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The azimuthal current induced by an H-polarized plane wave

with an arbitrary angle of incidence on an infinite cylinder
with an infinite axial slot is considered. A system of dual
series equations is derived from the modal expansions of the
tangential field components by enforcing the electromagnetic
boundary conditions. This dual series system is then solved
for the modal coefficients with techniques borrowed from the
Riemann—Hilbert problem of complex variable theory. The
resulting infinite system of linear equations for the modal
coefficients can be handled in an efficient manner. A °
comparison of the generalized dual series solution with a purely
numerical method of moments solution based upon vector and

scalar potentials is made.

Tn contrast to this method of

moments solutionm, it explicitly contains the behavior of the
solution near the aperture rim and can generate the current
values in a shadow region for small to large ratios of cylinder
radius to wavelength without additional special considerations.

i. INTRODUCTION

The electromagnetic coupling problem
as it applies to an enclosed reglon, an
external source and a coupling aperture
is one of major importance, both
theoretically and from a practical point
of view. Solutions of an analytic
nature would provide imsight into the
coupling mechanism by which electro-
magnetic energy penetrates apertures
into enclosed regions, Moreover,
accurate solutions of problems of this
type would provide standards for the
evaluation of scattering codes,
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especially near the edge at the aperture
rim where purely numerical techniques
may encounter difficulties.

Recent developments in the theory and
applications of dual series equations
[Casey, 1981, 1983a, b} and their
relationship to the Riemann-Hilbert
problem [Ziolkowski, 1983] make it
possible to obtain analytic solutions to
families of canonical problems
descriptive of electromagnetic (and,
indeed, acoustic) coupling via apertures
into enclosed regions. The generalized
dual series equations approach will be
used in this paper to calculate the
azimuthal ecurrent induced ou an axially
slotted cylinder by an H-polarized plane
wave at an arbitrary angle of
jncidence. This problem has been
studied by Morris [1982] who solved
integral equations with highly singular
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Fig. 1. Configuration of the scattering
of an H-polarized plane wave from a
cylinder with an infinite axial slot.

kernels using the Hadamard finite part
interpretation of the integrals to
obtain this current. Another alternate
approach is a two-dimensional version of
the method of moments solution based on
vector and scalar potentials analogous
to that developed by Glisson and Wilton
[1980]. 1In contrast to Morris's method,
the generalized dual series equations
approach is straightforward. Tn
contrast to the method of moments, it
explicitly contains the behavior of the
solution near the aperture rim.

It has recently been brought to our
attention that work of a similar nature
has been reported in the Russian
literature. Specifically, Koshparénok
and Shestopalov [1971] have applied the
Riemann—Hilbert analysis of the dual
series equations develeoped by Agronovich
et al. [1962) to the axially slotted
cylinder problem. In contrast to that
work, this paper develops a novel
approach to the solution of the infinite
system of equations obtained with the
Riemann~Hilbert technique. We have
developed a truncation procedure that
generates a general solutiom to that
system which is not restricted to any
special parameter regime. Furthermore,
the curreut is calculated here, a
quantity not considered by Koshpar&nok
and Shestopalov [1971]. In additiom,
using an asymptotic form of the solution
coefficients, we are able to demonstrate
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analytically that our general results
exhibit the correct behavior near an
edge of the aperture.

The structure of this paper is as
follows. 1In section 2, the formulation
of the axially slotted cylinder problem
ig given. The generalized dual series
equations approach is then used in
section 3 to obtain the solution of that
problem. The currents on the cylinder
are calculated in sectionm 4. A
comparison is made in section 5 between
the results generated with the
generalized dual series equations
approach and a two-dimensional method of
moments code. Conclusions and a brief
summary are then given in section 6,

2., TFORMULATION

The electromagnetic coupling of a
plane wave through an infinite axial
slot in a thin perfectly conducting
infinite cylinder is considered. The
magnetic field vector of tHe plane wave
is taken to be parallel to the axis of
the cylinder. This H-polarized plane
wave is assumed normally incident on the
cylinder; hence the problem is two
dimensional. The currents it induces on
the cylinder are desired.

As shown in Figure 1, a cylindrical
coordinate system (p, ¢, z) is
centered on the axis of the cylinder;
the z axis coincides with the cylinder's
axis. The angle of incidence, ¢*NC,
of the plane wave is arbitrary. The
radius of the cylinder is "a." The
metallic portion of the cylinder lies in
the region -6 < ¢ < 6; the aperture is
the complementary region
6 <¢ <21 - 6.

