y. (z)-Y_(2)=H(2),

where

H(z)= Y, hiz™ 7, forz € T.

n=-—oo

Equations (30a), (30b) are analogous to (23a), (23b) except
that 7(z) = 1 rather than —1 as in the fast polarization case.
Following the same procedures as in the fast polarization case,
we formulate a Riemann-Hilbert problem with continuous
coefficients. The characteristic function (1/G(z)) is now

907
defined as [11]
G(2)=V|(z-a)z-a)l,

where a=exp (iyy) and @ =exp (—iyy).

Similar to (28) one can easily obtain the following equation:

Y.@)-Y-()= 3 & exp (imd)=H(2),

n=-om

zeTl.

€2))

Fourier inversion of this expression gives the terms

tm="3 hnQmn, forallm

n=-

(32)
where

o1
O =5 | exp Li(ny—7—m)y1 dy
T vr

=ﬁ sinc [(nv — 17— m)y,].
L1

Equations (32) constitute an infinite system of linear
equations with unknown variables {, {.;, ¢+2, ---. We
truncate the infinite series at some value N and use Gauss
elimination to solve the remaining finite system of equations.
The value of N is chosen to be N = 100 d/\ so that the
coefficients ¢{,, associated with the forcing terms, 4,0,,, where
n > Norm > N, in (32) are negligible and the convergence
of the solution is obtained [9].

IV. NuMEricAL RESULTS AND CONCLUSIONS

The theoretical results developed with the Riemann-Hilbert
techniques were implemented as Fortran programs. We
simulated the diffraction processes and computed both the
diffraction efficiencies and the phase differences for arbitrary
wave incident angles.

The nth order diffraction efficiency [2] is defined as the
ratio of the real power carried by the nth diffracted wave in the
direction normal (y-axis direction in Fig. 1) to the plane
boundary to the real power associated with the incident wave
in the same normal direction (i.e., y-axis direction). It is
calculated by

cos 4,

er,=|r,|?

for the fast polarization case.

cos 6,

es,=|s,|? for the slow polarization case

where 0, = sin™! (a,/k cos ¢). On the other hand, the phase
differences between the incident plane wave and the zero-
order diffracted wave are computed by the following formulas

[5):
pro=arg [ry exp (2iBoh)], for the fast polarization case.

pso=arg [ —soexp (2iBoh)], for the slow polarization case.
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The diffraction problem of our particular interest is when the
ratio of the grating period to the incident wavelength falls in
the neighborhood of 0.25. Studies [1], [5] showed that the
polarization direction of the zero-order diffracted wave is
controllable by the groove depth 4 in this region. The
mechanism [5] mainly depends on the relative phases of two
orthogonal polarizations as defined above. In this section we
will derive the analytical formulae for the phase value
calculations so that hypothesis and conventional wisdom found
in the literature are strictly verified.

Based on the Riemann-Hilbert method, the contour plots of
the magnitude of two tangential field components near the
aperture were generated in Figs. 3(a), 3(c) and Figs. 4(a), 4(c)
where the series truncation number N was taken to be 100. We
also plotted the fields magnitude at y = h (the interface
between region 1 and 2 defined in Section II-A) in Figs. 3(b),
3(d) and 4(b), 4(d). The electric fields in Figs. 3(a), 3(b) and
4(a), 4(b) drop to zero on the metallic surface within an error
less than 3 percent. Discontinuities at the groove edges are
found in the plots for | H,| in the fast polarization case and for
| E,| in the slow polarization case. These results checked the
underlying theories, the boundary conditions, and our com-
puter programs.

