Impacts of User Behavior on Continuous Playback in Tree-based Video-on-Demand Streaming over P2P Networks

By:
Hanif Rahbari

Under Supervision of:
Dr. Mehdi Dehghan (Amirkabir Univ. of Technology)
Dr. Hamid R. Rabiee (Sharif Univ. of Technology)

September 2010
Agenda

- P2P Video Streaming
- Continuous Playback in a VoD Tree-Based System
- User Behavior
- Study the Impact of User Behavior
- Simulation
- Conclusion and Future Work
Agenda

>>> P2P Video Streaming
Continuous Playback in a VoD Tree-Based System
User Behavior
Study the Impact of User Behavior
Simulation
Conclusion and Future Work
Video Streaming Models

- Client/Server Model
- Content Distribution Network (CDN) Model
 - Extension of Client/Server model
 - YouTube!
- IP Multicast
- Peer-to-Peer (P2P) Networks Model
 - Build upon an overlay network
 - Being both client and server
 - Resource sharing → More Scalable
Classification of Video Streaming over P2P Networks

- Content Delivery Topology
 - Mesh
 - (Multi-)Tree

- A/synchronized Content Delivery
 - Live
 - Video-on-Demand (VoD)
Agenda

- P2P Video Streaming
- >>> Continuous Playback in a VoD Tree-Based System
- User Behavior
- Study the Impact of User Behavior
- Simulation
- Conclusion and Future Work
DirectStream - A VoD Tree-Based System
How does it work?

- Local Memory:
- Video Length:
DirectStream - A VoD Tree-Based System (Con’d)
How does it work?
DirectStream - A VoD Tree-Based System (Con’d)
How does it work?
DirectStream - A VoD Tree-Based System (Con’d)
How does it work?
DirectStream – A VoD Tree-Based System (Con’d)

- Scalable
- Buffering last b minutes
 - No explicit delayed playback
- Supports VCR functionalities
 - Pause, Jump Forward/Backward, …
- Parent Selection Algorithm
 - Distance-Bandwidth Ratio Metric
 - Load Balancing
 - Traffic Reduction
 - Smallest value is preferred
 - n_i: Number of hops
 - x_i: Available Bandwidth

\[\frac{n_i^r}{x_i} \]
Parent Selection

New node:
Physical node:

\[n_i^r / x_i = n_2^r / x_2 = 3^r / x_2 \]
DirectStream – Features

- Scalable
- Considering Continuous Playback
 - Multiple backup parents
- VCR Functionalities
- Proximity Awareness
 - Underlying overlay network

DirectStream – VCR Functionalities

- **Pause**
 - Removes temporarily
 - All children require recovery process

- **Forward Jump**
 - New position > parent’s position
 - Recovery process
 - All children require recovery process

- **Jump Backward**
 - New position < parent’s position – buffer size
 - Recovery process
 - All children require recovery process
QoS Challenges in P2P Video Streaming

- Bandwidth
- Delay
- Jitter
- Packet Loss
- High Dynamics (in P2P networks)
 - Peer churn
 - Providing continuous playback
 - Tackling interruption(s) and reconstructing the overlay
DirectStream – User Interactions

A Selfish User!
The Causes of Discontinuous Playback

- Bandwidth Fluctuations
- Client Early Departure and Overlay Distortion
 - Selfish/Malicious nodes
 - Unexpectedly stopping video playback
 - User interactions
Discontinuous Playback (An Example)
Mitigating the Causes of Interruption

- **Re-active Approach**
 - Be prepared for a suitable reaction!
 - Data buffering (Delayed playback)
 - Multiple backup parents
 - Inefficient use of bandwidth
 - Reduction in system scalability
 - Multiple Description Coding (MDC)
 - Mesh-based topology

- **Pro-Active Approach**
 - Incentive mechanism(s)
Agenda

P2P Video Streaming
Continuous Playback in a VoD Tree-Based System

>>> User Behavior

Study the Impact of User Behavior Simulation

Conclusion and Future Work
User Behavior

- User Behavior includes:
 - Sent time in system
 - Interactions (VCR)
 - Video (Content) popularity

- Statistical Models are available
 - Using information extracted from the server logs (LNE TV)
 - Take advantage of this models to anticipate the future behavior of a typical user

- User Behavior Influences:
 - Simulations and evaluations
 - Protocol design

Networking Seminar – Fall 2010
User Behavior – Modeling

- User Behavior Model demonstrates:
 - A Conceptual model for user behavior
 - Dependence structure among variables
 - Number of concurrent users
 - Sent time in system
 - User interactions statistical model
 - Re-watch requests

User Behavior – Conceptual Model

- **Session Layer**: Session #1 starts and continues for a duration longer than t_{off} and more than 30 minutes, followed by Session #2.

