
REAct: Resource-Efficient Accountability for Node
Misbehavior in Ad Hoc Networks based on Random Audits

William Kozma Jr.
University of Arizona

Electrical and Computer Engineering Dept.
Tucson, Arizona 85721

wkozma@ece.arizona.edu

Loukas Lazos
University of Arizona

Electrical and Computer Engineering Dept.
Tucson, Arizona 85721

llazos@ece.arizona.edu

ABSTRACT
Wireless ad hoc networks rely on multi-hop routes to trans-
port data from source to destination. The routing function
is implemented in a collaborative manner, with each node re-
sponsible for relaying traffic to the destination. However, an
increasingly sophisticated pool of users with easy access to
commercial wireless devices, combined with the poor phys-
ical and software security of the devices, can lead to node
misconfiguration or misbehavior. A misbehaving node may
refuse to forward packets in order to conserve its energy
(selfishness), or simply degrade network performance (mali-
ciousness).

In this paper, we investigate the problem of uniquely iden-
tifying the set of misbehaving nodes who refuse to forward
packets. We propose a novel misbehavior identification sche-
me called REAct that provides resource-efficient account-
ability for node misbehavior. REAct identifies misbehaving
nodes based on a series of random audits triggered upon
a performance drop. We show that a source-destination
pair using REAct can identify any number of independently
misbehaving nodes based on behavioral proofs provided by
nodes. Proofs are constructed using Bloom filters which are
storage-efficient membership structures, thus significantly
reducing the communication overhead for misbehavior de-
tection.

Categories and Subject Descriptors
C.2.0 [Computer - Communication Networks]: Gen-
eral - Security and Protection

General Terms
Security

Keywords
Misbehavior, Routing, Ad hoc Networks, Bloom Filter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’09, March 16–18, 2009, Zurich, Switzerland.
Copyright 2009 ACM 978-1-60558-460-7/09/03 ...$5.00.

1. INTRODUCTION

Wireless ad hoc networks are characterized by the sponta-
neous self-organization of a collection of nodes into a multi-
hop network, in the absence of a pre-deployed infrastructure.
Due to their low deployment cost and self-adaptability, they
find numerous civilian applications, such as collaborative
computing, emergency services, vehicular networks, patient
and environmental monitoring, as well as military applica-
tions, such as surveillance, and target tracking.

Ad hoc networks compensate for the lack of infrastructure
via the collaborative implementation of network functional-
ities. Network nodes share their resources for the purpose
of realizing network-wide services. For example, the routing
service is implemented in a multi-hop fashion where inter-
mediate nodes forward data from source to destination [13].

The performance of such collaborative services relies on
the willingness of the network devices to participate and con-
form to the network protocols. However, there is no guaran-
tee that nodes will indeed collaborate. Malicious users may
modify the software or hardware of their devices in order to
maximize their individual network benefit while expending
minimum resources. Moreover, malicious users may attempt
to degrade network performance through protocol misbehav-
ior. At present, it is too expensive to equip every network
device with tamper-proof hardware [8]. Hence, a network
must be able to detect instances of misbehavior, identify
the misbehaving nodes, and revoke them from the network.

In this paper, we address the problem of misbehavior in
the routing protocol. Specifically, we address the problem of
identifying misbehaving nodes that refuse to forward packets
to a destination. Such misbehavior has been shown to have
a severe impact on the network operability [5, 15–17].

Currently proposed solutions to the routing misbehav-
ior problem can be classified into incentive-based schemes
[7, 12, 23], reputation-based schemes, [5, 6, 11, 17, 19, 21] and
acknowledgment-based schemes [1,2,15,20,22]. Reputation-
based systems rely on message overhearing for the evalua-
tion of the reputation of each node. However, operating in
promiscuous mode can be almost as expensive as transmit-
ting [9]. Furthermore, neighbor monitoring is difficult to im-
plement in multi-channel networks where nodes may engage
in parallel transmissions in orthogonal frequency bands. In
acknowledgment systems, every packet is acknowledged two
or more hops upstream, verifying that intermediate node(s)
forwarded the packet [1, 2, 15, 20, 22]. Reputation and ac-
knowledgment systems are proactive, incurring high energy
overhead for the continuous monitoring of node behavior.

We address the problem of misbehavior with resource effi-
ciency in mind, by considering a reactive design.

1.1 Our Contributions
We propose REAct, a resource-efficient misbehavior de-

tection scheme, that provides publicly verifiable proof of
node misbehavior. REAct is reactive in nature, thus only
employed when a significant performance degradation is re-
ported on a given routing path. We show that REAct is ca-
pable of detecting multiple independent misbehaving nodes
located on the path from source to destination, through a
series of random audits. Misbehaving nodes are identified
based on the behavioral proofs provided by honest nodes in
response to the random audits. These proofs are constructed
using Bloom filters which are storage-efficient membership
structures [3], thus significantly reducing the communication
overhead associated with sending the proofs to the source.
We show that REAct achieves significantly improved com-
munication efficiency compared to the proactive schemes, at
the expense of increased delay in misbehavior identification.

The remainder of the paper is organized as follows. In
Section 2, we present related work. In Section 3, we state
the problem and our model assumptions. In Section 4, we
develop and analyze our misbehavior identification scheme.
In Section 5, we compare the performance of REAct with
previously proposed schemes. In Section 6, we conclude.