For the cases to be discussed below, the grating dimensions
were expressed in terms of the ratios: d/N = 0.25, d/c = 2,
where d is the groove period, c is the groove width and \ is the
incident wavelength. The groove depth 4 was varied from
0.01 X\ to 0.30 A\. Convergence of the solutions of the linear
systems is easily achieved with a series truncation number N
= 16. As expected, the mode-matching method [5] predicts
the zero order diffraction efficiencies ery and esy to be 100
percent at all incident angles. The phase differences between
the two orthogonal polarizations ( pro — ps,) are plotted in
Fig. 5 for the fixed incident angles, = 0° and § = 90°.
Results generated with the Riemann-Hilbert approach, mode-
matching method [5] and the iteration method [1] are given.
We see that the Riemann-Hilbert method reproduces the
mode-matching method results while the iteration method
tends to diverge when the groove depth h approaches one-
quarter wavelength.

We change the ratios of d/c to 2.5 and recompute the phase
differences (pro — pso). Fig. 6(a) shows that the mode-
matching method produces wiggly curves. The zigzag shape of
the curves demonstrates that this method fails to track the
correct phase variations. On the other hand, the Riemann-
Hilbert method (Fig. 6(b)) generates smooth curves and is
believed to be a numerically stable approach in this region.
There are nine curves given in each of the figures, represent-
ing nine values of the incident angle (0° < 6 < 90°). As will
be discussed later, these nine curves intersect at a common
point where pro — psy = 180° and A = 0.25 A.

We continued to make the groove width ¢ of the grating
smaller and smaller while keeping all the other parameters
fixed. The solutions for the phase differences are shown in
Figs. 7(a)-7(d). We observe that in Fig. 7(d) all the curves,
independent of the incident angles, converge into one that
attains a 27n phase difference between these two orthogonally
polarized waves, where n is an integer. This limiting case is
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the simple problem of the reflection of electromagnetic waves
by a smoothly polished, perfectly conducting plane. Each of
the reflected waves is 180° out of phase with its own incident
wave. Consequently, the phase difference between these two
reflected waves is an integer multiple of 360°.

We also computed each of the quantities pry and ps, as a
function of the groove width ¢ keeping the groove depth A
fixed (Figs. 8(a)-8(d)). We see that pr, decreases slightly from
180° when c increases from zero. This modifies the conven-
tional wisdom that the fast polarized wave reflects from the
top surfaces of the grooves and experiences a 180° phase
difference [1]. If we make the groove depth 4 smaller and
smaller, all the curves for both the fast and the slow
polarization cases flatten out and tend to converge into one
(Fig. 8(d) that returns to the previous case in which no grooves
exist.

In order to better understand the nonlinearity associated
with the quantity ( pro — ps,), we truncate the infinite systems
of 29) at N = 1 and at N = 0 for (32). We obtain the
following analytical results:

ro exp (2iBoh) = ,

1+ 2
,H<ﬂ>_i_"0f
2 dBy

. <a0C+ 1r>
sm|{ ——
2

72— (apC)?

where

Gr=1+42dA, cot (4,h)

(W= W) R+ (v =g ") Y]+ dA, cot (Ah)

. <a10+7r> Cfa_c+m
Sin sm| ——
2 2

72~ ()2 w2—(a_,c)?

cos Yo—

. (Uo—v—f_ US_T

and
— 5o exp (2iBoh)=

2 2
ﬁo+i§Bo tan (Boh) [sinc (%‘fﬂ

. 2C . anC 2 )
Bo—1i 7 B, tan (Byh) [smc (%)]

Let pro — psy = 180°. Then from (33) and (34) we obtain

(34

tan (Boh)
= MGl . (39)

. apC \ |2 1+ cos Yo
cos ¢(2¢) [smc <T>:| In (T)

