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Description of random radiating and nonradiating sources
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An alternative description of spatially localized random nonradiating sources is derived, for any degree of
spatial-temporal coherence. A description of a complementary class of random s(uuogly radiating
sources that lacks a nonradiating part is also obtained.

PACS numbds): 42.25.Kb, 41.20-q

A number of results reported in a recent pafggr to be Lp(x)=0 if xeD (the boundarydD of D excluded
referred to as |, are applied to derive a description of spa- (2)

tially localized random nonradiating\NR) sources and of
random sources that lack a NR pafpurely radiating s both necessary and sufficient for a square-integrabj (
sources Both NR sources and purely radiating sources thatource p of support D to lack a NR part such that
lack a NR part play a fundamental role in inverse problems;anxpﬁR(x)p(x):0 for all L,(D) NR sourcespyg. One
For example, the class of purely radiating sources includegaturally extends this result to the inverse source problem,
the so-called minimum energy solutions to thiaverse concluding that the familiar minimum energy solution,
source problem of reconstructing an unknown source fromynich corresponds to the radiating portion of the unknown
_knowled_ge of ij[s exte_rior field2]. NR sources are also of source(as shown in Ref[5] and, more recently, in Ref6])
interest in semi-classical models of electrons and at@hs  muyst be, itself, a free field, truncated within the source sup-
Our results are presented in the framework of the scalar wavgort. That this is, in fact, the case, can be verified, for special
equation in three-dimension€dD) free space for sources of cases, from other studi€®,6,7; this includes the vector case
any degree of spatial-temporal coherence. They are readilg]. One also deduces from this result and the unique decom-
generalized to source-field systems governed by other parti@osiﬂon of anyL,(D) source into the sum of a radiating part
different?al equations_(PDE_s, inc_luding elgctromagnetic and a NR partsee Ref[9], pp. 12 and 1Bthat, ultimately,
source-field systems in arbitrary linear media. the radiating parts, i.e., the sources of radiation, are, them-
In | we considered a general complex-valued scalar, vecsg|yes, fields. These general results, plus a number of related
tor, or tensor source-field system descrilfiedshorthand no-  resyits corresponding to special cases, were presented in
tation) by a linear PDEL ¢(x)=p(x), where ¢, p, andL  Refs.[1,6,7] in connection with deterministic sources. It re-
represent, respectively, the associated field, source and pafmins to explain their random source aspects.
tial differential operator(PDO) in a configuration space In order to explain how these results apply not only to
eR". The field ¢ produced by a source can be expressed deterministic sources but also to random sources, we next
as ¢(x)=[d"x'p(x')G(x|x"), whereG is the Green func- consider scalar, random source-field systems whose source-
tion associated with the PDDand the given boundary con- field realizations §,4) are described in the 4D space-
ditions. For a NR sourceyg of supportD, the generated frequency domain by the inhomogeneous Helmholtz equa-
field ¢(x)=0 if x¢D. It was shown in | that a scalar, vec- tion (V2+k?) y(r,w)=q(r,»), wherek=w/c is the wave
tor, or tensor sourcpyr of supportD is NR if and only if it number of the field at the temporal frequenayin the most
obeys the orthogonality relation general case, a scalar, random source and its field are de-
scribed in the space-frequency domain by correlations of or-

f A% 0* (%) pr( X) = O, 1 der (m,n), i.e.[10],
P m m+n
where the asterisk denotes the complex conjugate, with re- Q(m’n)(X):<jHl q*(r) ’“’J)kzl;lﬂ Q(rk"”k)>v
spect to all squtions:(f) of the homogeneous fo~rm of the 3)
associated adjoint PDEv(x) =0 for xe D, whereL is the m m-+n
adjoint of the PDOL (as defined, e.g., in Ref4]). For a q;(m,n>(x)=<H P (1), o) I1 llf(fk,wk)>,
(formally) self-adjoint PDOL =L (such as the PDO's of the =1 k=m+1