A dual series equation approach to
this problem is employed. The incident
and scattered fields are first
decomposed into Fourier modes. The
expansion coefficients are then obtained
by matching the fields on the ecylinder
and in the aperture.

For the given polarization, Maxwell's
equations decouple and only the Ep,

E4 and H, components of the field

are excited. The components of the
field tanmgential to the surface of the
aperture and the cylinder are of
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particular importance in the dual series
formulation. They are related by

By = e %— B (1)
where, as throughout this paper, the
time dependence eI has been
assumed and suppressed.

The incident magnetic field may be
expressed in terms of Fourier modes as

-~ ejkp cos((b-d)lnC

wine - g
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From equation (1) it follows that
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where Jp(x) = (4/dx)Jy and Z, =

k/we 1is the free—space characteristic
impedance. The corresponding Fourier
expansions of the scattered fields are
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where H, is the Hankel function of
second kind and order n and Hn(x) =
(d/dx)H,. Note that (4c) and (4d)
realize the continuity of the tangential
component of the electric field across
the interface p = a. Boundary condi-
tions for the tangential electric and
magnetic field at the surface p = a

are now enforced to obtain the dual
series equations.

The total tangential electric field is
zero on the metal. Equivalently, this
may be expressed as the equality of the
scattered and the negative of the
incident electric fields there:

¢’ b
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Substituting (4e) or (4d) into (5), one
obtains
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The dc components of the fields can be
extracted from this relation by
introducing the fumctions Qn(x) so that

=im JLGOH(x) = 1~ Q%) (7a)

51 K29 GOR! () = al1-Q_(x)]

n >0 (7b)

where Q,(0) = 0. Thus (6) becomes

z jndb

L dab [1mQ),(ka)] I = (ka)?

n:--m

[1-Q (ka)] b + () ?n F(®) 1ol <8 (8
0 o] 7

o]



278 JOHNSON AND ZIOLKOWSKI:

On the other hand, continuity of H
across the aperture and the Wronskian
relationship

JI o (kadd,  (ka) - J, ,(kadH! ,(ka) = 2]
Inl In| fni Inl

Tka
(9}
give
;b ™ a0 e <ol (10)
n=-c

Equations (8) and (10) constitute a
system of dual series equations that can
be solved to obtain the unknown modal

amplitudes by,
3. SOLUTION OF THE DUAL SERIES EQUATIONS

The solution of the dual series
equations (8) and (10) may be obtained
by first solving an associated static

problem. That static problem is defined
by

[+4] . ¢
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and
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wvhere the forcing functiom £ is assumed
to have the Fourier expansion

jnd
fn e (12)

18

f(ej¢) =

n=—oo

Solution of this problem using
Riemann—Hilbert problem techniques
follows directly from Agranovich et al,

[1962] or Ziolkowski [1983]. The
analogous problem of the scattering of a
plane wave by an infinite diffraction
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grating was considered by Agranovich et
al. [1962]. As discussed by Ziolkowski
[1983], the Riemann-Hilbert approach
explicitly accounts for the singularity
of the fields near the edge of the
aperture. Assuming that

Xy = W b (13

i3

the result is

o
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The terms VZ, WM, R,, and S result
from combinations of Legendre functioms
and are given in Appendix A. The
auxiliary comstant 'c,” which is
introduced in the solution procedure, is
associated with the behavior of the
solution at infinity. It can be shown
that ¢ = %x-7. The evaluation of the
expression VB requires special
consideration; it is carried out in
Appendix B.

The solution to the time harmomnic
problem, equations {8) and (10}, may be
obtained by making the identifications:

[+)

f(ej¢) = I |nl Q1n|(ka) b, ejn¢
n=-oo
2
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o

and
2

o = (ka) [l - Qo(ka)] (16)

Equations (l4a)=~(l4c) then yield the
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infinite linear system
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where from (3) and (5) the Fourier
coefficients of F are

The infinite system of equations
(172)-(17¢) may be treated in several
ways. It has been found that truncating
Fy and Q|g| for Inl greater than
some value N and using Gauss elimination
to solve the remaining finite system
yields good numerical approximations for
the coefficients ¢, by, X1, ***»
x4y The remaining coefficients, xy,

@] > N, are given by the expression
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x_ = (ka)? [1-0_(ka}] v; b,
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As N approaches infinity, this
approximation scheme becomes exact.