- **Request Layer**:
 - Request #1: Long video
 - Request #2: Short video
 - Request #3: Long video

- **ON-OFF States**:
 - Session #1: ON-OFF-ON-OFF-ON
 - Requests:
 - Request #1: Play, Pause, Play, Pause, Play, Stop

Client Activities
User Behavior – Statistical Properties

- Dependence Structure
 - Video length dependent parameters

- User’s Request Length
 - Short Video $L < 300$
 - Users with complete watch: 3%
 - 60% of users depart before the middle of video
 - Long video $L > 300$
 - Users with complete watch: 1%
 - 80% of users depart before the middle of video

- High Dynamics!
User Behavior – Statistical Properties (Con’d)

- VCR Functionalities
 - Short video
 - 61% without any pause
 - 93% without forward jump
 - 96% without backward jump
 - Long video
 - 64% without any pause
 - 21% have only 1 pause
 - 83% without forward jump
 - 91% without backward jump

- Not Very High Dynamics
User Behavior – System Parameters

- **Scalability**
 - Self-scalability

- **Performance Evaluation of Hard/Soft Cache**
 - Hard cache has better performance

- **Performance Evaluation of Different replacement Algorithms**

- **Continuous Playback?**

Agenda

P2P Video Streaming
Continuous Playback in a VoD Tree-Based System
User Behavior
>>> Study the Impact of User Behavior
Simulation
Conclusion and Future Work
Inclusion of User Behavior in Directstream

- New node prefers current nodes to the server

Contacting Server if

- No candidate node
 - More candidates: less probability of contacting server
 - Systems with more buffers: more candidates

- Lack of the bandwidth
 - More bandwidth: less probability of contacting server

Node Early Departure

- Recall: 80% of nodes depart the video before the middle of the video!
Effects of User Departure on Sub-tree(s)
Effects of User Departure on Sub-tree(s) (Con’d)

- New node prefers current nodes to the server
 - Increase in depth of sub-tree(s) ($b = 4$)
 - $T = 10$
 - $T = 20$
1. Capacity redemption in some nodes for child’s departure
 - Less probability to contact server
 - Increase in depth and width of sub-tree
 - Increase in scalability

2. Replacement of old nodes with new ones
 - Increase the potential of admitting new nodes
 - Increase in depth and width of sub-tree (more recent buffers)

3. Node departure faces all children to interruption
 - More depth in sub-tree: More the possibility of facing interruption
Continuous Playback – Performance Metrics

- 3 Types of System Responses to New Requests:
 - Rejection
 - Admission but with interruption(s)
 - Admission without interruption

- Metric #1: Rejection Probability
- Metric #2: Percentage of admitted but interrupted clients
- Metric #3: Percentage of interrupted clients per admitted clients.
- Metric #4: Average number of interrupts per admitted clients.
- Metric #5: Average number of interrupts per interrupted clients.
More Elaboration on Studying the Effect of Some Parameters

- Reliable Path from Parent to Server
- Definition 1: The probability of Complete view in all parents
 - Depth of the node
 - Age of all the parents
 - Old viewers have less tendency to leave watching
 - Take advantage of statistical model
 - i.i.d. random variables

\[
P_{\text{reliable}}^i = p(\text{complete view}|t)
= \frac{p_{100}}{p_{t/1}}
= \prod_{i=1}^{n} P_{\text{reliable}}^i
\]
More Elaboration on Studying the Effect of Some Parameters (Con’d)

- Definition 2: The probability of no jumps/pause in all parents
 - Depth of the node
 - Number of pause/jump in parent nodes
 - Take advantage of statistical model
 - i.i.d. random variables

\[
P_{\text{no pause}} = \prod_{j=1}^{n} P_{\text{no pause}}^{j} \cdot P_{\text{no jump}}
\]

\[
P'_{\text{robust}} = \prod_{j=1}^{n} P_{\text{no pause}}^{j} \cdot P_{\text{no jump}}
\]
More Elaboration on Studying the Effect of Some Parameters (Con’d)

- Tendency to choose more reliable parents
 - Anticipation based on user behavior

- Combination with Distance-Bandwidth Ratio
 - Violation from scalable criteria
 - Degradation in scalability

- Parent Selection Algorithm for both definitions
 - N candidates
 - Select k best candidates
 - Select the most robust parent
Agenda

P2P Video Streaming
Continuous Playback in a VoD Tree-Based System
User Behavior
Study the Impact of User Behavior
>>> Simulation
Conclusion and Future Work
Simulation - Setup