usual acoustic and electromagnetic figldmd this require-

ment becomeku (x) =0 for xe D. The reciprocity principle Where we have introduced the shorthand notatign
draws the following physical picture for this result: if a =f1.f2, - - fm+n;@1,@2, . .. 0y, and where the angu-
source does not radiate, then it does not receive either, ad@r brackets denote ensemble averages. Also, in the follow-
vice versa; i.e., NR sources are both invisible to externaing, x'=r1.f2, ... fiin:@1,02, ... .05 In this gen-
observers and noninteracting to external fields. Furthermoregral (m, n order framework, the field correlatiol (™",

it was also shown in | that, for self-adjoint PDQs the  corresponding to a source correlati@™", is the solution
condition [10]
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also conclude from Eqg5) and(6) and the statement given
H f d3rj’ G*(rj|rj’ ,0;) in connection with Eq.2) that a necessary and sufficient
1=1.Jb condition for an L, random source of support D whose re-

P (x) =

m+n alizations are characterized by an (m, n) order correlation

x| 11 f d3r) G(ryr, Wk)}Q(m'")(X') Q™M to lack a NR part is that &"" obeys
k=m+1 JD

@ LMmQMM(x)=0 for rjeD

of the PDE (the boundaryD of D excluded,

LMD M) 1) = QUM ). ®) for all j=1,2,... m+n. (10
Again, result (10) is important for minimum energy-

(m,n) . - . . .
wherel is the self-adjoint PDO defined by constrained formulations of inverse problems with random

m+n sourceq the validity of Eq.(10) can be verified for special
Lmm=T] (VZ+KD), (6)  cases considered in Ref&,14,19].
=1 The previously unknown statements given in connection

) i . with Egs. (9) and (10) establish a cha_racterizati.on of these
whereVj denotes the Laplacian operator taken with respecfq complementary classes of spatially localized random
torj. In Eq.(4), Gis the outgoing Green function of the free goyrces;, i.e., random NR sources and purely radiating ran-
space Helmholtz operator. The special casen=1 corre-  gom sources. Physically, these results are manifestations of
sponds to the usual second-order theory. In this special casg,e reciprocity property, as we mentioned earlier. Further
expressiong5) and (6) reduce to{10] manipulations and related results for the associated determin-

] istic case can be found in Refgl,6,7], and are extended
(Vf+kf)(V§+k%)‘lf(l'l)(rl,rz,wl,wz) readily to the random case with the above-provided expres-
— ALY : sions.
Qi rzion w2). @ Since all of the preceding scalar random results follow
Moreover, if the statistical ensemble that represents thdirectly from the general radiating NR source theory pre-
source is temporally stationafgat least in the wide senge sented in I, their validity rests on the validity of the more

then expressiofi7) takes the familiar restricted forfri0] general results which was established in I. Even so, for the

sake of completeness and, in particular, in order to provide

(Vi+ k) (Va+ k)T ED(r 1) =Q1V(ry 1y 0). the full random picture of the general results, we consider
(8)  next two alternative ways of understanding the res(fis

and(10).

With these equations, we are in position to apply the general Tae )definition of a general scalar, vector, or tensor local-
results of I to random sources of arbitrary degree of spatiali;eq NR source given in connection with E@) was derived
temporal coherence. . in | by means of the generalized Green theorem and the

We note that, in them, n) order description, & scalar, tamiliar Devaney-Wolf representation of a localized NR
random source of spatial supp@rtis defined to be NR if its  g4yrce[16] generalized to any source-field system. In the
generated field correlatio ™" (x) =0 if rj¢ D, for any present context, which focuses on scalar, random sources in
j=1,2,...m+n[11-13. We now conclude from Eq$5)  free space, one can use an analogous method to verify the
and(6), and the statement given in connection with EQ,  vajidity of Eq. (9) and the associated discussion. In particu-

that, in the (m, n) order description, a necessary and suffi-5y first we note that the most general localized NR source
cient condition for a localized, random source of spatial SuUp-.relation QMM of order (m,) must be expressible as
port D to be NR is that [11,12

f Dolarl--- f Dd3rm+n<v<m'“)>*(x)Qmmm:o, 9 QNR™ (x)=LMMy{™M(y), (1)

where the localized functiod{™(x)=0 if r; & D, for any
j=1,2,... m+n (where, againD is the support of the NR
source realizationswhereas

where Q" is the NR source correlation of order (m, n),
and M™M(y) is any solution of the homogeneous PDE
LmmymM(y)=0 for r;eD, for all j=12,... m+n.
Here, for the source-field syster@{™", ¥ (™M) the PDO
L(MM thus plays the role of the generic PDf the general U™ (x) =
theory. For the usual second-order description, associated

with expressiong7) and (8), this result reduces to the fol-

lowing: A necessary and sufficient condition for a localized, %
random source whose realizations are characterized by a
(second-order) correlation Y to be NR is that @ be

orthogonal to all solutions of the homogeneous form of Eqif r;jeD, for all j=1,2,... m+n. It follows from Eq. (4)

