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Description of random radiating and nonradiating sources
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Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721

~Received 28 January 2000!

An alternative description of spatially localized random nonradiating sources is derived, for any degree of
spatial-temporal coherence. A description of a complementary class of random sources~purely radiating
sources! that lacks a nonradiating part is also obtained.

PACS number~s!: 42.25.Kb, 41.20.2q
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A number of results reported in a recent paper@1#, to be
referred to as I, are applied to derive a description of s
tially localized random nonradiating~NR! sources and of
random sources that lack a NR part~purely radiating
sources!. Both NR sources and purely radiating sources t
lack a NR part play a fundamental role in inverse problem
For example, the class of purely radiating sources inclu
the so-called minimum energy solutions to the~inverse
source! problem of reconstructing an unknown source fro
knowledge of its exterior field@2#. NR sources are also o
interest in semi-classical models of electrons and atoms@3#.
Our results are presented in the framework of the scalar w
equation in three-dimensional~3D! free space for sources o
any degree of spatial-temporal coherence. They are rea
generalized to source-field systems governed by other pa
differential equations~PDEs!, including electromagnetic
source-field systems in arbitrary linear media.

In I we considered a general complex-valued scalar, v
tor, or tensor source-field system described~in shorthand no-
tation! by a linear PDELc(x)5r(x), where c, r, and L
represent, respectively, the associated field, source and
tial differential operator~PDO! in a configuration spacex
PRn. The fieldc produced by a sourcer can be expresse
as c(x)5*dnx8r(x8)G(xux8), whereG is the Green func-
tion associated with the PDOL and the given boundary con
ditions. For a NR sourcerNR of supportD, the generated
field c(x)50 if x¹D. It was shown in I that a scalar, vec
tor, or tensor sourcerNR of supportD is NR if and only if it
obeys the orthogonality relation

E
D

dnx v* ~x!rNR~x!50, ~1!

where the asterisk denotes the complex conjugate, with
spect to all solutionsv(x) of the homogeneous form of th
associated adjoint PDEL̃v(x)50 for xPD, whereL̃ is the
adjoint of the PDOL ~as defined, e.g., in Ref.@4#!. For a
~formally! self-adjoint PDO,L̃5L ~such as the PDO’s of the
usual acoustic and electromagnetic fields!, and this require-
ment becomesLv(x)50 for xPD. The reciprocity principle
draws the following physical picture for this result: if
source does not radiate, then it does not receive either,
vice versa; i.e., NR sources are both invisible to exter
observers and noninteracting to external fields. Furtherm
it was also shown in I that, for self-adjoint PDOsL, the
condition
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Lr~x!50 if xPD ~ the boundary]D of D excluded!
~2!

is both necessary and sufficient for a square-integrable (L2)
source r of support D to lack a NR part such tha
*DdnxrNR* (x)r(x)50 for all L2(D) NR sourcesrNR. One
naturally extends this result to the inverse source probl
concluding that the familiar minimum energy solutio
which corresponds to the radiating portion of the unkno
source~as shown in Ref.@5# and, more recently, in Ref.@6#!
must be, itself, a free field, truncated within the source s
port. That this is, in fact, the case, can be verified, for spe
cases, from other studies@2,6,7#; this includes the vector cas
@8#. One also deduces from this result and the unique dec
position of anyL2(D) source into the sum of a radiating pa
and a NR part~see Ref.@9#, pp. 12 and 13! that, ultimately,
the radiating parts, i.e., the sources of radiation, are, th
selves, fields. These general results, plus a number of rel
results corresponding to special cases, were presente
Refs.@1,6,7# in connection with deterministic sources. It re
mains to explain their random source aspects.

In order to explain how these results apply not only
deterministic sources but also to random sources, we n
consider scalar, random source-field systems whose sou
field realizations (q,c) are described in the 4D space
frequency domain by the inhomogeneous Helmholtz eq
tion (¹21k2)c(r ,v)5q(r ,v), wherek5v/c is the wave
number of the field at the temporal frequencyv. In the most
general case, a scalar, random source and its field are
scribed in the space-frequency domain by correlations of
der ~m,n!, i.e. @10#,

Q~m,n!~x!5K )
j 51

m

q* ~r j ,v j ! )
k5m11

m1n

q~r k ,vk!L ,

~3!