2. RELATED WORK
Previously proposed methods for addressing the misbe-

havior problem can be classified into, (a) credit-based sys-
tems [7,12,23], (b) reputation-based systems [5,6,11,17,19,
21], and (c) acknowledgment-based systems [1,2, 15,20,22].

2.1 Credit-Based Systems
Credit systems [7, 12, 23] provide incentives for coopera-

tion. Buttyan et al. [7] proposed a system where nodes re-
ceive credit (nuglets) for packets they forward, and spend
credit to transmit their own packets. A nuglet counter
records credit, while tamper proof hardware called the se-
curity module prevents the counter from becoming negative
or being modified.

Zhong et al. [23] proposed Sprite, where nodes collect re-
ceipts for packets they forward. Nodes upload receipts are
uploaded to a Credit Clearance Service (CCS) in return for
credit to transmit their own packets. Jakobsson et al. [12]
proposed a scheme where cryptographic payment tokens are
attached to packets and managed by a base station, i.e., a
form of virtual bank.

While credit-based systems motivate cooperation, mali-
cious nodes have no incentive to collect credit and receive
no punishment for non-cooperation. Furthermore, tamper
proof hardware is currently too expensive to integrate in ev-
ery network device [10]. Sprite removes this requirement, at
the expense of a CCS. Lastly, credit systems lack a mecha-
nism for identifying the misbehaving node(s) for revocation.

2.2 Reputation-Based Systems
Reputation systems [5, 6, 11, 17, 19, 21] use neighborhood

monitoring techniques to identify misbehaving nodes. Marti
et al. [17] proposed a scheme which relies on two modules, a
watchdog and a pathrater. The watchdog module monitors
the behavior of neighboring nodes by operating its radio in

S

D

n1

n2

n3

n4

n5

n6

Figure 1: Node S is sending traffic to D along PSD.
Node n5 drops all packets.

promiscuous mode to verify packet forwarding, making ac-
cusations of misbehavior when packets are not forwarded.
The pathrater module uses the accusations generated to se-
lect paths that will most likely avoid misbehavior.

Buchegger et al. [5,6] proposed the CONFIDANT scheme,
utilizing the watchdog/pathrater model, where detected mis-
behavior is broadcast using alarm messages. He et al. [11]
proposed SORI, which propagates monitored behavior, thus
relying on first- and second-hand information. Michiardi
et al. [19] proposed CORE, assigning reputation metrics by
combining observations, positive reports by neighbors, and
task-specific behavior. Paul et al. [21] proposed using rout-
ing message verification and packet comparisons to identify
misbehavior.

Neighborhood monitoring becomes complex in cases of
multi-channel networks or nodes equipped with directional
antennas. Neighboring nodes may be engaged in parallel
transmissions in orthogonal channels or different sectors,
thus unable to monitor their peers. Moreover, operating
in promiscuous mode requires up to 0.5 times the energy
for transmitting a message [9], thus making message over-
hearing an energy-expensive operation. Finally, reputation-
based systems are proactive in nature, requiring the constant
monitoring of nearby nodes for the building of reputation
metrics. Hence, overhead is incurred on all nodes regardless
of whether a misbehaving node exists.

2.3 Acknowledgment-Based Systems
Acknowledgment systems [1,2,15,20,22] rely on acknowl-

edgments to verify that packets were forwarded. Liu et
al. [15] proposed the 2ACK scheme, where nodes explic-
itly send 2-hop acknowledgments in the reverse direction
to verify the cooperation of the intermediate node in packet
forwarding. A value is assigned to the quantity/frequency
of un-verified packets to determine misbehavior. Padman-
abhan et al. [20] proposed a method based on traceroute in
which the source probes the path with pilot packets indistin-
guishable from data packets. Xue et al. [22] proposed Best-
effort Fault-Tolerant Routing, relying on end-to-end ACK’s
to monitor packet delivery ratio and select routing paths
that minimize misbehavior.

Acknowledgment-based schemes are proactive, and hence
incur message overhead regardless of the presence of misbe-
havior. 2ACK provides a method to reduce message over-
head by acknowledging only a fraction of the packets, with
the tradeoff of increased delay in misbehavior detection.

3. MODELS AND PROBLEM STATEMENT
Network Model: We assume a multi-hop ad hoc net-

work consisting of N nodes. Each node is responsible for
relaying messages from source S to destination D. We as-

sume S is aware of nodes in path PSD, as in Dynamic Source
Routing (DSR) [13]. If DSR is not used, the source can iden-
tify the nodes in PSD by performing a traceroute operation.
For simplicity, we number the nodes in PSD = {n1, . . . , nk}
in ascending order with k = |PSD|. Node ni is upstream of
nj if i < j and is downstream of nj if i > j.

We also assume the source receives feedback from the des-
tination when a significant performance drop in metrics of
interest, such as throughput or delay occurs [18]. We assume
that message integrity and authenticity can be verified using
resource-efficient cryptographic methods, i.e., nodes may use
the Elliptic Curve Digital Signature Algorithm (ECDSA)
that has been shown feasible for resource limited devices
such as sensors [14]. Finally, we assume there are at least
two independent paths to any destination, i.e., the network
is two-connected. This assumption is essential for reaching
every node in PSD through a disjoint path.

Adversarial Model: We assume the existence of multi-
ple independently misbehaving nodes in PSD. Any node in
PSD may be misbehaving, except the source and the desti-
nation which are assumed to be trusted. The goal of mis-
behaving nodes is to degrade throughput while remaining
undetected. Misbehaving nodes are assumed to be aware of
the mechanisms used for misbehavior detection. The case of
multiple colluding nodes is left as future work.