4, EVALUATION OF THE CURRENT INDUCED ON
THE SURFACE OF THE SLITTED CYLINDER

Although the current induced on the
cylinder's surface may be readily
computed with the coefficients defined
by (17) and (19), an alternate
expression, particularly useful in
studying the behavior of the currents
near an edge of the aperture, speeds up
the summation process. The current
induced on the cylinder may be expressed
with (4a), (4b) and (9) as

3p(an) = H, (6 = B, (4)

2ﬁ X .
-2 ip ¢+ I B eI™? (20
JTka o] m%o m
where I _xq means to sum fromm = —®

tom = +® except the term with m = 0,
The rate of convergence of this infinite
sum can be increased by expressing it as

b4 . x '_; .
p B mb . oy mm mb s, (21)

m#0 mf0¢ "

where the term Xy is a large m approxi-
mation of xy and

T ejm¢ (22)

The first sum on the right-hand side of
(21) is rapidly converging; the second
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sum, S;, i1s obtained analytically as

follows:
From Appendix A, the equation

R = % Pm(cos 8) (23)

and the large |m] approximation of V; :

T

vV o= L P {cos &)P (cos 8)
m 2 m n+l

+

- Pm+1(cos B)Pn(cos 8)] lnl < W
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are obtained. The relations allow one to
write the term x,, as defined by (19),
in terms of the Legendre functions P

and Py as

~
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are independent of m. As shown in
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Appendix C, the sum S, then reduces to
the analytical expression:
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The only nonclosed expression, the sum
in the kg coefficient, has terms
decreasing in magnitude as m>/2 for
large m; hence it is rapidly convergent
and easy to evaluate. Wote that the sum
S5¢ depends on the term

1/2
(c052 % - cos2 g) = (cosd ~ cosh) 1/2

which is characteristic of the behavier
of the current near an edge. This sum

dominates the current variation near an
edge; hence the first sum in (21) is
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numerically well behaved there, and the
total current is readily calculated.
Similarly, the fields can be shown to
satisfy the correct edge behavior.

5., SAMPLE NUMERICAL RESULTS

Currents generated by the dual series
technique may be used to assess the
accuracy of the method of moments
solution scheme described in Appendix D,
especially since the dual series
solution explicitly contains the correct
current behavior near the edges. The

dual series system (17) is truncated by
neglecting Q|| and Fp for [n] >

N. Also, the first sum on the right of
(21) is truncated for |m| > M. Both
truncation indices have been chosen
sufficiently large in all of the
following cases so that the dual series
regsults have converged to the exact
solution. Current values are obtained
from the moment method solution at a
discrete sef of points. As illustrated
in Figure 7, these points correspond to
the aperture endpoints and to the nodes
of the triangular expansion functions
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employed in this solution., To
facilitate adequate tracking of the
currenkts near an edge, a nonuniform
spacing of these points is chosem. 1In
particular, the distances between the
five points nearest each edge are chosen
uniformly as dy; the distances between
the next five points are uniformly do;
and the distances between the remaining
points are uniformly d3. The ratios

of dy and dy to d3, the spacing

ratios, are denoted by 51 and s,
respectively. The number of unknowns

on a cylinder of radius 1\ with an aperture angle

employed in the moment method solution
is denoted as Wpopme In all cases the
incident magnetic field is normalized to
unity at the center of the cylinder,
Currents on an electrically thin
(quasi-static) cylinder with a total
aperture angle of 10° are illustrated in
Figure 2, Currents computed from the
dual series technique are denoted by
solid curves, those from the method of
moments by dotted curves. The geometric
parameters (Figure 1) are 8,5, = 5°,
¢ = 180°, and a = 0,01\, The
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truncation indices in the dual series
solution were set at ¥ = 10 and M = 20.
The number of unknowns in the moment
method solution, Npom, was 45, with
spacing ratios sy = 0.25 and sy =

0.5. PFor this case, the moment method
is indistinguishable from the dual
series results,

In Figures 3 and 4 the angles of
incidence of the plane wave are,
respectively, $*°¢ = 180° and
$10C = 90°, MNote that the
respective incoming fields strike the

aperture center and the aperture edge
normally. The remaining parameters
common to both figures are 85, =

90°, a = 1A, N = 25, M = 250, N_ o =
91, sy = 0.25, and s, = 0.5. The
physical optics nature of the current
begins to appear in the lit region of
the magnitude plot in Figure 4. HNote
that the method of moments solution
begins to have difficulty tracking the
exact (dual series) solution in the
shadow regions of Figure 4.
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Similar results are shown in Figures 5
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and 6 for a cylinder of radius 5A.

