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Abstract—We address the problem of preserving the confi-
dentiality of contextual information in wireless sensor networks
(WSNs). Such information includes the time and location of
events observed by the WSN, the position of the sink, and possible
routes to the sink. Contextual information can be extracted via
traffic analysis, even when all traffic is encrypted. We consider
a global threat model in which the adversary is assumed to be
capable of eavesdropping on all communications. Compared to
previous works, our method significantly reduces the communica-
tion overhead for hiding contextual information. In our approach,
we first reduce the number of bogus traffic sources necessary for
hiding traffic patterns by finding minimum connected dominating
sets that cover the deployment area. We then randomize the
traffic distributions observed by eavesdropping nodes.

I. INTRODUCTION

Wireless sensor networks (WSNs) can effectively monitor
our physical word at low cost. When collected information
is of sensitive nature, its confidentiality is typically secured
via cryptographic methods, such as data encryption. However,
encryption alone cannot prevent the leakage of contextual
information such as the location and time of occurrence of
a sensed event, the sink’s position, and the routing paths
followed by data packets. Passive eavesdroppers can infer con-
textual information by correlating low-level packet identifiers
and performing traffic analysis, even if the contents of the
communications remain secret. [2], [3], [8], [9], [13].

The problem of hiding contextual information in WSNs
has been addressed under both local and global adversary
models. Under a local adversary model, the eavesdroppers are
assumed to have a limited presence within the WSN [3], [6],
[12], and therefore can intercept only a fraction of the WSN
traffic. Hiding methods include random and directed random
walks [2], addition of pseudo-sources and pseudo-destinations,
creation of routing loops [6], [12], and flooding [2]. These
methods fail to provide protection under a global eavesdropper
capable of intercepting all communications within the WSN
[3], [13]. This global threat model is a plausible scenario
given the relatively low acquisition and deployment costs of
WSNs. For example, 10,000 sensors valued at $1 each, can
be obtained with an expense of $10, 000.

Current techniques for hiding contextual information in the
presence of a global adversary, employ bogus transmissions
that normalize traffic patterns independent of the occurrence
of real communications [3], [8], [9], [13]. However, these tech-
niques introduce significant communication overhead which is
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proportional to the size of the WSNs. In this paper, we address
the problem of hiding contextual information under a global
adversary, in a resource-efficient manner.

Our Contributions: We propose a resource-efficient hiding
scheme which hides contextual information using fake data
sources. Our scheme differs from previous approaches in that it
employs only a subset of sensors for transmitting bogus traffic.
This set is independent of the sensor deployment density. We
map the problem of selecting the fake sources to the problem
of finding a minimum connected dominating set (MCDS)
that covers the deployment area. The MCDS guarantees that
every sensor is at most one hop from the MCDS and that
every eavesdropper perceives random traffic patterns. We then
regulate the transmissions of real sources such that their impact
on the observed traffic rates is statistically insignificant. Our
simulations show that our method significantly reduces the
communication overhead for hiding contextual information.

The remainder of the paper is organized as follows. In
Section II, we present related work. In Section III, we state our
model assumptions. Section IV presents our privacy preserving
scheme. In Section V, we evaluate the performance of our
hiding method, and in Section VI, we conclude.

II. RELATED WORK

Methods for hiding contextual information in WSNs can be
classified to those considering a local adversary model and
those considering a global adversary model. Due to space
limitation we focus on the latter class.

In [8], the authors proposed two traffic normalization
methods based on the injection of dummy traffic; periodic
collection and source simulation. In periodic collection, each
sensor generating bogus packets at a constant rate. To transmit
real data, sensors substitute fake packets with real ones and
transmit them at the same constant rate. This method prevents
the extraction of information from traffic analysis even in the
presence of a global eavesdropper, at the expense of significant
communication overhead due to the global dummy traffic
generation. In the source simulation method, the incurred
communication overhead is reduced by selecting only a subset
of sensors as sources of dummy traffic. These are chosen in
such a way so that they simulate the expected distribution of
real events which has to be known beforehand.

