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This paper reports a new procedure for specifying monochromatic nonradiating
(NR) current distribution§NR sources and the electric and magnetic fields they
produce(NR fields. Vector spherical harmonics and a Fourier—Bessel series are
used to derive a new vector spherical-wave expansion for continuous NR fields
confined within a spherical volume. The analysis yields complete orthogonal sets in
terms of which all such NR fields can be expanded. By making use of a Maxwell
operator representation for NR current distributions, we obtain a new series expan-
sion for NR current distributions confined within a spherical volume. The analysis
also yields complete sets for such NR current distributions. The developed theory is
illustrated with special cases. ®000 American Institute of Physics.
[S0022-2488)0)01202-7

I. INTRODUCTION

Classical current distributions which do not radifw®nradiating(NR) source$ have been
studied since the early days of electromagnetic théepe Ref. 1 for a review and relevant
referenceps Interest in such a class of sources originated from their connection with certain
aspects of classical electron theory, primarily the question of the electromagnetic self-force and
radiation reactiod. NR sources were used in interesting papers by Sthathd Bohm and
Weinsteir? and, more recently, by Goedecké efforts to model charged particles and atoms as
manifestations of NR source states. In more recent years, most ¢fethewed interest in NR
sources has been linked to their role in inverse source and inverse scattering theories where they
arise as the null space of the mapping from the so(scattererto the field’~° Investigations on
this subject have addressed both scfaf and electromagnetic sourck® " including both
deterministic and random sourc¥s?° The vast majority of workers have focused on the scalar
formulation, as opposed to the vector, electromagnetic formulation. The latter is the focus of our
presentation.

This paper reports a new procedure for specifying monochromatic NR current distributions
and the electric and magnetic fields they prod(dR fields. Our analysis is based on standard
vector spherical harmonics and a Fourier—Bessel series and yields new representations and basis
functions for NR sources and fields confined within a spherical volume. The results derived in this
paper provide a systematic way to construct such wave objects and are therefore relevant to
computational aspects of inverse source/inverse scattering reconstruction. In fact, part of the
motivation for the research reported here was provided by the need for representational tools for
NR source components of scattering objects in certain source-type integral eq(g&fiti)
methods’~2%In Ref. 23, basis functions to represent NR sources in rectangular coordinates were
derived, and applied to the problem of reconstructing, via inverse scattering surveys, the consti-
tutive properties of an unknown object. The spherical coordinate counterparts of the NR source
results in Ref. 23 were developed first for scalar, spherically symmetric sources in Ref. 13, and
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extended later to the nonspherically symmetric case in a recent contribution coauthored by one of
us (E.A.M.).?* The present work generalizes, to the electromagnetic case, that in Ref. 24.

The remainder of this paper is organized as follows. In Sec. Il, localized NR current distri-
butions and the fields they produce are characterized as solutions of an overspecified boundary
value problem of the inhomogeneous vector wave equation. This characterization is based on a
well-known Maxwell operator representation for NR current distributions derived first in Ref. 15.

In Secs. Il and IV, a new method is developed for specifying NR current distributions and NR
fields confined within a spherical volume. In both sections we impose certain continuity and
differentiability restrictions on NR sources and fields which can, however, be relaxed by dealing
with the various vector differential operators in a weak derivative or distributional sense. In Sec.
I, vector spherical harmonics and a Fourier—Bessel series are used to derive a new series repre-
sentation for continuous NR fields confined within a spherical volume. The analysis also yields
complete orthogonal sets in terms of which all such NR fields can be expanded. In Sec. IV, we
derive a new series representation for the NR current distributions associated with the NR fields in
Sec. lll. Our analysis also yields complete sets for all such NR current distributions. In Sec. V, the
general theory is applied to the special cases of spherically symmetric NR sources and NR sources
with dipolar angular dependen¢iR loops of current contained within a spherical regiddec-

tion VI contains our concluding remarks.

II. THE DEVANEY-WOLF REPRESENTATION

In Gaussian system of units, the Maxwell equations in free space reduce, under time-harmonic
conditions, t&°

V-E(r)=4mp(r),

V-H(r)=0,
@

v =
><E(r)=|EH(r),

4 LW
VXH(r)= 7J(r)—| EE(r).

In Eq. (1), E(r) and H(r) are, respectively, the space-dependent parts of the time-harmonic
electric and magnetic field&(r,t)=9%{E(r)e '*Y} and H(r,t)=R"{H(r)e '“'}, whereR de-
notes the real part; andt denote the position and time, respectively; amnds the frequency of
oscillation. In additiong is the speed of light in vacuum and

p(N=V-J(N/(iw) 2

and J(r) are, respectively, the space-dependent parts of the time-harmonic charge and current
distributionsq(r,t)=%{p(r)e "} and J(r,t)=R{I(r)e"'“"}. For the sake of brevity, we shall
refer henceforth to the space-dependent pa(ty andH(r) of the electric and magnetic fields
&E(r,t) andH(r,t), respectively, as “the electric and magnetic fields.” Similarly, we shall refer
to J(r) as “the current distribution.”