The appropriate parameters are: 6,

= 90°, N = 65, M = 400, s3 = 0.5, and
sy = 0.8. The number of unknowns in
the moment method solution is 251 and
301, respectively, for Figures 5 and 6.
Finer tracking is required in these
moment method solutions, especially near
the edge in the shadow region, before
accurate results will be obtained.
Again, the physical optics characteris-
tics of the current are apparent in the
magnitude plot of Figure 6.

6. CONCLUSIONS AND REMARKS

A dual series solution to the problem
of the scattering of an H-polarized
plane wave from a slitted cylinder
serves as an excellent test case for
two-dimensional scattering codes. The
nethod of moments code developed in
Appendix D contains all of the essential
features of a two-dimensional analogue
of the surface patch code developed by
Rao et al. {1982]. A comparison of the
results shows that accurate method of
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moment solutions require fine gridding APPENDIX A: COEFFICIENTS OF THE SOLUTION
near an edge, especially if that edge SYSTEM OF EQUATIONS
lies in a shadow region.

Dual series techniques apply to a wide a _ mrl
variety of coupling problems in o 2(m-n) [Pm(u)Pn+1(u) - Pm+1(u)Pn(u)]
separable geometries. Im particular,
the scattering of an electromagnetic n#F-l,m#n (ala)

plane wave with an arbitrary angle of
incidence from a thin spherical shell

with a circular aperture is currently vt o= 1 (P (u) =P ()] n=-1 (Alb)
being studied with these techniques. m 2 m m+l
This should provide an excellent test
case for three-dimensional scattering n
v m=n#-1 (ale)

codes. m
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See Appendix B for discussion of (Alc).

R =+p (u) (A2)
m 2 m

=
1

1 1+u
- 7 By (1 (552

1
+ o [Pn(u) - Pn_l(u)l n>1 (A3a)
Wt = (155) 1n (E%E) n=0 (A3b)
w" (Enl)[l + 1n (-%5)} n=-1
(A3c)
2 - duonn ()
- 5 [P_n(u) - P_n_l(u)] n < -1
(A3d)
P (u)
1 m m 1 1+u
§== I (=) = -z 1ln{=)] (A4
2 a0 m 2 ( 2 )
where
u = cos O
Holu) =1
ul(u) = ~u
Uplwd =P (u) - 2uP _,(uw)
+ Pn_Z(U) n>2

APPENDIX B: EVALUATION OF VQ

The values of the expression V}
when m = n are desired. The cases n > 0,
n = -1 and n £ -2 must be considered
separately. Omnly the second is simple;
the others depend on an application of
L'Hospital's rule. From Appendix A, the
application of L'Hospital's rule to (Al)
yields
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n . ntl 5
Vn == Pn+1(cos 8) v By (cos 8)
v=n
-P {cos 9) C P (cos 8) ] (B1)
n vy .
v=n+l

The derivative of a Legendre polynomial
with respect to its index evaluated at a
nonnegative index may be shown by
induction to be

g; P (cos 8) = 2P (cos e)ln(cos g)
v=m

+ U (cos 8) (B2)
where
Uo(u) =0 (B3a)
Ul(u) =u-1 (B3b)
and

P (w) - P . (u)

Um+1(U) - (m+1)2

+ 2L () - v W (B3¢)

Thus, for n > 0 the desired expression
is

+1
V: = 25— Pn+1(cos 8) Un(cos ')

- Pn(cos 6) Un+1(cos 8) {B&4)

With the relation

P__(u) =P () (35)

-8

it follows simply from (Al) that for
n=-1,

v:i =0 (B6)

Finally, for m, n < -1, one may use
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(B5) to express VY as

n _ ml
vm = Em P_-m'_l(COS e)P_n_z(COS e)

- P_m__z(cos G)P_n__l(cos 6)]