Problem Statement: Consider a path PSD from source
S to destination D which contains a set M of independently
misbehaving nodes with S, D /∈ M . Nodes in M misbe-
have by (a) dropping all packets routed through them or,
(b) selectively dropping packets. We address the problem of
uniquely identifying set M such that publicly verifiable proof
of the misbehavior is constructed in order to remove M from
the network. In Figure 1, S is sending packets to D through
PSD = {n1, . . . , n6}. Node n5 misbehaves by dropping all
packets routed through it. Our goal is to identify n5 and
provide evidence of its misbehavior.

4. THE REACT SCHEME
REAct (Resource-Efficient ACcounTability) is a reactive

misbehavior detection scheme triggered if a performance
degradation is experienced on path PSD. Destination D
notifies source S of a performance drop by sending an alarm
message via a path disjoint to PSD. Upon receipt of an
alarm, S initiates a process of random audits to identify
the misbehaving node. The definition of misbehavior is a
parameter within our solution.

The source requests from nodes in PSD to commit to a
“behavioral proof”, via an audit mechanism. When node
ni ∈ PSD is audited, ni creates a record of all packets it for-
wards. The goal of the audits is to combine information ob-
tained from honest nodes to identify the misbehaving ones.
While misbehaving nodes may change strategies, we show
that S can always identify them, given sufficient audits.

REAct consists of three phases: (a) the audit phase, (b)
the search phase, and (c) the identification phase. We now
describe the three phases in detail.

4.1 Audit Phase
The goal of the audit phase is to verify that the audited

node ni forwards packets to the destination. When a node
is audited, it has to provide proof of the packets it forwards.
The proof is used by the source S to perform a simple mem-
bership test: Did node ni forward packets in set X to the

S

D

n1

n2

n3

n4

n5

n6

Audit Path

Figure 2: S selects a path PSn4 to send the audit
request to n4.

next hop? The audit phase occurs in three steps: (a) send-
ing an audit request, (b) constructing a behavioral proof,
and (c) processing the behavioral proof.

4.1.1 Sending an Audit Request
Once misbehavior has been detected in PSD, the source

S selects a node ni to be audited based on the search phase
(see Section 4.2). The source constructs a routing path PSni

such that PSni and PSD are disjoint to avoid the audit re-
quest being dropped by the misbehaving node. The source
also selects an audit packet count, acount, denoting the dura-
tion of the audit in terms of number of packets. The value of
acount is user-definable and must be sufficiently large to dif-
ferentiate misbehavior from normal packet loss rate. Lastly,
S selects an initial packet sequence number astart, indicating
the sequence number of the packet where the audit begins.
The source signs the audit request to enable the verifica-
tion of its authenticity and integrity. In Figure 2, S selects
node n4 for audit, and sends the audit request through the
disjoint path PSn4 .

4.1.2 Constructing a Behavioral Proof
When a node is audited, it constructs a behavioral proof

of the set of all packets it forwards, from astart to astart +
acount, denoted by X = {x1, x2, . . . , xN}. Buffering packets
themselves would require large amount of storage and signif-
icant overhead for transmission back to the source. On the
other hand, Bloom filters [3] provide a compact represen-
tation of membership for a set X = {x1, x2, . . . , xN} in an
m-bit vector v with m ¿ N . For an empty set X, all m bits
of v are initialized to zero. A member xi is added to Bloom
filter X by passing xi through k independent hash functions
hl, 1 ≤ l ≤ k with each hl having a range of {1, . . . , m}. The
corresponding bits hl(xi), 1 ≤ l ≤ k of vector v are set to
one. To check if y is a member of X, element y is hashed k
times using hl. If any corresponding bit location hl(y) in v is
zero, element y /∈ X. Else y ∈ X with very high probability.
Thus Bloom filters may yield a false positive, i.e., the filter
may indicate y ∈ X even though it is not. For perfectly
random hash functions, the false positive probability pf is
given by [4]:

pf =

(
1−

(
1− 1

m

)qN
)q

≈
(
1− e−

qN
m

)q

(1)

In Figure 3(a), we show a Bloom filter v (m = 10) that
has been initialized to zero, representing the membership set
X = {}. Figure 3(b), shows element x1 being added to v by
passing through k independent hash functions hl, 1 ≤ l ≤ k,
with bits hl (xi) of v set to 1, yielding membership set X =
{x1}. To check if y1 is in X, y1 is passed through hl as in

00000 00000

x1

h1

00101 00001

x1

h2

x1

hk

(a) (b)
y1

h1

00101 00111

y1

h2

y1

hk

(c)

Figure 3: (a) Initialize Bloom Filter (b) x1 is added
to Bloom filter by passing through k hash functions
with corresponding bits set to zero (c) Since h2(y1)
corresponds to a zero bit, y1 not in Bloom filter.

Figure 3(c). Since h2(y1) corresponds to a zero bit, y1 /∈ X.
The number of hash functions q that minimize the false

positive probability pf , is known to be q = ln2

(
m
N

)
, but any

choice can be made to allow a graceful tradeoff between pf

and q. We can also compute the minimum storage required
(size of vector v) so that pf ≤ ε, to be equal to m ≥ N log2 ε

ln 2
.

