Performance Analysis of Faulty Gallager-B Decoding of QC-LDPC Codes

Omran Al Rasheed, Srđjan S. Brkic, Student Member, IEEE, Predrag N. Ivaniš, Member, IEEE and Bane Vasic, Fellow IEEE

Abstract – In this paper we evaluate the performance of Gallager-B algorithm, used for decoding low-density parity-check (LDPC) codes, under unreliable message computation. Our analysis is restricted to LDPC codes constructed from circular matrices (QC-LDPC codes). Using Monte Carlo simulation we investigate effects of different code parameters to coding system performance, under binary symmetric communication channel and independent transient faults model.

Keywords - faulty hardware, Gallager-B decoder, Monte Carlo simulation, QC-LDPC codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are powerful error correction codes that achieve performance near the Shannon limit [1]. They have received significant practical interest and have been adopted in many telecommunications standards. The LDPC codes can be efficiently decoded by massage passing iterative decoders, which realization complexity increases linearly with code length [2].

According to new design paradigm for VLSI (Very Large Scale Integration) technologies, fully reliable operations are not guaranteed [3]. New nano-scale technologies are more sensitive to noise, which appears as a consequence of radiation or electromagnetic interference. Thus, analysis of different decoding algorithms under unreliable hardware is meaningful. A hardware component is assumed to be unreliable if it is subject to so-called transient faults, i.e. faults that manifest themselves at particular time instants but do not necessarily persist for later times [4]. These faults have probabilistic behavior and can be described statistically through erroneous component output probability.

Recently, different noisy LDPC decoders were analyzed by using simulation, density evolution or EXIT chart tools. The performance of LDPC codes under faulty Gallager-A and belief propagation decoding were determined in [5], using density evolution method. Similar analysis using EXIT function is provided in [6], for Gallager-B algorithm. Also, probabilistic analysis of Gallager-B decoding algorithm was presented in [7]. More general finite-alphabet decoders were investigated in [8], while noisy min-sum decoder realization was considered in [9].

In this paper, we present our first results in empirical evaluation of the performance of LDPC codes constructed from circular matrices (quasi-cyclic LDPC codes) decoded using Gallager-B decoder, built from unreliable components. We examine the influence of different code parameters, decoder structures and fault model parameters to overall system performance in order to gain insight in relative importance of failures in different logic gates as their relation with parameters such as code length and number of iterations.

The rest of the paper is organized as follows. In Section II, the construction method for QC-LDPC codes is described. In Section III we give a description of faulty Gallager-B decoder. Section IV presents the numerical results. Finally, some concluding remarks and future research directions are given in Section V.

II. CONSTRUCTION OF QC-LDPC CODES

In general, the LDPC codes can be constructed by pseudorandom or algebraic methods [10]-[11]. Algebraic constructions of LDPC codes can be performed based on finite geometries, which is described in [12] and [13], or circulant permutation matrices [14]. By using the second approach, so-called quasi-cyclic (QC) LDPC codes are constructed. In this section, we explain the construction principle of parity check matrix of QC-LDPC codes.

The principal property of QC-LDPC codes is that their parity check matrix consists of circulant submatrices, which could be either based on the identity matrix [15] or a smaller random matrix [16]. The main advantage of this construction principle compared to randomly constructed codes is that QC-LDPC encoding procedure is easier to implement [17]. The encoder of QC-LDPC codes can be implemented by using a series of shift registers, which allows its complexity to be proportional to code length [18]. We next present one method for construction of regular QC-LDPC codes, originally presented in [14].

The parity check matrix H of a QC-LDPC code is constructed by a concatenation of circulant submatrices, as shown in the following

$$H = \begin{bmatrix} I_1 & I_a & I_{a^2} & \cdots & I_{a^{d-1}} \\ I_b & I_{ab} & I_{a^2b} & \cdots & I_{a^{d-1}b} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ I_{b^{d-1}} & I_{ab^{d-1}} & I_{a^2b^{d-1}} & \cdots & I_{a^{d-1}b^{d-1}} \end{bmatrix},$$