Application of L'Hospital's rule to (B7)
yields, for n £ -2,

n_ ntl 3
V.= 5 [P_.n_l(cose) o Pv(cose)

v=-n-2

- P_“n_z(cos 9 %\}' P (cos 6)| ]
v=-n-1

= E-;}‘[P‘n_l(cos 8)u_ _,(cos )
- P_ _o(cos B)U_n__l(cos 9)1 (88)
APPENDIX C: EVALUATION OF THE SUM Se
The sum
g = 5 MM .5 +xes (c1)
e m 11 22
m#0
where
P (cos 6)
s, = I L IMARAAPE L c2)
w0
and
P §] .
g = T __T_ﬂ_ﬂ..(iii__i e3m¢ (c3)
2 n#0 "

will be evaluated in this appendix.
This evaluation makes use of the
following four integrals:

b cos }Jij- dy
_g (cos Y-cos 6)1/2

(87) o
j‘ 72 = 21/2 In
-8 (cos Y~cos 8)

SCATTERING FROM AXYALLY SLOTTED CYLINDER 287

b
gin &+
= 21/2 sin LY - + 0 (C4)
.0 1/2
s1in -2— 2

sin % d

cos &
2

1/2
- 21/2 ln|cos %—’ + (c052 %-— c052 g) l
(c5)
hei? U
¢(14$1n 2)cos¢d$=21‘,2$2 b
1/2 sin -2"
-8 (cos Y-cos &) l
1/2
(cos b . cos2 —g—) + cos O
A
.
sin
sin—]' —- é + -;r— (c6)
sin 7
2 .
$ (4cos %’--l) Slng'dli’_ 1/2
172 = -2 cos 9
-0 (cos P-cos 6)

/2
)1

cos %)-+ (COS2 %)' - (1032 '26"

ln )
cos 3

1/2
-23!2cos %}- (cos.:2 %’- - cos2 —2—) (c?)

and the identity [Oberhettinger, 1973]

¢

> j 1/2 =i
t p,lcos B)eJm¢ =927%" 2
m=-%
{cos ¢-cos 6)_1/2 g <p<cB <
0 6 <¢<2m-9
(c8)
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The first sum, Sy, may be expressed as

. ¢ .
5, = id/” L P _(cos 0) ™ 4y
- m#0
P (cos 8)
+ £ (—)“‘—jl“j;'-“- (c9)

m#0

With Equations (A4) and (C8) one obtains

-ln (}:ggg_ﬂ)_ i(e+m)

S, = 7

1
12 [0 e i/ 24y

+ 1 2 1/2

-8 {cos {Y~cos 8)

Substitution of {C4) and (C5) into (C1l0)
yields

(c10)

' 1/2
8., = =2 Injcos 9-+ (c052 %-- cos2 g-)

1 2
-1 sin %
+ 2i | sin -2 (c11)
.. 0 2
s1n -i-
The second sum, 5,, can also be
represented as
é .
s, = i./F S p,q(cos 8) e ay
- mFl
m
{-) Pm+1(cos 8)
+ I = (c12)
0F0

Again, with the aid of Appendix A, the
last sum in (C12) may be expressed as

(-)um+1(cos 8)

m

T = &
n#0

l ~-~cos 8- X
m#0
mFl

(-)® P (cos 8)
m
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o Pm(cos g)

m

a2 ©

nFo

(-Y"P (cos ©)
m

=1-cos 6 ~ mio po e

m#l

+ 1n (lis%ﬁ—e) (c13)

In proceeding to evaluate the remaining
term in (C12), consider the expression

I P  .{cos G)ejmw = e_j‘JJ

a0 m+l
L P (cos e)ejmIIJ
m#l
= - cos O + 21/23-j3¢/2
(cos Y-cos 9)1/2 -8 <p<B <<
0 8 <p<2n-80
(c14)

It now follows that (C12) becomes

5, = - i{p + mcos

RN A A
v a2 172
-8 (cos P~cos 0)

The identity

eXP('j % ll-') = cos %(1—4811'12 -g’-)

- i sin %-(4c052 g-— 1)

+ T {(C15)

(c16)

and (C6) and (C7) then yield the result

cos 9
2

S, = 2sin g—+ 4 cos2 g-ln

- 2cosfln

24 9 e)1/2

-i--cos f

cos %-+ (cos
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1/2
- 4cos %-(cos2 %—— c052 %—)

(-)™p (cos 9)
m

m{m~1) + 2

- I 2sin %
m¥F0
m#l

sin 28 (c17)

The sum (C1), as given by (28), follows
immediately.

APPENDIX D: A METHOD OF MOMENTS SOLUTION
The method of moments technique used
to generate the numerical solutions for
the currents in the comparisons given in

section 5 is briefly described. The
solution scheme is a Galerkin technique
based on the use of vector and scalar
potentials, It is a two-dimensional
analogue of the electric field integral
equation (EFIE) surface patch work of
Rao et al. [1982].