In [2], [3], the authors propose a fractal propagation scheme
based on bogus traffic. Assuming that the adversary is not



capable of distinguish real sources from fake ones, a sensor
that observes the transmission of real data in its vicinity,
generates a fake packet with some probability p and forwards
it to its neighbors. The packet is probabilistically flooded in a
radius of K hops from the fake source, at each hop the packet
is retransmitted with probability p.

In [9], Shao et. al. propose a method to reduce the tradeoff
between the event reporting delay and privacy in WSNs.
All sensors transmit bogus traffic based on a predetermined
distribution. A sensor that wants to insert a real data packet
among fake ones, reduces the inter-message delay time by
transmitting earlier than the time dictated by its fake packet
distribution. It then compensates by delaying the transmission
of the next fake packet. In the proposed scheme all sensor
nodes are sources of bogus traffic.

In [13], the authors propose methods that reduce the prop-
agation of dummy messages through the network. In the
Proxy-based Filtering Scheme (PFS), a subset of sensors are
designated as proxies in different parts of the deployment area.
Sensors transmit packets (real or bogus) to the closest proxy
who filters dummy traffic and forwards real messages towards
the base station. At the proxies, real traffic is transmitted along
with bogus traffic in order to maintain the uniformity of the
traffic patterns in the network. In the Tree-based Filtering
Scheme (TFS), the proxies are organized as a tree structure
rooted at the base station, which prevents messages from
traversing through multiple proxies.

III. NETWORK AND ADVERSARIAL MODELS

Network Model: The network consists of a set of V
sensors randomly deployed within an area of interest. The
communications among sensors follow the unit disc graph
model. Every sensor v € ) has a fixed communication
range v and a known location /,. Relevant packet identifiers
such as source and destination addresses are assumed to be
hidden from eavesdroppers via the application of link level
re-encryption. This prevents the correlation of incoming to
outgoing traffic on any given sensor based on packet contents.
Contention management protocols are assumed to conform to
the packet transmission rates imposed by our scheme.

Adversary Model: We assume that the adversary randomly
deploys a set of sensors A with minimum density for 1-
covering the sensor field with a desired probability p.. This
density can be calculated using well known analytic formulas
[7]. The adversary network collectively eavesdrops on all
traffic of the WSN, in order to identify the location and
time of an event, or the location of the sink. The adversarial
sensors are assumed to have the same device characteristics
as the legitimate sensors due to cost limitations. For time
sensitive information such as the time and location of an event,
adversarial sensors are assumed to individually analyze the
intercepted traffic. This is preferred in order to reduce the delay
associated with centralized detection schemes. For information
where detection delay is not critical such as the sink’s location,
centralized analysis of all traffic is possible.

An adversarial sensor a intercepting a packet, can pinpoint
the location of the transmission originator at a granularity
equal to the communication area C,(¢,,v) of sensor a. As
a result, when static packet identifiers are hidden and ran-
domized due to the application of encryption, eavesdropping
sensors cannot differentiate between packets originating from
distinct sources within their communication area. Finally,
the adversary is assumed to be a passive external observer
that does not launch active attacks (e.g., jamming, packet
modification and injection attacks) against the WSN.

IV. HIDING CONTEXTUAL INFORMATION

In this section, we propose a scheme that prevents the
leakage of contextual information due to traffic analysis. Our
scheme involves two phases: a bogus traffic source selection
phase and a rate assignment phase.

A. Design Motivation

To hide contextual information, we inject bogus traffic from
fake sources, similar to most schemes that deal with global ad-
versaries [8], [9]. Most prior designs require that every sensor
of the WSN injects bogus traffic with some rate that satisfies
desired statistical properties. However, we make the observa-
tion that it is not necessary that all sensors are active sources
of bogus traffic, in order for the observation set collected
by the adversarial WSN to maintain statistical uniformity.
When link-level re-encryption and ciphertext randomization
is applied, correlating successive packets based on the packet
contents is not possible. Therefore, every eavesdropping sensor
records the collective rate of all the sensors located within
its communication area, without being capable of computing
the individual rate of each source. This allows us to reduce
the number of bogus traffic sources as long as all adversarial
sensors observe some traffic.