(1)
where I_m represents an identity matrix whose rows are cyclically shifted to the left by positions x, and parameters a and b are two nonzero elements with multiplicative orders $\alpha(a) = d_a$ and $\alpha(b) = d_b$, respectively, where d_a and d_b denote the weight of each row and column of matrix H, respectively. The parameters a and b should be chosen from Galois field $GF(m)$, where m is a prime number. In simulation analysis presented in this paper we consider two QC-LDPC codes. First code is constructed by choosing $m=31$, $a=2$, $b=5$, which produces regular code with parameters $d_v=5$ and $d_c=3$, and parity check matrix dimensions 93×155 (code length is equal to $n=155$ bits). It is so-called Tanner code $(155,64)$. The second code is based on $m=61$, $a=2$, $b=5$ and has row weight $d_v=5$, column weight $d_c=3$, and parity check matrix dimensions 183×305 (code length is equal to $n=305$ bits).

III. DESCRIPTION OF FAULTY GALLAGER-B DECODER

A) Noise free Gallager-B decoder

Decoding procedures of LDPC codes are usually described by Tanner graph representation. The Tanner graph is bipartite graph constructed from two sets of nodes – variable (bit) nodes and check nodes. Nodes, from a different set, connected to a single node, are referred to as its neighbors. The degree of a node is the number of his neighbors. In a (d_v,d_c) regular LDPC code, each variable node has degree d_v and each check node degree is d_c.

The Gallager-B algorithm represents iterative decoding procedure operating in a binary field. During the every decoding iteration, binary messages are sent along the edges of Tanner graph. Let $E(x)$ represent a set of edges incident on a node x (x can be either variable or check node). Let $m_i(e)$ and $m'_i(e)$ denote the messages sent on edge e from variable node to check node and check node to variable node at iteration i, respectively. If we denote the initial value of a bit at variable node v as $r(v)$, the Gallager-B algorithm can be summarized as follows [19].

Initialization ($i=1$): For each variable node v, and each set $E(v)$, messages sent to check nodes are computed as follows

$$m_i(e) = r(v). \quad (2)$$

Step (i) (check-node update): For each parity check node c and each set $E(c)$, update rule for i-th iteration, $i > 1$, is defined as follows

$$m'_i(e) = \left\lfloor \sum_{e \in E(v) \cap [c]} m_{i-1}(e) \right\rfloor \mod 2. \quad (3)$$

Step (ii) (variable-node update): For each variable node v and each set $E(v)$, update rule for i-th iteration, $i > 1$, is defined as follows

$$m_i(e) = \begin{cases} 1, & \text{if } \sum_{e \in E(v) \cap [c]} m'_i(e) \geq b_i \\ 0, & \text{if } d_v - 1 - \sum_{e \in E(v) \cap [c]} m'_i(e) \leq b_i, \\ r(v), & \text{otherwise} \end{cases} \quad (4)$$

where b_i represent threshold dependent on iteration i. In our analysis we considered constant threshold value $b_i = \left\lfloor \frac{d_v}{2} \right\rfloor$, $i > 1$.

Step (iv) (decision): After predefined number of iterations the final decision of transmitted bit v is made on the basis of majority of its estimates $m_i(e), e \in E(v)$.

![Fig. 1. Schematic diagram of an information system that processes unreliable signals with unreliable circuits.](image)

![Fig. 2. Bipartite graph with faulty decoder.](image)

B) Faulty Gallager-B decoder

We study the performance of a faulty Gallager-B decoder in the presence of transient faults. As illustrated in Fig 1, originally presented in [5], besides of noise that exists in communication channel, errors are inserted by the LDPC decoder itself. We assume independent transient faults model in which errors occur at Tanner graph level of implementation. In other words, every edge in Tanner graph behaves as binary symmetric channel (BSC) with some crossover probability. The probability that message originating from variable node is incorrect is denoted as p, while crossover probability in BSC that corresponds to check node message transition is equal to q, as can be seen in Fig. 2. Assigning different crossover probabilities enable us to determine the influence of faults in different nodes to overall decoder performance.
IV. NUMERICAL RESULTS

In this section we present performance analysis of faulty Gallager-B decoder, described in the previous section. The two QC-LDPC codes have been examined and their performance are compared for several implementations of faulty Gallager-B decoders. All numerical results presented in this section are obtained by Monte Carlo simulations.