Note that for the polarization and
problem geometry discussed in section 2,
only the Ep, Eg, and Hy components of
the electromagnetic field are excited.
The electric field scattered by the
cylinder may be expressed as

E° = - juA - VO (p1)

where the scalar potential is given by

0
2 - am
& = Zj—e,/:e Hc() )(kip-p'l) q(¢") d¢' (D2)

and the nougzero components of the vector
potential are given by

4]
2 [
A¢ = %—?—/ie Hi )(klp-—p‘l) cos(d-d')
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J¢,(¢>') as’ (D3a)
and
8
_ ka 2y, 77 : .
Ap e [_e H (k|lp-p* ) sin(g-¢")
(D3b)

J¢,(¢ ) dé

In (D2), (D3a), and (D3b), the quanti-
ties q and Jy' are, respectively,
surface charge and current densities

which reside on the cylinder. s

The EFIE is obtained by setting E¢ to

-E+"¢ on the metallic portionm of

the cylinder's surface. This may be
expressed as

. 13 inc

whA, +— =7 & =E Dé
ok * 235 P T % (o)

on the metal. A simplificatiom of
(D2)-(D3b) occurs when both the source
and the observer lie on the surface of
the cylinder since

lo-p'l = 2a sin |$§$'| (D5)

A further simplification takes
advantage of the two-dimensional nature
of this problem. The continuity equation

: 1a . .
jwq + 7 3y J¢ =0 (D6)
may be used to express the scalar
potential as
] 3

T weua 3¢ F (o7
where
p=F2 ’ 180 e sin 1EY

"’4j _e o a sin )

J¢|(¢') do' (D8)
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40 6 @ bt Pm e

L ¢N+l. +

Fig. 7. Expansion and testing functions for the method of moments
solution scheme.

Thus, (D4} becomes = < E;;nc,Tm > (D14)
i (72 2> inc Since the incident field and
—_—t{ k A¢ +—s Fl = E¢ (Dp9) ince e 1ncliden le and A4 are
WEpa 3¢ contlinuous, we approximate
where A+ A
<o, > = ==L o) (p15)
. ' ‘ m 2 m
k = ka {p10) e
_ X . . where G equals either A, or ENC . with
To obtain a numerical solution of the application of integratiog by parts
(D9), the ¢ domain [-6, 8] is and this approximation, yields (D14)
covered by N overlapping triangles as .
illustrated in Figure 7. These Flo_ ) F(g_..)
triangalar functions are defined as 3 m-1” mbl” (1 1
wena Am Am+1 Am Am+1
Tm(¢) = .Am - l¢-¢m|
A
" =2 Am * Am+1
F(d ) + k" 4,0 ) | ——5—
m d" 'm 2
vele ;0 1 (plla)
- ~ lao _ ine _
T (6 = B — 160! =a<Ey T, > =V, (p16)
Am+1
Moreover, the curremt is approximated by
oeld_s¢ ] (p11b) .
J = L J T A (D17)
Tpld) = 0 otherwise (D11c) ¢ 3= 1 i
with to obtain the N x N matrix equation
A_=¢ -0 (p12) {
m m m~1 . { =
Zmi} .Ji} {vm} (p18)
Defining the inner product by
from (D16), where
6 %
< f,g > = £(4) d D13} . .
58 o (6) g (b do ( . _ 3 ( Fm+1,1 . 1 . 1
mi  weya Am+1 m,1 Am Am+1

the inner product of (D9) and T, ylelds

2 F . A .+ A l
: ~7 3 m-1,i mt1 m | ~2
—l—f(k < ATy >+ < T BT, >> ey +[ 5 lk A f (D19)
weua 3
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ua
Fmi = ZE Ti(¢ )

1o~
Hm(zka sin 2 >d¢' (D20)
o 2
and
pa lo_~¢' l\
Apg = TJ:-/Ti(d:’) H22)<2ka sin m2 /
(p21)

cos(¢m“¢') dé'

To fill the matrix Zyi, the singular
terms and terms with singular
derivatives up to order three in (D20)
and (D21) are subtracted out and are
integrated analytically. The remaining
integrands are evaluated by Gaussian
quadrature. Standard techniques are
then applied to the linear system (p18)
to obtain the coefficients for the
currents.
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