It is a well established fadsee, e.g., Refs. 15 and)2Bat any NR current distributiodyg(r)
of compact support- admits the representatighenceforth to be referred to as “the Devaney—
Wolf representationy
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[V X VXEng(r) — K?Eng(r)], )

1 (c
JNR(T):H K

whereEyg(r) is a vector field of compact suppart Furthermore, with every NR current distri-
butionJyr(r) there is associated one and only one such #gJg(r) and this field is precisely the
electric field produced by the NR current distributidisee also Ref. 23, pp. 1107—-1308he
scalar counterpart of the Devaney—Wolf representation appears to have been derived first by
Friedlandet® and has been used extensively in inverse source/inverse scattering®hebrs’®

To simplify the following analysis, in the remainder of this paper we will restrict our attention
to continuous NR electric and magnetic fields that are confined within a spherical v@lume
=<a of radiusa>0, and that possess continuous curl and divergence on the bourndargf the
volumeD. We shall refer henceforth to NR fields obeying all of these properties as “well behaved
NR fields.” Well behaved NR fields are seen to obey, in view of the Maxwell equatbnshe
following overspecified boundary conditions:

ENR(r)|r:a:Oa

VXEnR(M)|r=a=0,

4
V. ENR(r)|r=a:O!

VXVXENR(r)|r:a:0.

The third and fourth conditions of E@4) force the charge and current distributions associated
with well behaved NR fields to vanish on the boundarya of D. They thus ensure that the
associated NR charge and current distributions will possess compact supporttie purpose of
Sec. lll is to characterize all well behaved NR fields usihgthe vector spherical harmonics

PY(0,4)=TY(0,8),
1 "
BT(@(ﬁFmrXLYT(H,(b), 5

m _ o
C/(@,d))— mLY/(avd))r

whereY(6,¢) is the spherical harmonic of degreeand orderm (as defined in Ref. 25, pp.
98-99 andL = —ir XV is the orbital angular momentum operafeee, e.g., Ref. 25, E¢L6.25],

(2) a Fourier—Bessel series, af®) the overspecified boundary conditio@. On the other hand,

the goal of Sec. IV is to characterize all NR sources associated with well behaved NR fields by
making use of the Devaney—Wolf representation 4.

Ill. A PROCEDURE FOR SPECIFYING NR FIELDS

This section provides a new procedure for specifying well behaved NR electric fields. Meth-
odologically, we use a spherical vector function expansion to represent any continuous vector
function that is confined within the spherical volurder=<a and vanishes on the boundary
=a of D. Later we impose the additional constraiftx Eyg(r)|,—a=0 andV-Eyg(r)|,=a=0.

We have the following theorem.

Theorem 1: Any continuous vector functioR(r) that is confined within the spherical volume
D:r=<a and vanishes on the boundary a of D can be represented, foa, in the form
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Fo=2 2 2 [a(n/,m»)PR(0,¢)+b(n,/,m;»)B(0,¢)

+c(n,/,m;v)C(6,$) 1. (1), (6)

whereP(6,¢), BJ(6,¢), andC}(0, ) are defined in Eq(5) and

(@)

2/a® r
lﬂn;,,(r): (

|jv+l(:81/,n)| JV

T
J(X)= \/\ Jy 4 12(X) (8)

is the spherical Bessel function of the first kind of orderwherev is an arbitrary non-negative
integer. The parametefs, , are consecutive zeros pf(x), i.e.,j,(8,,)=0,n=0,1,2,... . The
expansion coefficienta(n,/,m;v), b(n,/,m;v), andc(n,/,m;v) are given by

where

a(n,/,m;v)zf

r<a

dr rzlﬂn;v(r)f4 dQP,r/n*(aa¢)’F(r)

=fr<adrr2¢n;v(r)f4 dQYI™ (6,$)[r-F(n)], 9)

b(n,/,m;v):j drrzzpn;v(r)f4 dQBI*(6,¢)-F(r)

rsa

- /—/+1 fr<ad” n; V(r)j dQIrxLY™(6,$)]* - F(r) (10)

and

c(n,/,m;v)zj d”zllfn;v(f)f dQCP™*(6,¢)-F(r)
4

r<a

_; 2 m *‘
" D bt | g0t RO

whered() =sin#dfd¢ and an asterisk denotes the complex conjugate.

Proof: The proof of this result is straightforward and will not be given in detail. The key
ingredients of the proof ar¢l) the completeness and orthogonality of the vector functions
PY(6,9), BY(6,¢), andC(6, ) over the unit spherésee, e.g., Ref. 27, pp. 1898—190(2) the
Fourier—Bessel series, which one can use to represent any functiotledihed over the interval
[0,a] that is at least piecewise continuous and vanishes-at (see, e.g., Eq.11.5] in Ref. 28;
and(3) the orthogonality property of the set of ordinary Bessel functity{g, , (r/a)) for fixed
non-negative integer and variable index in ther interval[0,a] [see, e.g., Eq. 11.168 in Ref.