This equation shows the relationship among the relevant
parameters when the relative phase difference equals 180
degrees (i.e., pro — psy = 180°). Note that if we substitute ¢
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Fig. 3. The Riemann-Hilbert approach produces the magnitude of some field components generated by the fast polarized incident
wave. The parametersare: N = lcm, d = 0.25cm,d/c = 2, h = 0.2cm, § = 45°, ¢ = 0°. (a) Contour plots of the magnitude of
the electric field component | E,|. (b) Aty = & = 0.2 cm, | E,| is plotted as a function of the x coordinate. (c) Contour plots of the
magnitude of the electric field component | H,[. (d) Aty = h = 0.2 cm, | H,] is plotted as a function of the x coordinate.
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Fig. 4. The Riemann-Hilbert approach produces the mangitude of some field components generated by the slow polarized incident
wave. The parameters are: A = lcm, d = 0.25cm, d/c=2,h =02cm,8 = 45°,¢ = 0°. (a) Contour plots of the magnitude of
the electric field component |E,|. (b) Aty = h = 0.2 cm, | E,| is plotted as a function of the x coordinate. (c) Contour plots of the
magnitude of the electric field component | H,|. (d) Aty = h = 0.2 cm, | H,| is plotted as a function of the x coordinate.
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Fig. 5. A comparison among the results from the iteration method, the

mode-matching method and the Riemann-Hilbert approach. The phase
differences (pro — pso) between two orthogonal polarizations are plotted as
a function of the groove depth 4. When the phase difference approaches
180°, the iteration method begins to diverge (dash line portion) from the
correct result. Results from the Riemann-Hilbert approach coincide with
mode-matching solution. The parameters are: A = 1cm, d = 0.25cm, d/c
=2,0=90°¢=0".

= 0, then for |Gy| > 0 (35) reduces to

/2 A

h=—m=—
By 4coso

(36)

This result was hypothesized by Kok and Gallagher [5] but
was not derived directly from the mode-matching solution. If
we substitute ¢ = d/2 = N/8 and let |G| = 2for¢ = 0°, 6
= 90°, we have A = 0.236 A from (35). This explains why
the common intersection in Figs. 6(b) and Figs. 7(a)-7(d) is
slightly offset from 2 = 0.25 A.

In conclusion, we found (Figs. 5 and 6(a)) that purely
numerical methods (i.e., the iteration and the mode-matching
methods) may encounter difficulties. This is due to the
discontinuous behavior of the field functions at the groove
edges (see Figs. 3(c), 3(d) and 4(a), 4(b)). The Riemann-
Hilbert approach, however, provides an effective way of
solving this class of grating problems. It formulates the grating
problem as a boundary value problem in complex variable
theory. The singular nature of the electromagnetic problem is
analytically resolved with the Riemann-Hilbert problem tech-
niques. Once the equivalent boundary value problem is solved,
one can easily achieve convergence of the numerical calcula-
tions for the modal coefficients and for the subsequent field
functions. Results generated with the Riemann-Hilbert ap-
proach to the dual series equations show that this method
works well for arbitrary incident angles, wavelengths, and for
any groove dimension.

APPENDIX [
Let
_\ exp (—iBoh)+ro exp (iBoh), n=0
1= r, exp (iBqh), n#0.
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Fig. 6. (a) The phase differences (pro — psy) obtained by the mode-
matching method appear unstable for the parameters: A = 1 cm, d = 0.25
cm,d/c = 25,0 < h<0.30cm, ¢ = 0°,10° < § < 90°. (b) The phase
difference (pro — pso) obtained by the Riemann-Hilbert approach are

stable for the parameters: A = 1cm,d = 0.25cm, d/c = 25,0 < h <
0.30cm, ¢ = 0°, 10° < 6 < 90°.

Then (13) can be written as

i . ('n 21rx> 0 er_
n€Xp \in — | =0, —
Nn €XP d d

n=-o

Let Yo = wc/d, y = 2wx/d, then (14) in Section II-C is
obtained from (37).
Rewrite (11), (12) as

2nx

=r. (37)

i N €Xp (iap,X) = i a, sin (A,h)

n=-oo n=1

- sin nl<x+£> /cos2q5 (38)
c 2 ’
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Fig. 7. (a) The phase difference (pro — pso) versus the groove depth A. X = 1 cm, d = 0.25 cm, dlc=2,6=0°10° <0<

90°. (b) The phase difference (pro — pso) versus the groove depth h. N = 1cm,d = 0.25cm, d/c=5,¢=0°10°<6=<90°.