Upon receiving an audit request, node ni creates a proof
of all packets it forwards to the next hop by constructing
Bloom filter vi. The audited node ni inserts each packet
xj , astart ≤ xj ≤ (astart + acount) into his Bloom filter vi.
After acount packets have been added to vi, ni signs vi and
sends it to S via the reverse path PniS . Note that each
Bloom filter is signed, acting as a public commitment to the
packets forwarded that node. Misbehavior can be publicly
verified via comparison with the source’s Bloom filter.

In order to check ni’s audit (Bloom filter), the source con-
structs its own Bloom filter vS in the same manner as ni,
i.e., all packets xj , astart ≤ j ≤ (astart + acount) are added
to vS . When S receives ni’s behavioral proof, it will then
have two Bloom filters; vS , which is guaranteed to correctly
contain all packets in X, and vi from node ni.

4.1.3 Processing the Behavioral Proof
When S receives the behavioral proof from ni, it verifies

its authenticity and discards vi if the signature check fails.
If ni fails to respond to the audit request, S may re-transmit
the request using alternative paths. After a certain number
of reply failures, S assumes that the node ni is suspicious of
misbehaving and continues with the algorithm execution.

The source performs a comparison of Bloom filters vi, vS

by computing the inner product 〈vi, vS〉, which measures the
similarity between vectors vi, vS . Let XS denote the set of
packets in vS and Xi denote the set of packets in vi. The
magnitude of the inner product can be approximated by [4]:

〈vi, vS〉 ≈ m

(
1−

(
1− 1

m

)q|Xi|
−

(
1− 1

m

)q|XS |

+

(
1− 1

m

)q(|Xi|+|XS |−|Xi
⋂

XS |)
)

. (2)

Given vector length m, cardinalities of Xi, XS , and q hash
functions, S can compute the size of the intersection set,

|Xi

⋂
XS | ≈ |Xi|+ |XS | −

log
(

<vi,vS>
m

+
(
1− 1

m

)q|Xi| +
(
1− 1

m

)q|XS |
)

q log
(
1− 1

m

) . (3)

The cardinality of Xi

⋂
XS provides a method to verify

if packets in XS are in Xi. Furthermore, S can maintain a
sampling of XS to perform membership tests on vi for an
additional verification of the packets in Xi. The sampling
can be either random or packets of higher importance.

A node can arbitrarily construct its own Bloom filter to
avoid any accusation of misbehavior by setting all bits of its
filter to one. In such a case, |Xi

⋂
XS | ≈ |XS | since XS ⊆ Xi

and any membership test would come out positive. However,
S can easily verify if Bloom filter Xi contains packets not in
Xi. The source can pick any x 6∈ XS and test if it is a mem-
ber of Xi. If the membership test is positive, S can assume
that x ∈ Xi with a probability (1-pf). The probability of
false positive can be further reduced by repeating the exper-
iment r number of times, yielding a successful identification
of Bloom filter manipulation with a probability 1-(pf)r.

4.2 Search Phase - Single Misbehaving Node
So far we have illustrated how the source S evaluates the

behavior of node ni via auditing. We now show how S selects
nodes for audit in order to identify misbehaving ones. We
define the notion of a suspicious set V as the set of nodes ni ∈
PSD which have not been shown honest. Initially, all nodes
ni ∈ PSD are placed in V. When S audits node ni ∈ PSD,
either: (a) |Xi

⋂
XS | ≈ |XS |, or (b) |Xi

⋂
XS | ¿ |XS |. For

each case, the following conclusions can be drawn.
If ni returns Xi : |Xi

⋂
XS | ≈ |XS |, the source can con-

clude that all nodes upstream of ni are honest. This is true,
since if any node upstream of ni was misbehaving, ni would
not receive packets in XS and |Xi

⋂
XS | ¿ |XS |. Therefore,

S reduces the suspicious set to V = {ni, . . . , nk}. Note that
ni remains in V, since it may correctly receive packets in
XS , construct vi, but refuse to forward them to D.

If ni returns Xi : |Xi

⋂
XS | ¿ |XS |, the source can con-

clude that all downstream nodes are honest. This is true,
since if any downstream node nj is misbehaving, all nodes nk

upstream from nj , including ni, would return Xk : |Xk

⋂
XS |

≈ |XS |, given that only one misbehaving node exists in PSD.
Since ni returned Xi : |Xi

⋂
XS | ¿ |XS |, the source con-

cludes that the misbehaving node nM must be upstream of
ni. Thus, S reduces the suspicious set to V = {n1, . . . , ni}.

By repeated audits, S reduces V to two nodes, node ni

that claims |Xi

⋂
XS | ≈ |XS | and node ni+1 that claims

|Xi

⋂
XS | ¿ |XS |. Hence, the search phase identifies the

misbehaving link, i.e., the link in which packets are dropped.
We now show how the misbehaving link is identified in cases
of continuous and random packet dropping.

4.2.1 Case 1: Continuous Packet Dropping
We first consider the case where the misbehaving node

drops all packets along PSD. Let A denote a one-dimensional
array of length |PSD| with A[i] = |Xi

⋂
XS |, 1 ≤ i ≤ |PSD|.