The sequence of all-zero codewords is transmitted through BSC with a predefined crossover probability and then decoded by a faulty iterative decoder. As described earlier, messages that are passed between nodes can be faulty. The message \(m(e) \) passes through the noise channel with error probability \(p \), thus, a bit estimate can be erroneous as a consequence of a majority of unsatisfied parity checks or the faults in variable node implementation or both. Similarly, due to BSC crossover probability \(q \), message \(m'(e) \) may incorrectly inform variable node is the parity check equation satisfied or not.

First, we evaluate the performance of Tanner code \((n=155, d_{v}=3 \text{ and } d_{c}=5)\) decoded by a faulty Gallager-B decoder. The code frame error rate (FER) performance are given as a function of communication channel crossover probability. FER curves for several values of decoder failures probabilities \(p \) and \(q \), when 5 decoding iterations are performed, are presented in Fig. 3. It can be observed that decoder failures greatly degrade frame error rate, but failures in variable and check nodes have different influence on the code performance. The simulation has shown that the decoder is more sensitive to errors that exist in decoder nodes. The majority reason for this behavior is related to variable node ability to compensate the parity check failures. The majority voting conducted in variable nodes can correct a fraction of parity check failures. However, if a variable node output is erroneous correction ability of a decoder is decreased. Finally, the presented results indicate that the decoder performance can be significantly improved by better protection of variable nodes (e.g. by making the majority voting gates that perform the operation in (4) more reliable).

Fig. 3. Performance of Tanner code \((155,64)\) decoded by a faulty Gallager-B decoder, five iterations.

We also evaluate performance of two QC-LDPC codes with code lengths \(n_{1}=155 \text{ and } n_{2}=305 \), with the same parameters \(d_{v}=3 \text{ and } d_{c}=5 \). Performance comparison is illustrated in Fig. 4. Although the code with longer codewords has better correcting capabilities, it is also more prone to processing errors. The simulation has shown, that when the errors inserted into decoder are frequent \((p=10^{-2} \text{ or } q=10^{-3})\), longer code length may have negative impact to overall performance. Thus, code with length \(n_{1}=155 \) achieves lower FER, compared to code with length \(n_{2}=305 \) even for the case \(p=10q=10^{-2} \). However, the longer code achieves lower FER when hardware faults are rare and variable nodes are more reliable \((q=10^{-3})\).

The performance of the Gallager-B algorithm depends on the number of iterations \([10]\), thus assessing the effect of number of iterations of faulty decoder is meaningful. The performance of a faulty decoder, when a different numbers of decoding iterations are used, are presented in Fig. 5. It is obvious that increasing the number of decoding iteration leads to lower error rates. However, it can be noticed that the improvement depends on the structure of the errors that exist in decoder.

Fig. 5. Influence of number of decoding iteration to faulty Gallager-B decoder performance, Tanner code \((155,64)\).
with parameters $Tanner$ code is decoded by a faulty $Gallager$-B decoder increasing the number of iterations. For example, when the dominant effect and cannot be improved significantly by increasing the number of iterations. In contrast, the FER (FER) of codeword length q = 10$^{-3}$, performances can be improved significantly by fixing only 10 decoding cycles is sufficient and the error rate does not further improve.

Finally, we investigate the influence of code rate on decoder performance. We compare the error rates of two QC-LDPC codes with the same length ($n=155$) and check node degree ($d_c=5$), but different variable node degrees ($d_v=3$ or $d_v=4$). The obtained results are presented in Fig. 6. The code with higher variable node degree (lower code rate) can correct more errors that appear in communication channel, but the decoder is also more complex and more prone to errors. It is interesting to notice that performance of code with lower code rate are less degraded by decoder failures.

V. CONCLUSION

In this paper, we evaluated the performance of QC-LDPC codes decoded by a faulty Gallager B decoder. The influence of code length, code rate and number of decoding iteration on coding system performance is analyzed. Particularly important is analysis of influence of failures in different parts of a decoder. It enables us to determine the most sensitive structures in a decoder and make them more reliable.

Our future work will be directed to analysis of faulty Gallager-B decoders in the presence of correlated data-dependent faults. Also, we will investigate the memory architectures that use LDPC codes and one-step majority decoders.

ACKNOWLEDGEMENT

This work was supported by the Seventh Framework Programme of the European Union, under Grant Agreement number 309129 (i-RISC project). It is also funded in part by the NSF under grant CCF-0963726.

REFERENCES