(c) The phase difference (pro — pso) versus the groove depth A. A
The phase difference (pro — pso) versus the groove depth A. X = lem, d = 0.25cm, d/c =

o

Y, inuBy exp (ianx) — 2iBo exp [i(coX = Boh)]

n=-

- Cfan c
=’§l a,A, cos (A,h) sin [-C— <x+5>j| /0052 6. (39

Compute the Fourier sine series coefficients a, in (38) and
then substitute them into (39). We have

L 27X
T nl=
2 NnBn €Xp \ d

n=-o
n#0

—n0Bo

+ 28, exp (—iBoh) + i A, cot (A,h).

n=1

® [ nx c )
2 Nm SIN [7 <x+5>:| exp (—iogx)S1,m, (40)

m=—

= lem,d = 0.25cm, d/c = 50,¢ = 0°,10° < § < 90°. (d)
250, ¢ = 0°,10° < 6 =< 90°.

where
-
F i exp (—ianc/2),
if a,,c= £ nm.
Slym= . (—2n7) [(— 1" exp (iamc)—1]
) exp (— iy, c/2) ) ()
L if ac# 0w,
Substituting
2win|i aed 2 < dh )z] 12
— 2_ a2 22— —+1 ] —
R [(27"1 > 2nn
2rw|nli
= (1 _5n)a
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Fig. 8. (a) The phase differences, pry and pro, versus the groove widthc. A = 1 em,d =025cm, h = 0.26cm, ¢ = 0°,10° < 6
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and Equation (20) in Section II-C can be obtained from 41).
2mx cr d apd Rewrite (16), (17) as
‘l’=_ ’ \I’O:_ s and y=— y T="——,
d d 2c 27 - ¢
into (40), (15) in Section II-C follows immediately. S [—n+ 0102 exp (—iBoh )] exp (ia,x)
AppENDIX 1T e ’
i B,h n c
Let =3 b, B [—’r (x+5>] . @)
G= { = Bo exp (—ifoh) + Boso exp (iBoh), n=0 n=0 cos”™ ¢ ¢
" Sy exp (iB,1), #0.
Busu exp (iB,h) " - _ = B, sin (B,h)
Then (18) can be written as 2 nexp (inx)=3) ib, cos? ¢
n=—oo n=0

® 2
> Snexp (i%nx>=0, c/2<|x|=d/2. (41) - cos [ﬂ <x+§>] . 43

n=-o c



914

Compute the Fourier cosine series coefficients in (42) and
then substitute them into (43). We have

i &n €Xp <i 277r nx)

n=-o

INgK

B, tan (Bsh) 3 [%’hamoz exp (—iﬁoh)]

n=0 m=—-o

nr c
« 82,m COS [— <x+—>] exp (—iaox), (44)
c 2
where
~
i exp (—ianc/2),
lotme| = ||
$2um= 13 QRam)(— D" exp (iomc) —1]

exp (— ia,c/2)

(am C)2 - (n7r)2

k lanc|#|nr).

Equation (44) can be easily simplified into (19) with a change
of variables.

AprpeNDIX 111

THE PLEMELI-SOKHOTSKII CONDITIONS AND THE
RiEMANN-HILBERT PROBLEM

Suppose that one is given a simple, closed, smooth curve I'
dividing the complex plane into two open sets, the (bounded)
interior S, and the exterior S_ and two Holder continuous
functions of position on that contour, T(y) and F(y), T(v)
being unvanishing. Let x(z) be a sectionally analytic function,
i.e., over the domains S, and S_ let x(2) equal, respectively,
the analytic functions x,(z) and x_(z). Then the Cauchy
integral

1 F() d
x(2)=— SF é_s?z{

solves the problem: find a piecewise analytic function x(z)
vanishing at infinity that satisfies on T' the prescribed transition
condition

, 45)

x, (Y —x-(M)=Fy),

It must be noted that the function defined as a Cauchy principal
value in (45) satisfies a Holder condition of the same type as F
and the Plemelj-Sokhotskii conditions:

y ET. (46)

1
x. (P=x(v) +s F(y), (47a)
1
x_(y)=x(y)- 3 F(y). (47b)
Moreover, the additional condition x_() = 0 can be

modified. For instance, if x(z) has a pole of order natz = oo,
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the solution of (46) is

F(§) d§

1
x@=— | +P,(2), 48)

2w

where P,(z) is a polynomial of order n in 2, Py(z) being a
constant.