C~m,n!~x!5K )
j 51

m

c* ~r j ,v j ! )
k5m11

m1n

c~r k ,vk!L ,

where we have introduced the shorthand notationx
[r1 ,r2 , . . . ,rm1n ;v1 ,v2 , . . . ,vm1n , and where the angu
lar brackets denote ensemble averages. Also, in the foll
ing, x8[r18 ,r28 , . . . ,rm1n8 ;v1 ,v2 , . . . ,vm1n . In this gen-
eral ~m, n! order framework, the field correlationC (m,n),
corresponding to a source correlationQ(m,n), is the solution
@10#
4465 ©2000 The American Physical Society
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C~m,n!~x!5F)
j 51

m E
D

d3r j8 G* ~r j ur j8 ;v j !G
3F )

k5m11

m1n E
D

d3r k8 G~r kur k8 ;vk!GQ~m,n!~x8!

~4!

of the PDE,

L ~m,n!C~m,n!~x!5Q~m,n!~x!, ~5!

whereL (m,n) is the self-adjoint PDO defined by

L ~m,n!5 )
j 51

m1n

~¹ j
21kj

2!, ~6!

where¹ j
2 denotes the Laplacian operator taken with resp

to r j . In Eq.~4!, G is the outgoing Green function of the fre
space Helmholtz operator. The special casem5n51 corre-
sponds to the usual second-order theory. In this special c
expressions~5! and ~6! reduce to@10#

~¹1
21k1

2!~¹2
21k2

2!C~1,1!~r1 ,r2 ;v1 ,v2!

5Q~1,1!~r1 ,r2 ;v1 ,v2!. ~7!

Moreover, if the statistical ensemble that represents
source is temporally stationary~at least in the wide sense!,
then expression~7! takes the familiar restricted form@10#

~¹1
21k2!~¹2

21k2!C~1,1!~r1 ,r2 ;v!5Q~1,1!~r1 ,r2 ;v!.
~8!

With these equations, we are in position to apply the gen
results of I to random sources of arbitrary degree of spa
temporal coherence.

We note that, in the~m, n! order description, a scala
random source of spatial supportD is defined to be NR if its
generated field correlationC (m,n)(x)50 if r j¹D, for any
j 51,2, . . . ,m1n @11–13#. We now conclude from Eqs.~5!
and ~6!, and the statement given in connection with Eq.~1!,
that, in the (m, n) order description, a necessary and su
cient condition for a localized, random source of spatial su
port D to be NR is that

E
D

d3r 1¯E
D

d3r m1n~V~m,n!!* ~x!QNR
~m,n!~x!50, ~9!

where QNR
(m,n) is the NR source correlation of order (m, n

and V(m,n)(x) is any solution of the homogeneous PD
L (m,n)V(m,n)(x)50 for r jPD, for all j 51,2, . . . ,m1n.
Here, for the source-field system (Q(m,n),C (m,n)), the PDO
L (m,n) thus plays the role of the generic PDOL of the general
theory. For the usual second-order description, associ
with expressions~7! and ~8!, this result reduces to the fol
lowing: A necessary and sufficient condition for a localize
random source whose realizations are characterized b
(second-order) correlation QNR

(1,1) to be NR is that QNR
(1,1) be

orthogonal to all solutions of the homogeneous form of E
(7) [or, for wide sense stationary sources, the homogene
form of Eq. (8)] for r jPD, for all j 51,2. Furthermore, we
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also conclude from Eqs.~5! and~6! and the statement give
in connection with Eq.~2! that a necessary and sufficien
condition for an L2 random source of support D whose re
alizations are characterized by an (m, n) order correlatio
Q(m,n) to lack a NR part is that Q(m,n) obeys

L ~m,n!Q~m,n!~x!50 for r jPD

~ the boundary]D of D excluded!,

for all j 51,2, . . . ,m1n. ~10!

Again, result ~10! is important for minimum energy-
constrained formulations of inverse problems with rand
sources†the validity of Eq.~10! can be verified for specia
cases considered in Refs.@2,14,15#‡.

The previously unknown statements given in connect
with Eqs. ~9! and ~10! establish a characterization of the
two complementary classes of spatially localized rand
sources, i.e., random NR sources and purely radiating
dom sources. Physically, these results are manifestation
the reciprocity property, as we mentioned earlier. Furt
manipulations and related results for the associated deter
istic case can be found in Refs.@1,6,7#, and are extended
readily to the random case with the above-provided exp
sions.

Since all of the preceding scalar random results foll
directly from the general radiating NR source theory p
sented in I, their validity rests on the validity of the mo
general results which was established in I. Even so, for
sake of completeness and, in particular, in order to prov
the full random picture of the general results, we consi
next two alternative ways of understanding the results~9!
and ~10!.