Array A is almost sorted in descending order. This is a valid
assumption since for any node upstream of the misbehaving
node, |Xi

⋂
XS | ≈ |XS |; and for any node downstream of the

misbehaving node |Xi

⋂
XS | ¿ |XS |. By converging on the

S n1 n2 n3 n4 n5 D

|V1|={n1,n2,n3}

S n1 n2 n3 n4 n5 D

|V2|={n2,n3}

S n1 n2 n3 n4 n5 D

|V3|={n2,n3}

(a) (b) (c)

Figure 4: (a) S attempts to locate misbehaving node n1 utilizing binary search. S audits n3. Audit reply
from n3 fails membership test. (b) S audits n2. Misbehaving node n1 changes strategy and behaves honestly.
Audit reply of n2 passes the membership test. (c) Node n3 successfully removed itself from suspicious set.

transition A[i] ≈ |XS | and A[i+1] ¿ |XS |, the misbehaving
link can be identified. This convergence can be achieved
by performing binary search on A, requiring a maximum of
log2 |PSD| steps. Let k = |PSD| and Vn be the suspicious set
at iteration n, with V0 = {n1, . . . , nk}. The source selects

ni ∈ V0 such that i = d |V0|
2
e. If ni returns Xi : |Xi

⋂
XS | ≈

|XS |, V1 = {ni, . . . , nk}; else V1 = {n1, . . . , ni}. Once |V| =
2, the search has converged on the misbehaving link with
termination time O (log |PSD|).

4.2.2 Case 2: Sophisticated Packet Dropping
We now consider a sophisticated misbehaving node that

changes its dropping pattern to avoid identification. We first
describe this behavior by an example. In Figure 4(a), misbe-
having node n1 drops packets. The source uses binary search
to identify the misbehavior, choosing node n3 to audit. The
audit reply of n3 fails the membership test, reducing the
suspicious set to V1 = {n1, . . . , n3}. The source then audits
node n2, as shown in Figure 4(b). Binary search is determin-
istic allowing n1 to predict the order that nodes are audited.
Node n1 behaves honestly, thus n2’s audit response passes
the membership test. By changing its behavior, n1 removes
himself from V, as Figure 4(c) shows.

Deterministic search allows a misbehaving node nM to
“frame” a set of honest nodes. To mitigate the impact of the
deterministic search, we utilize the following modifications:
(a) we randomize the beginning astart and duration acount

of each audit, so nM cannot predict the timing of audits,
and (b) we perform random binary search to prevent nM

from conjecturing the audit sequence. The modified scheme
is shown in Algorithm 1.

Algorithm 1 Random Binary Search Audit Algorithm

1: Initialize : Vl ← n1, Vr ← n|PSD|,Vn = {Vl, . . . , Vr}
2: while |Vn| > 2 do
3: audit(ni) = V [rand]
4: if |Xi

⋂
XS | ≈ |XS | then

5: Vl ← ni

6: else
7: Vr ← ni

8: end if
9: end while

10: return Vn

Random binary search converges in, on average, log 3
2
|V0|

iterations with termination time O(log |PSD|). To further
prevent framing attacks, D sends an alert to S when the
link’s performance has returned to normal. Using these alert
messages, S pauses the search and discards outstanding au-
dits when no misbehavior is occurring. The search is re-
sumed once S is alerted by D that misbehavior is occurring
in PSD. In Figure 4(b), if S pauses the search when there is

S

D

n1

n2

n3

n4

n5

n6

Figure 5: The search converges on link n4 − n5. S
makes a slight alteration to PSD, isolating n4 and n5,
to determine that n5 is the misbehaving node.

no misbehavior, then the audit response of node n2 would
be discarded and node n1 is unable to remove itself from V.

4.3 Identification Phase
Once the search process has converged on the misbehaving

link, the two suspicious nodes ni, ni+1 are excluded in turn
from the routing path to the destination D. The node pre-
ceding the first suspicious node will split the traffic between
ni, ni+1 in turn. In Figure 5, S uses node n3 to exclude in
turn suspicious nodes n4 and n5. The source alerts D that
two suspicious nodes are monitored via path exclusion. The
destination creates two Bloom filters, vDi , vDi+1 correspond-
ing to the packets routed through suspicious nodes ni, ni+1,
and send them to S. The source compares vi, vi+1 with its
own filters vSi , vSi+1 , and identifies the misbehaving node.

4.4 Multiple Misbehaving Nodes
We now examine the case of multiple independently mis-

behaving nodes. There exists two strategies for the nodes:
(a) continuous misbehavior, and (b) randomly alter between
honesty and misbehavior. In either case, we show S can
identify, isolate, and locate the misbehaving nodes. The first
step is to identify that more than one misbehaving node ex-
ists in PSD, which is achieved as follows.

4.4.1 Case 1: Continuous Misbehavior
Assume ni, nj ∈ PSD are independently misbehaving and

ni < nj , i.e., ni is upstream of nj . If ni is misbehaving,
then regardless of nj ’s strategy, for all downstream nodes
nk, |Xk

⋂
XS | ¿ |XS | including nj . Executing the search

process of REAct will terminate with |V| = 2, and S will
make the path alterations to exclude in turn the two sus-
picious nodes. Note that the suspicious set V = {ni, ni+1},
where one of ni, ni+1 is the misbehaving node. Let that node
be ni. Since nj is downstream from ni, when S excludes ni

from the path, D will still report that both paths misbehave
since both paths contain nj . The only placement such that
both paths do not contain nj is for V = {ni, nj}, in which
case excluding in turn will cause misbehavior in each path.
Thus, S identifies that multiple misbehaving nodes exist.