The Riemann-Hilbert problem is a generalization of this
problem. In particular, it is desired to find the sectionally
analytic function x(z) which satisfies on the contour T' either
the transition condition

x: (V) =THx-(n) (49a)

or

x (N=TWx-(N+FQX)- (49b)
A further extension of this problem to open curves and
discontinuous coefficients is possible and has been well treated
in 18].

ArpENDIX IV
1))
P,(0)

m= > 50

> (50)

where P,,(0) denotes the Legendre function evaluated at 0 =

cos (Yo) [10].

2)

L1 e~ imv 1 G, (NN
Um=on S N S eV
27 d-vo Go(e™¥) L mwidr N—-e

(a) Referring to [10], we evaluate the following integral

d)\] dy. (51)

iSr G.OWN 1 SGG+()\)Nd)"

i A— to A—- to

where G is the contour surrounding the arc I' (Fig. 9). We
divide the contour G into two segments C; and Co. They are
interior and exterior to the unit circle S, respectively. Let us
expand the integrand into the following expression [10]:

VIO = eo)(A—e~Mo)]\"

A=t
—S 1IN Y wl@NN, for [N <1
= Jj=0 k=0
=Y ATy u (NN, for |\|>1
Jj=0 k=0
where uo(U) =1, ul(a) = —o0, u"(g) = P,(0) — ZUP,,,](G)

+ P,_5(0), n = 2. The contour integral is evaluated along C;
and C, in the clockwise direction. Letting e = 0 and R — oo,
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z- plane

Fig. 9. Gisa contour consisting of two segments, Cyand C; (G = Cy U C)
which are outside and inside the unit circle S, respectively. T is an arc on S,
surrounded by the contour G. We define ' = {exp (i) | 0 < |{¥| < v, ¥o
= c/dr}, and o = exp (iyp), & = exp (—iYo). The contour integral in
computing v’ is carried out along G in the clockwise direction.

we obtain
1 G, (NN
wdr A=t

=@ {i th S uy(0) sinc [Yo(r—j—k+1)]
0

j=0 k=

—i 15 f: (o) sinc [¢O(r+j+k+1)]} . (2
Jj=0

k=0

We then employ the following equality whose derivation
will be given in Appendix IV-b

S un(0) sinc [Yo(n—r)] = (ﬁ) sin (Vo) P, (@), (53)
0

n=0

where the associated Legendre’s function of the first kind is
defined by [12, p. 267, eq. (128),]
2—m+l sin—m‘llo

P s b0 = T m+ 1/2)

. Swo cos (n+1/2)¢ do 54)

0 (2 cos ¢—2 cos Yp)l/2-m’

Equation (52) can now be simplified to

1 G, (AN 1
—) ———dr==
Sr A=1{ 2

i

{i # [sin Y0P, (0)]

=0

=3 171 [sin %P:L,»,z(a)]} . 59)

j=0

Substituting (55) into (51) and using the Mehler-Dirichlet
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formula [10], we have
12 Piem (P (o)

~Pjime1(@P 7, ,(0)} sin yo. (56)

With the definition of the function sin YoP !(0) given in
Appendix IV-b, the following series is derived in a closed
form:

©

> Piom-1(0) sin 0P, (0)

Jj=0

- 1 v - -
:E P”'—j(a) ; Sj;o \/(ew—e"ﬁo)(eub_e—wo)
- exp [i(r—/)¢] do
1
== j‘\‘i [Fr(®) exp (imp) Ve —2geid+ 1
]

- exp [i(r—m)é] do (57

where
gm(¢)=2 Pm—j(a) exXp (_Ud))
j=0

We compute the integration in (57) by parts, where the
derivative of the function,