An example of our design motivation is shown in Fig.
1, where a WSN of five sensors v; — vs coexist with three
eavesdroppers a; — ag. Instead of broadcasting bogus traffic
from all sensors v; — vs, it is sufficient to choose a subset
of those sensors that covers the locations of aj,as, and
as. Candidate subsets are {vy,va,vs}, {vo,v3,v5}, {v2,v4}
and others. Transmission from a sensor that does not belong
to the set of fake sources must be regulated so that the
traffic pattern recorded by eavesdroppers does not change. Our
design, reduces to the problems of: (a) finding the appropriate
subset D C V of sensors that generate bogus traffic, and
(b) assigning transmission rates to sensors. We address both
problems in two separate phases.

B. Selection of Bogus Traffic Sources

In this phase, we select the set D C V of bogus traffic
sources. First, we set the following four selection principles.

(a) Every sensor a; € A must overhear bogus traffic.

(b) The set D must be of minimum size.

(c) The transmissions of sensors in V\D must be mini-
mized.

(d) Sensors in D must form a connected network.



Fig. 1.
adversary.

Small sensor network deployed under the presence of a global

Principle (a) is a necessary condition in order to guarantee
contextual information privacy. If a sensor a; € A is not
covered by any sensor in D, it will observe a zero traffic rate
in the absence of any real traffic. Hence, if a sensor v; € V\D
within the communication range of a; broadcasts real traffic,
it will always be detected as a real information source. Given
that the positions of sensors in .A are unknown (the adversary
is passive), to satisfy principle (a), sensors in D must cover
the sensor field.

The second principle minimizes the number of bogus traffic
sources, in order to reduce the communication overhead. The
third principle minimizes the number of sensors in V\D that
relay real traffic. This principle minimizes the exposure of real
traffic sources to detection, while improving communication
efficiency by providing the opportunity to substitute bogus
traffic with real traffic (real traffic is relayed only by sensors in
D). Finally, principle (d) is a direct consequence of principle
(c). To minimize the number of real traffic relays that do not
belong to D, sensors in D must form a connected network.
This connected network is responsible for routing real traffic
from any sensor to the sink or any other sensor. Based on
principles (a)-(d), we reduce the problem of selecting set D to
the problem of finding a minimum connected dominating set
that covers the sensor deployment area. To show this mapping,
we first provide a relevant definition.

Definition 1: Given a graph G = (V, £) with set of vertices
V), and set of edges £, a subset D C V is a dominating set
(DS) if a vertex u € V is in D, or adjacent (within one hop) to
some vertex in D. If the set D induces a connected subgraph,
it is a connected dominating set (CDS) [5].

In our context, the set of sensors D that generate bogus
traffic must form a minimum size CDS (MCDS) that covers the
deployment area. Based on the DS property, every candidate
source of real traffic (i.e., sensors in V) is either part of the
CDS or within one hop from a sensor that belongs to the CDS.
Hence, real traffic requires at most one hop until it is received
by a sensor of the CDS. Once in the CDS, traffic is routed to
the destination (e.g., sink) using multi-hop routes consisting
of sensors that belong to the CDS, and by substituting bogus
traffic with the real data. An example of our system is shown
in Fig. 2. The sensors in D form a CDS that covers the
deployment area. Sensor s sends data to the BS via CDS
Sensors vs, v4, vo and vy.