S n1 n2 n3 n4 n5 D

|V1|={n3,n4,n5}

S n1 n2 n3 n4 n5 D

|V2|={n3,n4}

S n1 n2 n3 n4 n5 D

|V0
1
|={n1,n2,n3}, |V0

2
|={n4,n5}

(a) (b) (c)

Figure 6: (a) n5 misbehaves while n3 is audited. |X3

⋂
XS | ≈ |XS |. (b) Misbehavior strategies change (n1

misbehaves, n5 is honest). n4 is audited and returns |X4

⋂
XS | ¿ |XS |. Search converged to |V| ≤ 2 (c) Path is

partitioned into two suspicious sets; V1
0 = {n1, n2, n3},V2

0 = {n4, n5}.

4.4.2 Case 2: Changing Strategies
In the case where multiple misbehaving nodes indepen-

dently change their strategy from misbehaving to honesty, it
is possible for these nodes to avoid detection. As an example,
consider Figure 6(a) and assume n1, n5 are malicious. Node
n5 is misbehaving while n1 faithfully forwards all packets.
If the algorithm selects node n3 for audit, the suspicious set
will reduce to V = {n3, . . . , n5}. In Figure 6(b), the behavior
pattern changes while searching with n1 misbehaving and n5

being honest. Thus, the search converges on V = {n3, n4},
since any node downstream of n3 has |Xi

⋂
XS | ¿ |XS |.

The problem arises because n3 cannot change its response.
However, when excluding nodes in V in turn, both alter-

nating paths contain misbehaving n1. This results in both
suspicious nodes misbehaving, indicating to S that PSD

contains multiple misbehaving nodes. If n1, n5 happen to
change their strategy, both nodes appear honest. Hence, S
always detects the existence of multiple misbehaving nodes.
The randomization of the audit start and duration, in ad-
dition to the random search, prevents a misbehaving node
from devising a strategy to frame honest nodes.

4.4.3 Isolation and Identification of Misbehavior
Once the source determines the existence of multiple mis-

behaving nodes, path PSD is partitioned into two parts to
isolate the misbehaving nodes from each other. The par-
tition occurs between the two nodes in the suspicious set
V = {ni, ni+1}, i.e., PSD is partitioned to PSni , Pni+1D. In
Figure 6(c), S partitions PSD → PSn2 , Pn3D.

With PSD partitioned to PSni , Pni+1D, S executes REAct
on each partition to locate the misbehaving node(s). In the
single misbehaving node case, S uses alert messages from
D to verify misbehavior in PSD before accepting an audit
response. Once PSD is partitioned, S can only accept an
audit response from nj ∈ PSni if misbehavior is occurring
in PSni . The destination is unable to provide this, as D can
only determine if misbehavior is in PSD; not which partition.

Therefore, S simultaneously audits two nodes in each par-
tition. In PSni , S audits a randomly selected nj ∈ PSni for
the search, and node ni. Auditing ni determines if misbe-
havior is occurring in PSni by checking if Xi : |Xi

⋂
XS | ≈

|XS |. Thus node ni acts as a pseudo-destination. If ni =
nM , it has only two strategies, (a) respond honestly with
XM : |XM

⋂
XS | ≈ |XS |, thus facilitating REAct or (b)

lie and return XM : |XM

⋂
XS | ¿ |XS |, in which case

node nM+1 would return XM+1 : |XM+1

⋂
XS | ≈ |XS |, thus

identifying the link nM − nM+1 has misbehaving.
Likewise on Pni+1D, S audits two nodes; a randomly se-

lected nk ∈ Pni+1 for the search, and node ni+1. The audit
response of ni+1 acts as a verification of how many pack-
ets from XS have reached the partition, such that nk is
processed as |Xk

⋂
Xi+1| to detect misbehavior. The source

also checks if |Xk

⋂
XS | ≤ |Xk

⋂
Xi+1|, which prevents ni+1

from creating a Bloom filter which has only partial informa-
tion. Node ni+1 therefore acts as a pseudo-source for Pni+1D

With these steps, REAct can be recursively executed to find
multiple independently misbehaving nodes on PSD.

5. PERFORMANCE EVALUATION

5.1 Simulation Setup
We randomly deployed 100 nodes within an 80×80 square

area, and randomly selected source-destination pairs. For
each pair we constructed the shortest path PSD and ran-
domly selected the set of nodes that misbehave. For each
audited node ni, we also constructed the shortest disjoint
path PSni for sending the audit requests. We generated
traffic from S to D following the UDP protocol. We as-
sumed no packed loss or collisions on each network link.
Each misbehaving node was simulating an either constant
packet dropping pattern or a random strategy of rotating
between honesty and misbehavior.

We compared the performance of REAct, with the per-
formance of CONFIDANT [5] from the class of reputation-
based systems and the performance of 2ACK [15] from the
class of acknowledgment-based schemes. Specifically, we
evaluated the communication overhead associated with the
identification of compromised nodes and the incurred delay.

5.2 Communication Overhead
In the CONFIDANT scheme, every one-hop neighbor of

a transmitting node was assumed to operate in promiscuous
mode, thus overhearing transmitted messages. The energy
for overhearing a message was set to 0.5 times the energy
required to transmit [9]. For 2ACK, a fraction p of the
messages transmitted by each node was acknowledged two
hops upstream of the receiving node. We set that fraction
to p = {1, 0.5, 0.1} [15]. For all three schemes we measured
the communication overhead in terms of number of mes-
sages that need to be transmitted or overheard to perform
neighbor monitoring.

Both CONFIDANT and 2ACK are proactive, incurring
communication overhead regardless of the existence of mis-
behavior. However, REAct incurs overhead only if misbe-
havior exists, due to its reactive nature. To provide a fair
comparison, we first considered the overhead of the proac-
tive protocols for the duration of time required to identify
the misbehaving node using REAct. The audit duration for
REAct was set to 200 packets, i.e., each node had to provide
proof for acount = 200 packets every time it was audited.