(7) [or, for wide sense stationary sources, the homogeneouthat UE,”‘*“) is exactly the NR field correlation produced by
form of Eq. (8)] forr;eD, for all j=1,2. Furthermore, we this localized NR source correlation. It can be shown from

m

11 fDd3rj’ G*(r|r] ;o))

m+n

[ [ driamirion| oo
k=m+1 JD
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Eq. (11) and the generalized Green theorem that for anyelated point of view that is based on the analyticity of far
localized NR source correlation, field correlations, and which complements the preceding
Green-function-based formalism.

f d3r1---j r (VD) (1) QM) The (m,n order far field correlation
D D

m m+n
F<m'”>(g)=<1"[ f*(s,0;) 11 f(smw)>1
= [ @ [ @t LV g, E
D D

17 where é=s;,S,, ... Snini®1,®2, . .. ,®Onen, COrrespond-
(12) ing to a given source correlatio@™"(y), is defined by
[11,12

where the function/™" is arbitrary. However, the integral
in Eq. (12) is seen to vanish iL™MVv(MM(y)=0 for r;
eD, forall j=1,2, ... m+n. This provides the necessary F(m'”)(§)=J d3rl---J d3r e n QMM (x)
portion of the NR source correlation condition given in con- b b
nection with Eq.(9). To show sufficiency(for a localized,

Xexgi(kys - ri+--+KknSyr
random source to be NRone simply notes that Hitkisy 1y mén” fm

m men _km+1sm+l'rm+1_"'_km+n3m+n'rm+n)]v
L<m~")H1 G(rilrjie) I1 | G (1o =0 which is identified to be the value of the B¢ n)-fold spa-
= =m+ ~
. " tial Fourier transform QM™MW(K, ,K,, ... Kynsn) Of
if r/¢D andrjeD, foranyj=12,...m+n QMM (x) evaluated at  Ki=—ks;, ... Ky
= —KnSn:Km+1=Km+1Sm+15 + - - Knen=KminSnen - FOra

(which holds, in fact, for any Green functidd of the Helm-  localized, random source correlation, the above
holtz operatoy, so that, by using the orthogonality condition 3(m+n)-fold Fourier transform is an entire analytic func-
in Eq. (9), the field correlation produced bQ(N”;g”) [as de- tion on the 3(+n) Fourier variablegas required by the
fined by Eq.(4)] Plancherel-Polya theorefi5]), so that the far field correla-
tions are, themselves, analytic on the observation unit vec-
torss;,S, . . . ,Snen (also see Ref.16] for the deterministic
version of this well-known resylt It is also known that a
necessary and sufficient condition for a localized NR source
correlationQ{™ to be NR is that its far field correlation
Qwr"(V=0  [11-13

m
m+n

I1 fd?’rkG(r&lrk;wk)
k=m+1 JD

X

if rjeD forany j=1,2,...m+n, M) = fDd‘?’rl---fDdg’rmMQf\‘“;’“)(X)

which completes the proof. .
For a general localized, random NR source of support Xexpli(KySy Tyt e+ K T

[not necessarily ah,(D) random NR sourcg the integral Kt 1Sne1 Tme1i—" " —KmsnSman Fmen) ]=0

in Eg. (12) involves the entire suppor® (including the

boundarysD of D). For the special case of an(D) random (13

NR source, on the other hand, the integral in EIP) in-  ¢5 5| real observation unit vectors ,s,, . . . Snepn. Now,
volves only the interior ofD (the boundaryD of D ex-  pacause of the analyticity of the far field correlation
cluded. In particular, for th_at special case, the contribution F(m (&), it follows that the NR source correlation condition
of the boundaryD to the integral must vanish due to the (13 myst hold not only for all real but also for all complex
vanishing of the NR field realizations oveD, as follows  ,pcarvation unit VECtOrs;,S,, . . . Snin. Therefore, for a
from the so-called NR boundary conditions for the Helm-|4c4jized random NR source correlation, the entire propagat-
holtz operato{17-19; for a Iocfallz)ed, random NR source ing plus evanescent plane wave spectrum must vaist