Finding an MCDS in random network topologies is known
to be an NP-complete problem [4]. In the absence of a
polynomial-time algorithm for creating an MCDS, we employ

O Sensors in D
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Fig. 2. Sensor S routes information to the base station (B.S) via the CDS,
by following path s — vs — v4 — v2 — v1 — BS.

the two-phase heuristic algorithm presented in [1]. This algo-
rithm is distributed and provides a constant approximation of
the MCDS with an approximation factor equal to eight, time
complexity O(|V|) and message complexity O(|V|-A) where
A is the maximum degree of any node in the network. Once
the MCDS is created, we execute a test phase that verifies area
coverage. The steps for the computation of D are as follows.

Step 1: DS generation—- Given a connected graph G =
(V, &), let m(v) be a marker for v € V, which can take the
values WHITE, BLACK or GRAY. Let also N, be the set of
neighbors of v, §(v) = |[N,| be the degree of v and §*(v) be
the effective degree of v. The latter is defined as the number
of neighbors of v for which m(v) = WHITE. Finally, let
b(v) denote the number of neighbors of v for which m(v) =
BLACK. Initially, m(v) = WHITE, 6*(v) = ¢(v) and b(v) =
0 for all v € V. The marking process that outputs a DS is as
follows.

- Every node broadcasts its effective degree 6*(v).

- A node v changes his marker m(v) to BLACK, if v =
arg max, e, ufv} 0 (u). Node v becomes a “dominator”
and broadcasts its new marker value.

- A node u with m(u) = WHITE is dominated by a node
v € N, if m(v) = BLACK. Node u changes its marker
to m(u) = GRAY and broadcasts its new marker value.

- The value 6*(v) of a node v decreases by one every time
a node u € N, changes its marker to GRAY. Node v
broadcasts its new effective degree 6*(v).

- The marking process is repeated until no nodes are
marked as WHITE (i.e., 6*(v) = 0,Vv € V).

With the termination of the marking process, the set D =
{v : m(v) = BLACK,v € V} forms a DS.

Step 2: Approximation of the MCDS-Given the DS D,
the MCDS is approximated by expanding D such that all
nodes in D are connected. The expansion process is essentially
equivalent to generating a Steiner tree for the nodes in the DS,
by changing the marker values of GRAY nodes to BLACK.
In this phase, BLACK nodes become dominated by GRAY
nodes. This can be achieved as follows.



- A node v with m(v) = BLACK elected as the leader
(random starting BLACK node) finds node u € N,, such
that v = argmaxy;, b(u). Node w changes its marker
value from GRAY to BLACK.

- Every node w € N, with m(w) = BLACK, broadcasts
that it is dominated by w.

- Node u broadcasts its new marker value. It also sets
b(v) = 0 (all BLACK neighbors are dominated).

- Every node w marked GRAY that overhears the message
of a dominated node, reduces b(w) by one, and broadcasts
its new b(w).

- The process is iteratively repeated until b(v) = 0, Vv € V.
Step 3: Verifying coverage-A node m(v) marked GRAY
changes his marker to BLACK if its communication area
Cy(€y,7) is not covered by u € D. Set D is expanded by
adding node v. With the termination of this step, the sensor
field is covered by at-least one node marked with BLACK.

With the termination of the marking process, the set D =
{v : m(v) = BLACK,v € V} form a CDS that 1-covers the
sensor field.

C. Assigning Transmission Rates

After the CDS is constructed, we assign transmission rates
of bogus traffic to sensors in D. Our solution is based on a
random rate assignment that satisfies (o, €)—unobservability
which is defined as follows [9].

Definition 2: (o, €)-unobservability-Given a candidate set
of events &£, an observation set O (£ C ), and probability
distributions Z and Z’ with parameters (moments) 61, . .., 0%,
distributions Z and Z’ are indistinguishable under the condi-
tions: (a) f(Z,2") < g(a), and (b) (1—€)8; < 6; < (14¢€)6;,
fori=1,...,k.

Here, Z is the distribution of @ when £ = () and Z’ is
the distribution of @ when £ # (. Function f(Z,Z’) is the
distance between the Z and Z’ and « is the significance level.
Function g yields the tolerance in deviation between Z and
7' and is a function of the significance level a, and ¢ is the
allowed deviation for the parameters of the distribution.