5.2.1 Impact of path length
In Figure 7(a), we show the communication overhead in

number of transmitted messages, as a function of path size

2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, | P
SD

 |

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication overhead as a function of | P
SD

 |

2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REAct

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
count

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication overhead as a function of a
count

2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REAct

2 4 6 8 10 12
0

2

4

6

8

10

Path Length, | P
SD

 |

A
ud

its
 (

a co
un

t =
 2

00
)

Misbehavior identification delay

2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REAct

2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, | P
SD

 |

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication overhead over the identification period

2ACK
CONFIDANT
REAct

(a) (b) (c) (d)

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
count

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication overhead over the identification period

2ACK
CONFIDANT
REAct

2 4 6 8 10 12
0

50

100

150

Path Length, | P
SD

 |

M
es

sa
ge

 O
ve

rh
ea

d

Message overhead as a function of path size

1 Misbehaving Node
2 Misbehaving Nodes

2 4 6 8 10 12
0

2

4

6

8

10

12

14

Path Length, | P
SD

 |

A
ud

its

Audits required for misbehavior identification in terms

1 Misbehaving Node
2 Misbehaving Nodes

2 4 6 8 10 12
0

2

4

6

8

10

Path Length, | P
SD

 |

D
el

ay

Delay for misbehavior identification

1 Misbehaving Node
Individual Search
Parallel Search

(e) (f) (g) (h)

Figure 7: (a) Communication overhead as a function of path length for audit size of 200 packets. Overhead is
computed as time required by REAct to converge on nM . (b) Communication overhead as a function of audit
size for |PSD| = 8. (c) Identification delay as a function of path length in units of audit size. (d) Communication
overhead as a function of path length for audit size of 200 packets. For each scheme, overhead is computed
as time required to identify nM . (e) Communication overhead as a function of audit size for |PSD| = 8. (f)
Communication overhead of REAct as a function of path size for two independently misbehaving nodes. (g)
Number of audits required to identify the independently misbehaving nodes, as a function of path length.
(h) Relative delay required to identify misbehaving nodes, as a function of path length.

|PSD|. The Y axis is in logarithmic scale. We observe the
communication overhead of REAct is almost 4 orders of
magnitude less than the overhead of the proactive schemes.
REAct only incurs overhead during the transmission of the
Bloom filter to the source, whereas CONFIDANT and 2ACK
actively monitor transmissions during the audit period. For
all three schemes, the communication overhead increases
almost linearly with path length. For CONFIDANT and
2ACK schemes, this linear increase is justified by the pro-
portional increase of the number of transmissions that need
to be monitored or acknowledged. For REAct, the linear
behavior is justified by the proportional increase of path
lengths from each audited node to the source.

5.2.2 Impact of audit size
The audit size parameter defines the number of packets

needed to differentiate normal dropping rate from misbe-
havior. In Figure 7(b), we show the communication over-
head as a function of audit size, acount, for a path length of
8 nodes. Both proactive schemes incur a linear increase in
communication overhead with audit size, since communica-
tion overhead incurs on a per-packet basis. The overhead for
REAct depends on the number of audits, not the duration
of each audit. Hence, it is independent of the audit size.

5.3 Identification Delay
While REAct provides significant savings in communica-

tion overhead, it requires a longer time to identify misbe-
havior, as multiple audits need to be performed. Proac-
tive schemes require only a single audit duration to identify
misbehavior since all nodes in path PSD are monitored in
parallel. Fortunately, the audits required by REAct grows
logarithmically with path length due to the random binary

search algorithm employed, resulting in fairly small increases
in identification delay compared to savings in communica-
tion overhead.

In Figure 7(c), we show the identification delay for RE-
Act, CONFIDANT, and 2ACK as a function of path length
|PSD|, in units of audits. We observe the logarithmic in-
crease of identification delay with path length for the RE-
Act scheme. CONFIDANT requires a single audit duration
to identify misbehavior. 2ACK also requires a single audit
when all packets are acknowledged. However, the identifi-
cation delay increases when a fraction of the packets in one
audit are acknowledged.

5.4 Identification Delay Based Comparison
According to Figure 7(c), the three compared schemes in-

cur different delay in the misbehavior identification. We
now evaluate the communication overhead incurred by each
scheme, from the start of the node misbehavior until the
identification of nM . The communication overhead of CON-
FIDANT and 2ACK is measured for the duration of a single
audit, while the overhead of REAct is measured for the log-
arithmic number of audits required to identify nM .

In Figure 7(d), we show the communication overhead as a
function of path length, for audit size of 200 packets. In Fig-
ure 7(e), we show the communication overhead as a function
of audit size for path length of 8 nodes. Even in the case
where the communication overhead is measured only during
the identification time, REAct significantly outperforms the
proactive schemes. Both CONFIDANT and 2ACK are sen-
sitive to path length and audit size, leading to very high en-
ergy and bandwidth expenditure for misbehavior detection,
while REAct allows for a graceful tradeoff between commu-
nication overhead and delay in misbehavior identification.

5.5 Multiple Misbehaving Nodes
We also evaluated the performance of REAct when PSD

contains two independently misbehaving nodes which ran-
domly change from misbehavior to normal behavior. To
determine the behavioral pattern for each nM , time was
divided in epochs. At each epoch, each nM would decide
whether to behave or misbehave according to the outcome
of a fair coin flip. The duration of each epoch was randomly
selected from the range of 1 to 400 packets.