- Topology: A network with 100 nodes which represent local networks
 - 12 stub networks
 - 1 transit network
- Topology Generated by GT-ITM tool
- 1 Video with CBR (Constant Bit Rate)
- MATLAB
- Long Video
Simulation - Parameters

- Normalized Workload (x-axis)
 - Arrival Rate (Poisson)
 - 1 - 1000

- Buffer Memory (Colored Lines)
 - = 5% of video length (black)
 - = 10% of video length (blue)
 - = 20% of video length (red)

- Confidence Intervals
 - 95%
Simulation – Validation

Server in Stub Domain (QoS)

- unicast
- buffer-size = 5
- buffer-size = 10
- buffer-size = 15
- buffer-size = 20

Server in Stub Domain - Without interactions

- Transit domain: buffer-size = 5%
- Transit domain: buffer-size = 10%
- Stub domain: buffer-size = 5%
- Stub domain: buffer-size = 10%

Networking Seminar – Fall 2010
Simulation – DirectStream with User Behavior

- Rejection Probability
 - Redemption of resources because of users early departure
 - Self-Scalability

Without User Behavior

With User Behavior

Server in Transit Domain - Without interactions

Server in Transit Domain - With interactions

Client rejection probability

Normalized workload

Networking Seminar – Fall 2010
Simulation – The Effect of Arrival Rate

- Direct Relation between Workload and metric #2
 - Because of increase in number of nodes and so increase in distance to server

```
Server in Transit Domain - With interactions

- buffer-size = 5%
- buffer-size = 10%
- buffer-size = 20%
```

> Normalized workload

> Number of Clients with Interrupt(s) (%)
Simulation – The Effect of Buffer Size

- Direct Relation Between Buffer Size and Number of Interruptions
 - More candidates and thus less tendency to contact server
 - Left: \(b = 2 \), Right: \(b = 2 \)

![Diagram showing network topology and candidate nodes with buffer sizes]
Simulation – Buffer Size vs. Arrival Rate

- Analogous Systems

- Similarity:
Similar Interrupted nodes in High Load

100: Turning-Point
- Almost Balanced Tree
- Increase in RP
- Independence from buffer size
Simulation – Interrupted Nodes

- The Order Inverts after Turning-point (100)
 - More choices: much balanced
Simulation – Parent Selection Based on Definition 1

- Age and depth of the parent(s)
- Improved Continuous Playback
 - Low workload
 - Slight improvement in 5% & 20%
 - High workload
 - Improves all
Simulation – Parent Selection Based on Definition 1

- **# of Interrupts**
 - Before TP (100)
 - Decreased
 - Around TP (100)
 - Increased!
 - After TP (100)
 - Decreased

- **Fairness**
 - Improved
Simulation – Definition 1 (Age and Depth of parent(s))

- Improvement in some points (green: Improvement)
- Scalability!

<table>
<thead>
<tr>
<th>Buffer Size</th>
<th>Normalized Workload</th>
<th>Metric #1</th>
<th>Metric #2</th>
<th>Metric #3</th>
<th>Metric #4</th>
<th>Metric #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>50</td>
<td>-43.10%</td>
<td>6.40%</td>
<td>4.50%</td>
<td>1.50%</td>
<td>-2.90%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-35.90%</td>
<td>1.60%</td>
<td>-2.60%</td>
<td>-3.40%</td>
<td>-0.60%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-32.80%</td>
<td>3.60%</td>
<td>-4.10%</td>
<td>0.20%</td>
<td>4.60%</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-22.80%</td>
<td>0.80%</td>
<td>-6.40%</td>
<td>-2.40%</td>
<td>4.30%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>-23.40%</td>
<td>13.00%</td>
<td>5.40%</td>
<td>10.70%</td>
<td>5.10%</td>
</tr>
<tr>
<td>10%</td>
<td>50</td>
<td>-36.70%</td>
<td>5.40%</td>
<td>2.60%</td>
<td>8.20%</td>
<td>6.40%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-39.10%</td>
<td>-0.40%</td>
<td>-3.80%</td>
<td>-0.80%</td>
<td>3.00%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-46.30%</td>
<td>-0.30%</td>
<td>-6.20%</td>
<td>-4.60%</td>
<td>1.80%</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-30.90%</td>
<td>-3.00%</td>
<td>-8.80%</td>
<td>-4.80%</td>
<td>4.40%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>-34.65%</td>
<td>7.70%</td>
<td>3.50%</td>
<td>5.90%</td>
<td>2.30%</td>
</tr>
<tr>
<td>20%</td>
<td>50</td>
<td>-74.20%</td>
<td>2.20%</td>
<td>-0.30%</td>
<td>11.00%</td>
<td>4.20%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-57.70%</td>
<td>3.00%</td>
<td>0.50%</td>
<td>12.60%</td>
<td>3.10%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-56.80%</td>
<td>6.90%</td>
<td>4.00%</td>
<td>19.70%</td>
<td>4.70%</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-59.00%</td>
<td>-1.00%</td>
<td>-4.00%</td>
<td>9.20%</td>
<td>2.60%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>-58.90%</td>
<td>11.80%</td>
<td>9.30%</td>
<td>19.20%</td>
<td>1.30%</td>
</tr>
</tbody>
</table>
Simulation – Definition 2 (Age and VCR Prob. of parent(s))

- No Visible Improvement
 - Because of Similarity between candidates
- Scalability!