Functions f and g depend on the statistical test employed
for testing the similarity between two distribution. This could
be a x? test or an Anderson-Darling test [10], for example. The
selected value of e depends on the desired false alarm rate on
behalf of the adversary. Moreover, the adversary selects the
desirable sample size n. A larger n lowers the false alarm
rate and reduces the deviation tolerance between Z and Z’.
However, it increases the time uncertainty with respect to the
occurrence of an event, since any of the set of the n samples of
Z' could be responsible for the deviation from Z. Moreover,
larger values of n lead to lower sensitivity to changes of
individual sample values. For given values a,e and n, the
rate assignment is as follows.

Rate assignment in D: We divide time into intervals
I, 15, ... of length T units. At every interval I;, a sensor
u € D transmits bogus traffic at a constant rate r’, which

u°

is selected from a probability distribution Y(0:y,...,0ky),

where (61y,...,0ky) are the parameters of the distribution
(e.g., 01y = py (mean) and O3y = oy (standard deviation)).
The sample space of Y is defined as Sy = [Rmin, Rmaz)-

At a given interval I; and in the absence of real traffic, an
adversary sensor a observes a rate r’ which is the sum of
the rates of all the neighbors of a that belong to the CDS.
Let the set of neighbors of a be denoted by A,. Then, the
random variable representing the observed rate at a is R, =
ZueNa R,,, distributed according to Z,, which is a sum of
independent and identically distributed (IID) random variables.
Therefore, the parameters of Z, take the values of pz, =
|Na|,uy and oz, = ‘Na|0'y.

If a sensor that belongs to the CDS wants to transmit real
traffic, it simply substitutes bogus traffic packets with real
ones. This substitution will not affect the statistical properties
of the rates observed by the adversarial sensors.

Rate assignment in V\D: Assume now that a sensor s €
V\D wants to transmit real traffic. This sensor must relay its
traffic to the CDS via a one-hop transmission. To do so, sensor
v initiates its transmission at the beginning of a time interval
I; at a rate 7%. The new rate observed by a sensor a € A that
overhears the transmission of s is 75, = ri+3 A 74, Which
follows distribution Z!.

To detect the difference between Z, and Z., sensor
a must use rate samples (rd ritl .. pitn) g < 4 <
j + n, observed over n intervals. With every n collected
samples, the adversary runs the goodness of fit test to
determine if there is statistical evidence to conclude that
(rd,riTL .. ri*") is not distributed according Z,. Here, Z,
and its parameters are assumed to be accurately estimated
by a, based on long-term traffic observations. In order to
preserve (a,€)—unobservability, the transmission rate r’ of
sensor s must be chosen in such a way that the sample 7’
collected during interval I; by any a € A located within
the communicating disk C,(¢s,y) of s, is not statistically
significant to distinguish Z/, from Z,. Note that sample 7%
that includes r’ can be part of the estimation process for
a window of n intervals, following interval I; (the sensor
s does not know which n samples will be used by a for
performing the test). Hence, sensor v must select 7% to satisfy
the goodness of fit test for Z/, estimated with sets of samples
{(ri=r ooty (it ,rfﬁ'l),'. c (Pl i)Y

To compute the appropriate rate 7%, sensor s must be aware
of all previous and future samples from I;_,4+1 to I;1,.
To do so, all candidate positions of an adversary sensor a
must be considered (the positions of sensors in A are not
known to s). For this purpose, sensor s considers all sensors
v; € V whose transmissions can be overheard at any part of
its communication disk C,(¢s,~y). Using a unit disk model
and the known sensor positions, s partitions Cs(¢s,7y) into
areas Uy, Us,...U,,, with area U; denoting the intersection
of Cs(¢s, ) with the communication areas of a unique subset
of sensors of the CDS, heard at U,. These areas indicate the
set of possible distinct rates overheard by an adversarial sensor
a, located within Cy(£5,~). An example of the partitioning of
Cs(€s,v) into distinct areas U; is shown in Fig. 3. Sensor
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Fig. 3. Sensor s € V\D computes its transmission rate based on the
observations made in its communication disk C's(Zs,~y). Sensors v1, v2, and
v3 belong to D.

s ¢ D is surrounded by sensors v; € D. Based on the known
coordinates of v;, sensor s determines U;.