In Figure 7(f), we show the communication overhead of
REAct as a function of path length for an acount = 200.
The single misbehaving node case is depicted as reference.
We observe the communication overhead grows up to three
times larger compared to the single misbehaving node case,
due in part to overhead incurred until the source realizes
multiple misbehaving nodes exist.

In Figure 7(g), we show the audits required for identifica-
tion of the misbehaving nodes, as a function of path length.
Again, the single misbehaving node case is plotted for ref-
erence. We observe that multiple misbehaving nodes signif-
icantly increases the number of audits required, when path
length grows large. Note that in the two misbehaving node
scenario, the number of audits does not directly correspond
to delay, as multiple audits are performed in parallel.

In Figure 7(h), we show the relative delay required for
misbehavior identification, as a function of path length. A
comparison is shown between the source searching both path
partitions in parallel, and searching the partitions in turn.
Parallel search is possible if the misbehaving nodes simulta-
neously misbehaving. The space between the parallel search
line and the individual search line gives an expected delay.

6. CONCLUSION
We studied the problem of routing misbehavior in wireless

ad hoc networks. Specifically, we addressed the problem of
identifying misbehaving nodes that refuse to forward pack-
ets to the destination. We proposed a reactive identifica-
tion scheme called REAct which relies on the random audit
of a subset of nodes along the source/destination path to
identify misbehaving nodes. Each audited node uses Bloom
filters to construct a storage and communication-efficient
behavioral proof of the packets it forwarded. We showed
that REAct significantly reduces the communication over-
head associated with the misbehavior identification process
compared to reputation-based and acknowledgment-based
schemes. This reduction in resource expenditure comes at
the expense of a logarithmic increase in the identification
delay, due to the reactive nature of our scheme.

7. REFERENCES
[1] B. Awerbuch, D. Holmer, C.-N. Rotaru, and

H. Rubens. An on-demand secure routing protocol
resilient to byzantine failures. In WiSe 2002, 2002.

[2] K. Balakrishnan, J. Deng, and P. K. Varshney.
Twoack: Preventing selfishness in mobile ad hoc
networks. In WCNC 2005, 2005.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2004.

[5] S. Buchegger and J.-Y. L. Boudec. Performance
analysis of the confidant protocol (cooperation of
nodes: Fairness in dynamic ad-hoc networks). In
MobiHOC 2002, June 2002.

[6] S. Buchegger and J.-Y. L. Boudec. Self-policing mobile
ad-hoc networks by reputation systems. IEEE
Communications Magazine, pages 101–107, 2005.

[7] L. Buttyan and J.-P. Hubaux. Stimulating cooperation
in self-organizing mobile ad hoc networks. ACM/
Kluwer Mobile Networks and Applications, 8(5), 2003.

[8] J. Dyer, M. Lindemann, R. Perez, R. Sailer, and
L. van Doorn. Building the ibm 4758 secure
coprocessor. IEEE Computer, 34:57–66, October 2001.

[9] L. M. Feeney and M. Nilsson. Investigating the energy
consumption of a wireless network interface in an ad
hoc networking environment. In INFOCOM 2001.

[10] V. Gligor. Handling new adversaries in secure mobile
ad-hoc networks. In ESNS 2007, 2007.

[11] Q. He, D. Wu, and P. Khosla. Sori: A secure and
objective reputation-based incentive scheme for ad hoc
networks. In WCNC 2004, 2004.

[12] M. Jakobsson, J.-P. Hubaux, and L. Buttyan. A
micropayment scheme encouraging collaboration in
multi-hop cellular networks. In Financial Crypto, 2003.

[13] D. Johnson, D. Maltz, and Y.-C. Hu. The dynamic
source routing protocol for mobile ad hoc networks
(dsr). draft-ietf-manet-dsr-09.txt, 2003.

[14] A. Liu and P. Ning. Tinyecc: A configurable library
for elliptic curve cryptography in wireless sensor
networks. In IPSN 2008. SPOTS Track, 2008.

[15] K. Liu, J. Deng, P. Varshney, and K. Balakrishnan.
An acknowledgment-based approach for the detection
of routing misbehavior in manets. IEEE Transactions
on Mobile Computing, 6(5):536–550, May 2006.

[16] Y. Liu and Y. R. Yang. Reputation propagation and
agreement in mobile ad-hoc networks. In WCNC 2003,
pages 1510–1515, March 2003.

[17] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
MobiCom 2000, pages 255–265, 2000.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
Tcp selective acknowledgment options. RFC 2018.

[19] P. Michiardi and R. Molva. Core: A collaborative
reputation mechanism to enforce node cooperation in
mobile ad hoc networks. In CMS 2002, 2002.

[20] V.-N. Padmanabhan and D.-R. Simon. Secure
traceroute to detect faulty or malicious routing.
SIGCOMM Computer Communication, 33(1), 2003.

[21] K. Paul and D. Westhoff. Context aware detection of
selfish nodes in dsr based ad-hoc networks. In IEEE
Globecom, 2002.

[22] Y. Xue and K. Nahrstedt. Providing fault-tolerant
ad-hoc routing service in adversarial environments.
Wireless Personal Communications, Special Issue on
Security for Next Generation Communications,
29(3–4):367–388, 2004.

[23] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple
cheat-proof, credit-based system for mobile ad-hoc
networks. In INFOCOM 2003, pages 1987–1997.