. ) o . : .
and, in particular, for the PD@'™™, they require the van- - sequently, the complete external field correlation must van-
ishing of the NR field correlatiots§™"(x) and of its first ish. as has been known for a long tirfEs]). In addition,
partial derivatives forrjedD, for all j=1,2,...m+n.  expression(13) is, by itself, an interaction integral, so that
With this clarification, we also see from the preceding ma-the same NR statement given in connection with Ei®)
nipulations and, in particular, expressi¢h?), that, in the  also draws the associated noninteracting picture: a localized
(m,n order description, ah (D) random source will lack  random NR source of suppd neither radiates nor receives
NR source realizations if and only if its source COI‘I’9|ati0nany homogeneous or evanescent plane wave. Moreover,
Q(mv”)(?() obeys the homogeneous PIED), since this and  since the field produced by any source externdd imust be,
only this ensures the vanishing of ttathogonality integral itself, entirely expressible as an angular spectrum of homo-
in Eq. (12) for any choice of the NR field correlatiddgm’”) geneous and evanescent plane waves, it follows that a local-
subjected to the aforementioned NR boundary constraint$zed random NR source must not rece{ugeract with any
This completes the Green-function-based picture of the refield produced outsid®. The analyticity property of théex-
sults associated with Eg€9) and (10). We consider next a ternal field plane wave spectrum thus explains both the lo-
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calizability of the NR field corrglatior(vv_ithin the rand(_)m (VX VX —K3) (VX VX —K2) VMY (r) 1w, )
NR source supportand the noninteractivity of a localized _
NR source correlation to all incident field correlatiof®th =0 forrjeD for all j=1,2. (14)

homogeneous and evanescent plane wave correlqtions a%e more general electromagnetim,n order description
consequently, any externally produced field correlatisiie follows obvious lines. Extension of the result in Eq0) to

have thus complemented the Green-function-based manipyse electromagnetic case is also obvious, and yields a de-

Iatipns by furnishing an alte_rnative interpret{ation of our lo- scription of all such purely radiating vector sources.
cahzeq NR source correlathn results that is based on the Summarizing, in this paper we developed a description of
analyticity of far field correlations. spatially localized random NR sources and random sources
Finally, we wish to mention that all of the preceding sca-that lack a NR part: NR source correlations are, by defini-
lar random results can be extended readily to the electromagion, orthogonal to all correlations that behave like free fields
netic case by substituting the scalar PIZIC§+ ka in the in the NR source support, whereas purely radiating source
above expressionsn particular, in the definitions given in correlations are, themselves, free-field correlations, truncated
connection with Eqs(9) and (10)] by the vector PDOV, within the source support. Our results on random NR sources
X VX _kj2 (also see Ref[1] for the corresponding deter- €ad to previously known results on such sources reported,

ministic casg For example, if follows from result9) and e.g., in Refs[2,11-15. In particular, all the definitions of

the associated discussion tlzahecessary and sufficient con- iﬁgalgznes.tNilzgg;gegf (\tzjrl\\(/aerlllIinséh?igsset\l:]glirse(Ienlz'/gll(\jlgdeor-
dition for a localized, electromagnetic random sourGe j 9 Ity refatl : urces ¢ ! ' €9,

. X : lane waves in the far-field-based definitions and source-free
characterized in the space-frequency domain by a second:

. ultipoles in the near-field-based descriptions. Analogous
order correlation tensor observations apply to the purely radiating, minimum energy
sources presented in Refg,14,15, all of which are seen to
consist of free fields truncated within the source support.
T (11 w1, 02) =R, 0)inR(T2,02)) Elsewhere we plan to apply the results of this paper to in-

verse problems with random sources.
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