To compute previous and future rate samples for each Uj,
sensor s must be aware of the rates individually selected by
each sensor of the CDS, located within its two-hop neighbor-
hood (it can be easily shown via a geometric argument that
the communication areas of sensors at most two-hops away
from s intersect with C5(¢5,y)). This information can be made
available during the CDS setup phase. For instance, if the rates
are selected from a uniform distribution, each sensor of the
CDS can provide the random seed value used for generating
random rates to its two-hop neighbors. Moreover, the values of
the samples used in the goodness of fit test must be adjusted
to account for traffic originating from other co-located real
data sources. To allow for accurate computation of the sample
rates at all areas U;, when a sensor chooses its rate ¢, it
announces this information to its two-hop neighborhood (using
the selected rate). Hence, other sensors that are affected by this
real traffic transmission, obtain the correct sample values.

Sensor s runs the goodness of fit test for all

the sets of samples in the set {(ri=m ... rh),
(rizn ety (it} for each  of the

areas U, Us,...U,,. The maximum rate Tf} that satisfies all
the goodness of fit tests is selected.

For example, consider the network presented in
Fig. 3. In order to transmit at interval I;, sensor
s (not in the CDS) divides its communication disk
Cs(ls,v) in seven non-overlapping areas Uy,...,Ur
(U = Cs(ls,7)NC, (Loy, ), Uz = Cs(ls,7)NCyy (yy,7)N
Coy(lyyy ), .oy Ur = Cs(€s,y) N Coy(yy,7)). First, sensor
s assumes that a € A is located in U;. Using the
random seed provided by vs, s obtains the set of samples
{(ri=r ety (e et (el i) In
this case, 7} = rJ, (for j = i —n,...,i+n and j # i)
and 1} = r), +r) (for j = i). Using the set of samples,
s estimates 7% that will satisfy the goodness of fit test. For
instance, consider the assignment of rates based on the X2
test [11]. To compute the distance between Z,, and Z/, data is
divided into g classes defined by dividing [R7*", R™%*] into
q non-overlapping intervals. Each sample (ri=", ... r%) is
accordingly assigned to each class. After the data is classified,
the number of samples O; as well as the expected number

of samples (); in class j are calculated. The values of O;
depend on Z/ and the values of @); depend on Z,. The test
concludes that Z/, and Z, are indistinguishable if,

2

@) Z;nzl @T?» = X?a,q*C)'

®) (1—-epz, <pz <(1+e€)pz,.

© (I1—-€oz, <oz <(1+¢€)oz,.

Where x%mq_c) is the value of the x? distribution for signifi-
cance level « and (g — ¢) degrees of freedom, and (¢ — 1) is
number of parameters of distribution Z,. The test is repeated
for all the samples obtained in areas Us,,...U; and the
maximum allowable rate is selected.

Computational Complexity: The computation of the trans-
mission rate of a sensor s € WV\D requires that node
s runs the statistical test for the set of sample rates
{(ri=r ey, (it (e i) L ob-
tained in each of the areas Uy, Us,,...U,,. Hence, the total
number of tests that are run is n X m. If we consider the
x? test described above, the test is done in two stages. In
the first stage the samples are grouped in ¢ non-overlapping
classes, which can be performed using a sorting algorithm
like quicksort or heapsort of time complexity O(nlogn).
In the second stage, the values of O; and M are
calculated for each class, which requires O(q) 0p7érations,
so the time complexity of the test is O(nlogn). Since
for each area U; we require to test the set of samples
{(ri=r oy, (et Y (e it ) the
total complexity is O(mnlogn). However, note that consecu-
tive sample sets differ only in the first and last sample. Given
the values of O; for the first set of samples, assume that
ri=" belongs to class k and ri*! to class I. The values of
O; for the second set remain the same in all the classes
except for k and [, for which the values are Oy — 1 and
O; + 1, respectively. Following this process, we can perform
the test by avoiding to sort the samples every time, and
reducing the total number of operations to perform the n test
to O(nlogn) 4+ 2(n — 1) = O(nlogn).