<table>
<thead>
<tr>
<th>Buffer Size</th>
<th>Normalized Workload</th>
<th>Metric #1</th>
<th>Metric #2</th>
<th>Metric #3</th>
<th>Metric #4</th>
<th>Metric #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>50</td>
<td>-2.20%</td>
<td>-3.60%</td>
<td>-3.50%</td>
<td>-5.10%</td>
<td>-2.30%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-18.30%</td>
<td>6.80%</td>
<td>3.60%</td>
<td>3.60%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-25.40%</td>
<td>1.60%</td>
<td>-6.90%</td>
<td>-3.70%</td>
<td>3.30%</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-19.40%</td>
<td>0.50%</td>
<td>-5.40%</td>
<td>-3.90%</td>
<td>1.50%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>-27.10%</td>
<td>9.60%</td>
<td>0.70%</td>
<td>5.40%</td>
<td>4.70%</td>
</tr>
<tr>
<td>10%</td>
<td>50</td>
<td>-78.50%</td>
<td>1.50%</td>
<td>-4.20%</td>
<td>-12.50%</td>
<td>-8.60%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-55.20%</td>
<td>-5.10%</td>
<td>-10.10%</td>
<td>-9.80%</td>
<td>0.30%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-38.50%</td>
<td>-0.10%</td>
<td>-4.50%</td>
<td>-3.10%</td>
<td>1.50%</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-29.10%</td>
<td>-0.20%</td>
<td>-3.70%</td>
<td>-2.20%</td>
<td>1.60%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>-36.40%</td>
<td>4.70%</td>
<td>0.40%</td>
<td>3.90%</td>
<td>3.50%</td>
</tr>
<tr>
<td>20%</td>
<td>50</td>
<td>-69.40%</td>
<td>2.40%</td>
<td>0.40%</td>
<td>2.70%</td>
<td>-3.60%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-65.10%</td>
<td>-0.60%</td>
<td>-3.90%</td>
<td>6.00%</td>
<td>-0.20%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-61.70%</td>
<td>-0.70%</td>
<td>-4.00%</td>
<td>8.90%</td>
<td>1.90%</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>-56.60%</td>
<td>-3.60%</td>
<td>-6.30%</td>
<td>2.80%</td>
<td>-0.50%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>-55.40%</td>
<td>11.80%</td>
<td>9.60%</td>
<td>18.30%</td>
<td>0.60%</td>
</tr>
</tbody>
</table>
Agenda

P2P Video Streaming
Continuous Playback
User Behavior
User Behavior in A Tree-Based Approach
Simulation

>>> Conclusion and Future Work
Conclusion

- **User Behavior**
 - **High Dynamics**
 - Frequent changes in network topology
 - **Effective in performance evaluation**
 - Evaluating the scalability of a specific system
 - **Effective in evaluating continuous playback**
 - This work is the first one
 - **Effective in protocol design**
 - Much balanced tree
Conclusion

- Considering current system:
 - In a typical Tree-based system
 - From continuous playback point of view
 - Worsening with increase in arrival rate
 - In low arrival rate: smaller buffer size is better
 - In moderate arrival rate (TP): No difference between buffers
 - In low arrival rate: bigger buffer size is better
 - From scalability point of view
 - DirectStream has good scalability
 - Bigger buffer sizes decrease rejection probability
Conclusion (Con’d)

- Considering future systems:
 - Trade-off between scalability and continuous playback
 - Parent selection with regard to depth, improves continuous playback
 - Parent selection with regard to age of parents, in most cases, improves continuous playback
 - Parent selection with regard to number of pauses/jumps do not provide useful improvement
Future Works

- Evaluating continuous playback in mesh-based systems
- Investigating the effect of selfish/malicious nodes on continuous playback
 - Exploiting incentive mechanism and game theory for improve in continuous playback
- Exploiting depth and age of nodes in protocol design
- More accurate use of statistical parameters
- Classification of users based on their behavior
- Developing a mathematical model for Continuous Playback
- Investigating the effect of BW
- Study of user behavior in a real P2P system
- …
Main References