The definition of a general scalar, vector, or tensor loc
ized NR source given in connection with Eq.~1! was derived
in I by means of the generalized Green theorem and
familiar Devaney-Wolf representation of a localized N
source@16# generalized to any source-field system. In t
present context, which focuses on scalar, random source
free space, one can use an analogous method to verify
validity of Eq. ~9! and the associated discussion. In partic
lar, first we note that the most general localized NR sou
correlation Q(m,n) of order ~m,n! must be expressible a
@11,12#

QNR
~m,n!~x!5L ~m,n!U0

~m,n!~x!, ~11!

where the localized functionU0
(m,n)(x)50 if r j¹D, for any

j 51,2, . . . ,m1n ~where, again,D is the support of the NR
source realizations!, whereas

U0
~m,n!~x!5F)

j 51

m E
D

d3r j8 G* ~r j ur j8 ;v j !G
3F )

k5m11

m1n E
D

d3r k8 G~r kur k8 ;vk!GQNR
~m,n!~x8!

if r jPD, for all j 51,2, . . . ,m1n. It follows from Eq. ~4!
that U0

(m,n) is exactly the NR field correlation produced b
this localized NR source correlation. It can be shown fro
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Eq. ~11! and the generalized Green theorem that for a
localized NR source correlation,

E
D

d3r 1¯E
D

d3r m1n~V~m,n!!* ~x!QNR
~m,n!~x!

5E
D

d3r 1¯E
D

d3r m1n@L ~m,n!V~m,n!#* ~x!U0
~m,n!~x!,

~12!

where the functionV(m,n) is arbitrary. However, the integra
in Eq. ~12! is seen to vanish ifL (m,n)V(m,n)(x)50 for r j
PD, for all j 51,2, . . . ,m1n. This provides the necessar
portion of the NR source correlation condition given in co
nection with Eq.~9!. To show sufficiency~for a localized,
random source to be NR!, one simply notes that

L ~m,n!)
j 51

m

G~r j8ur j ;v j ! )
k5m11

m1n

G* ~r k8ur k ;vk!50

if r j8¹D and r jPD, for any j 51,2, . . . ,m1n

~which holds, in fact, for any Green functionG of the Helm-
holtz operator!, so that, by using the orthogonality conditio
in Eq. ~9!, the field correlation produced byQNR

(m,n) @as de-
fined by Eq.~4!#

F)
j 51

m E
D

d3r j G* ~r j8ur j ;v j !G
3F )

k5m11

m1n E
D

d3r k G~r k8ur k ;vk!GQNR
~m,n!~x!50

if r j8¹D for any j 51,2, . . . ,m1n,

which completes the proof.
For a general localized, random NR source of supporD

@not necessarily anL2(D) random NR source#, the integral
in Eq. ~12! involves the entire supportD ~including the
boundary]D of D!. For the special case of anL2(D) random
NR source, on the other hand, the integral in Eq.~12! in-
volves only the interior ofD ~the boundary]D of D ex-
cluded!. In particular, for that special case, the contributi
of the boundary]D to the integral must vanish due to th
vanishing of the NR field realizations over]D, as follows
from the so-called NR boundary conditions for the Hel
holtz operator@17–19#; for a localized, random NR sourc
and, in particular, for the PDOL (m,n), they require the van-
ishing of the NR field correlationU0

(m,n)(x) and of its first
partial derivatives forr jP]D, for all j 51,2, . . . ,m1n.
With this clarification, we also see from the preceding m
nipulations and, in particular, expression~12!, that, in the
~m,n! order description, anL2(D) random source will lack
NR source realizations if and only if its source correlati
Q(m,n)(x) obeys the homogeneous PDE~10!, since this and
only this ensures the vanishing of the~orthogonality! integral
in Eq. ~12! for any choice of the NR field correlationU0

(m,n)

subjected to the aforementioned NR boundary constra
This completes the Green-function-based picture of the
sults associated with Eqs.~9! and ~10!. We consider next a
y

-

-

-

ts.
e-

related point of view that is based on the analyticity of f
field correlations, and which complements the preced
Green-function-based formalism.

The ~m,n! order far field correlation

F ~m,n!~j !5K )
j 51

m

f * ~sj ,v j ! )
k5m11

m1n

f ~sk ,vk!L ,

where j[s1 ,s2 , . . . ,sm1n ;v1 ,v2 , . . . ,vm1n , correspond-
ing to a given source correlationQ(m,n)(x), is defined by
@11,12#

F ~m,n!~j !5E
D

d3r 1¯E
D

d3r m1nQ~m,n!~x!