§(®) exp (imp)Ne®—200P 1,

with respect to ¢ is derived by taking advantage of the
recurrence relationship for P,(o):

(m—=J)Py_;(0) = (2m—2j—1)oPy_;_,(0)
+(m—j—1)Py_;_»2(0)=0. (58a)

In particular, we multiply (58a) by exp [i(m — j)¢] and sum

over the index j from 0 to co. The result can be simplified to

(1-2ge™ + e'2¢) % [Fn(d)e™]

+(~ige™ + ie')[F,,(¢)e™™]
=i(m+1)Pp(0)e ™+ D% —i(m + 1) P, (o)e’™* D9,

Consequently,

i(m+1)Pp(0)

d - .
— {Fn(dp)e™ V1 -20e*+e2}=———
a¢{ @) } V1 —=2ge" +ei2

i(m+1)Ppy. (o)
V1-20ei + 2

. ei(m+2)o_ ei(m+1)¢‘

(58b)

Using (58b), we can easily compute the integration in (57) by
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parts and obtain the following expression for the desired sum:

3 Py 1(0) sin YoP,(0)

s
J r

1
(r’nn+ >{P ()P, 1(0)—Pp +1(0)P(0)}

for m#r, m+ —1

(2—%> sinc [Yo(r+ D], for m#r, m= -1
T

= T (r+ D[P+ 1(@) U (0) = P(0) U1 (0)], 9
for r=m=0
2—% , forr=m=—1
T
(r+ DIP-,-1(U_,_2(0)=P_, 2(dU_,-1(9)],
r=m=<-2
L
where
Up(0)=0, Ui(o)=0-1,
aP,(0)—P,-1(0)
Unii(o _—_(TH)_Z—
2n+1 n
+ oU,(0) ——— U,_,(0), for n=1.
n+1 n+1

The case when r = m is given in [6]. The second series in (56)
can be derived in a similar fashion. Consequently, the
parameter v’ expressed by (56) has the closed-form represen-
tation:

( (m+1)
2(m—r)

[Pm(G)P,+1(0)—P,,,+1(0)P,(0)],

m¥r

m+1
_—[Pm+l(0)U (0) = Pr(0) Upn+1(0)],

m=rz=0
0, m=r=-1

m+1
—2—[P—m l(U)U—m 2(0) P~m 2(0)U,,,, I(U)L

L m=r<-2.

(b) Derivation of (53) in Appendix IV-b: Let us consider
the associated Legendre’s function P! (cos yy) defined in
(54), [12]

P;—ll (cos Yp)=P i: (cos ¥o)

-1
:sm Yo S‘LO‘L exp (—irg)
)

™

- V(e —eVo)(eid —e~V0) dp.  (60)
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Since [10]

o

S ua(0) exp (ing)

n=0

0=<|o|<¥o
Yo<|p|l=m

= {\/ (e —eVo)(e® —e ),
(= WV(e* —eMo)(e®—e~ o),

(60) can be written as

, 1
sin ()P @)=~ [ exp (=ir9)

oo

Y un(o) exp (ind) doé

n=0

s

n=0

u,(0) sinc [Yo(n—r)].

Equation (53) follows immediately.
3)
i v’ (— 1)"‘
oy

Substituting (56) for v’ into the above equation, we have

(= 1)’"me1(0)]

m

1e :
W=7 sin YoP, ;(0) [ S
j=0

m#0

(- l)ij+m+l(G)]
— |

(61)

y
5 2 sin VP 2, 2(0) [ D
j=0

m#0

With (59) and the following equality [10, eq. (38)]:

- _lum
$ CVPi@_ T p o),

- m+s sm( )

m

the series in (61) can be evaluated in the limit as s = 0. This

yields
-
_1 in VoP-1(0) 1 <1+a
251[1 off, "(0) In 2
1
w={ = [P@)-Pri@]  r#0.
2r
10, (110), e
L2 2
4)

& ,,,(—l)"’ 1 l+o

m=-o
m#=0

See [10] for this derivation.
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