V. PERFORMANCE EVALUATION

We uniformly deployed a WSN of density dy, within an area
of 1,000 x 1,000 meters, and computed the MCDS set D that
covers the sensor field. We further uniformly deployed 5, 000
adversarial sensors. For sensors in D, the bogus transmission
rate at each interval was selected from a uniform distribution
in (0, 1]. The real traffic transmission rate 7% at interval I; for
a sensor s € V\D was chosen by applying a x? test with
parameters & = 0.05, n = 100, and the mean and standard
deviation tests with parameter ¢ = 0.1. Fig. 4(a) shows the
fraction of sensors that belonged to the MCDS set D, as a
function of the sensor density dy. This metric indicates the
fraction of sensors that are active sources of bogus traffic
and is proportional to the amount of energy savings achieved
compared to methods where all sensors are fake sources. We
observe that our scheme satisfies («, €)-unobservability while
reducing the number of fake sources by more than 90%. This
percentage is reduced to as much as 1.7% with the increase
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Fig. 4. (a) Fraction of sensors generating bogus traffic as a function of dy, (b) average rate R, as a function of [N/, (c) probability of false alarm p in

the absence of real traffic (d) average delay introduced by the rate assigment.

of the sensor density. Fig. 4(b) shows the average achievable
rate by sources in V\D as a function of the number of MCDS
neighbors |N,| of the adversarial sensors monitoring a real
transmission. In this graph, p denotes the probability that a
sensor s € V\D transmits real traffic at a given interval. We
observe that an increase in |N,| allows for higher rates 7,
since the deviation of Z’ from Z is smaller when the bogus
rates observed by a € A are high compared to 7. This allows
sensor s to achieve rates as much as 80% of the maximum
rate of bogus traffic. Moreover, 75 reduces with the increase
of p, since more sample values of Z’ are part of the same
statistical test.

Fig. 4(c) shows the probability of failure of the test in the
absence of real traffic, as a function of |N,|. Note that, this
probability considers the probability of false positives of the
x?2 test and the tests on the mean and the standard deviation.
We observe that ps slightly reduces as a function of the
|Va|, which shows a lower rate of failure in areas covered by
more MCDS sensors. In this case, we can reduce the number
of computations required to obtain the transmission rate, by
performing the tests only for the set of samples obtained in the
area with the highest p;. We also observe that py decreases
with the increase of e. This is expected since increasing e
relaxes the tests on the mean and the variance, bringing py
close to a.

Finally, in Fig. 4(d) we present the average number of
intervals a sensor v € V\D must waits until it finds an
appropriate interval where all tests are passed for all areas Uj.
We observe that the delay reduces with the of |N,|, which is
expected since py is higher for small values of |[A,|. On the
other hand, the delay increases with the increase of the number
of samples n. A larger sample set gives a better estimation of
the parameters of the distribution, reducing the probability of
false positives and the chances to introduce a new transmission
without being detected. However, a larger n increases the
adversary’s uncertainty with respect to the time of occurence
of the observed event.

VI. CONCLUSIONS

We addressed the problem of protecting contextual infor-
mation in WSNs under a global threat model. We proposed
a hiding mechanism based on the generation of bogus traffic
from a fixed set of fake sources. Our mechanism relies on
the computation of a minimum connected dominating set that

covers the communication areas of all sensors. We showed
that event unobservability can be satisfied by randomizing the
transmission rates of the bogus traffic sources and regulating
the rates of real ones. Our simulations verified that a signifi-
cantly smaller number of fake sources is necessary to achieve
event unobservability.
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