3exp@ i ~k1s1•r11¯1kmsm•rm

2km11sm11•rm112¯2km1nsm1n•rm1n!#,

which is identified to be the value of the 3(m1n)-fold spa-
tial Fourier transform Q̃(m,n)(K1 ,K2 , . . . ,Km1n) of
Q(m,n)(x) evaluated at K152k1s1 , . . . ,Km
52kmsm ,Km115km11sm11 , . . . ,Km1n5km1nsm1n . For a
localized, random source correlation, the abo
3(m1n)-fold Fourier transform is an entire analytic func
tion on the 3(m1n) Fourier variables~as required by the
Plancherel-Polya theorem@15#!, so that the far field correla
tions are, themselves, analytic on the observation unit v
torss1 ,s2 , . . . ,sm1n ~also see Ref.@16# for the deterministic
version of this well-known result!. It is also known that a
necessary and sufficient condition for a localized NR sou
correlationQNR

(m,n) to be NR is that its far field correlation
@11–13#

F ~m,n!~j !5E
D

d3r 1¯E
D

d3r m1nQNR
~m,n!~x!

3exp@ i ~k1s1•r11¯1kmsm•rm

2km11sm11•rm112¯2km1nsm1n•rm1n!#50

~13!

for all real observation unit vectorss1 ,s2 , . . . ,sm1n . Now,
because of the analyticity of the far field correlatio
F (m,n)(j), it follows that the NR source correlation conditio
~13! must hold not only for all real but also for all comple
observation unit vectorss1 ,s2 , . . . ,sm1n . Therefore, for a
localized random NR source correlation, the entire propag
ing plus evanescent plane wave spectrum must vanish~con-
sequently, the complete external field correlation must v
ish, as has been known for a long time@16#!. In addition,
expression~13! is, by itself, an interaction integral, so tha
the same NR statement given in connection with Eq.~13!
also draws the associated noninteracting picture: a local
random NR source of supportD neither radiates nor receive
any homogeneous or evanescent plane wave. Moreo
since the field produced by any source external toD must be,
itself, entirely expressible as an angular spectrum of hom
geneous and evanescent plane waves, it follows that a lo
ized random NR source must not receive~interact with! any
field produced outsideD. The analyticity property of the~ex-
ternal field! plane wave spectrum thus explains both the
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calizability of the NR field correlation~within the random
NR source support! and the noninteractivity of a localize
NR source correlation to all incident field correlations~both
homogeneous and evanescent plane wave correlations
consequently, any externally produced field correlation!. We
have thus complemented the Green-function-based man
lations by furnishing an alternative interpretation of our
calized NR source correlation results that is based on
analyticity of far field correlations.

Finally, we wish to mention that all of the preceding sc
lar random results can be extended readily to the electrom
netic case by substituting the scalar PDO¹ j

21kj
2 in the

above expressions@in particular, in the definitions given in
connection with Eqs.~9! and ~10!# by the vector PDO“ j

3“ j32kj
2 ~also see Ref.@1# for the corresponding deter

ministic case!. For example, if follows from result~9! and
the associated discussion thata necessary and sufficient con
dition for a localized, electromagnetic random source jNR
characterized in the space-frequency domain by a seco
order correlation tensor

J NR
~1,1!~r1 ,r2 ;v1 ,v2!5^ jNR* ~r1 ,v1!jNR~r2 ,v2!&

~in which jNR* (r1 ,v1) jNR(r2 ,v2) is read as a dyadic prod-
uct) to be NR is thatJ NR

(1,1) be orthogonal to all solutions o
the homogeneous PDE:
t.

t.

a

s

nd,

u-

e

-
g-

d-

~“13“132k1
2!~“23“232k2

2!V ~m,n!~r1 ,r2 ;v1 ,v2!

50 for r jPD for all j 51,2. ~14!

The more general electromagnetic~m,n! order description
follows obvious lines. Extension of the result in Eq.~10! to
the electromagnetic case is also obvious, and yields a
scription of all such purely radiating vector sources.

Summarizing, in this paper we developed a description
spatially localized random NR sources and random sou
that lack a NR part: NR source correlations are, by defi
tion, orthogonal to all correlations that behave like free fie
in the NR source support, whereas purely radiating sou
correlations are, themselves, free-field correlations, trunca
within the source support. Our results on random NR sour
lead to previously known results on such sources repor
e.g., in Refs.@2,11–15#. In particular, all the definitions of
localized NR sources given in those studies involved
thogonality relations of the NR sources and free fields, e
plane waves in the far-field-based definitions and source-
multipoles in the near-field-based descriptions. Analogo
observations apply to the purely radiating, minimum ene
sources presented in Refs.@2,14,15#, all of which are seen to
consist of free fields truncated within the source supp
Elsewhere we plan to apply the results of this paper to
verse problems with random sources.
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