28]. The latter property ensures tHaee, e.g., Eq11.169 in Ref. 2§

Jrgadrr2¢n;y(r)¢nr;y(r)=5n’n,, 12
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where s,/ is the Kronecker delta. The vector functioR$(6,¢), BJ(6,¢), andC)(6,¢) are
mutually perpendicular in view of the propentyL =0 [see, e.g., Eq16.27 in Ref. 25. They
obey the orthogonality conditions

L dOPT™*(6,8)- P (6,0)=8, /1
L dOB™ (6,¢) BT (0,6)= 08,1 Smm» 13

L dQCT*(a,¢)-C/m,'(9,¢)=5/,/f5m,mr-

Equation(13) follows from L2Y"(0,¢)=/(/+1)Y7(6,¢) [see, e.g., Eq(16.29 in Ref. 25
Also, PY(6,¢)=1/\/A=r while B3(6,$)=0 andC3(8,$)=0.

The following result follows immediately from Theorem 1.

Theorem 2: Any well behaved NR electric fiel&yg(r) admits a representation of the form
Eq. (6) [i.e., with F(r) substituted byE\g(r)] subject to the constraints

o

> a(n,/,m;v)a(n;v)=0,

n=0

Zo b(n,/,m;v)a(n;v)=0, (14

ZO c(n,/,m;v)a(n;v)=0,

where

|r=a-

N 1 d ( r
M) =g, drir Prng

Proof: That Eyg(r) is representable in the form E¢p) follows from Theorem 1 and the
above-imposed restrictions diyg(r). After evaluatingV X Eyg(r) with Eyg(r) given by the
representation EQq.(6), with F(r)=Eng(r), we obtain, by enforcing the conditiorV
X Enr(N) |y =2=0, the result

% % /
nzo Zl m:Z_/ [c(n,/,m;v)a(n;v)BT(6,¢)—b(n,/,m;v)a(n;»)CM(0,$)]=0, (15)

where we have discarded unnecessary constants. In derivinglBowe have made use of the
results(see Appendix A

ri. i r
VX1j, ﬂy,ng)f\(?(ﬁysﬁ)}:—ij(ﬁy,na LYJ(6,8),
) r " i/(/+1) M aom 1d| . r\|a.
VX|i, Bung LY (0,¢) ijv(ﬁv,na fY/(9.¢)+Fm 1| Bung]|!

XLYT(8,9), (16)
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. r
r V( Bv,na)

Similarly, by evaluatingV - Eyg(r) with Eyg(r) given by Eq.(6), with F(r)=Eyg(r), while
enforcing the conditiorV - Eyg(r)|,—a=0, one obtains

V X LY™(6, ).

Iv

- 1d
rXLY/(0,¢) Z—Fa

r
Bv,na

0 o /
> > > ain/mp)a(ny)YN(6,¢)=0. (17)
n=0 /=0 m=—/

In deriving Eq.(17) we have made use of the resulsee Appendix A

) M aom 2 r d r m
V'[lv(ﬁv,na rY/(01¢) = FJV(ﬂv,na +alv(ﬁu,na Y/(61¢)=
V{jy(ﬂy,n%)w?w,@}:o, a9
) r. m i7(/+1) M om
V. Jv(ﬂv,na FXLY/(6,¢)}=—fj,,(,BV‘n5 Y/(0!¢)

Finally, Eq.(14) follows from Eqgs.(15) and(17) and the orthogonality relatior(d3). The fourth
of the overspecified boundary conditions Ed), i.e., VXV XEng(r)|,=a=0, is automatically
satisfied so long as E@l4) holds, as we will see in Sec. IV.

Now, v is an arbitrary non-negative integer. In the remainder of the paper we will restrict our
analysis to the special case=0, although the general theory applies to arbitrary non-negative
integersv.

A. Special case: »=0

For v=0 we obtain from Theorem 2

©  ® 7
Ene(N=2, 2 2, [a(n,/,mPJ(6,)+b(n,/,mBJ(6,)+c(n,/,mCI(6,)1¢n(r),

(19
where we have defined
a(n,/,my=a(n,/,m;r=0),
b(n,/,m)y=b(n,/,m;»v=0),
(20)
c(n,/,m)=c(n,/,m;v=0),
. r
‘//n(r): '/fn;vzo(r): \/Z/aaﬁO,nJO(IBO,nE .
For this special case we obtain
Bop=(n+1), (21)
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r
r Sin( IBO,n a)
jO(ﬂO,na A (22
Bo,na
and the constraint relatiori¢4) reduce to
Z —1)"Y(n+1)a(n,/,m)=0,
> (-1)"(n+1)b(n,/,m)=0, (23)
n=0

ZO (—=1)""Y(n+1)c(n,/,m)=0,

where we have discarded unnecessary constants.

B. An orthonormal basis for NR fields

We can now use the results established in Sec. Il A to generate an orthonormal basis for all
well behaved NR electric fields. Following the vector counterpart of the procedure used in Ref. 24
for scalar fields, we define the three sequences of NR electric {Eg% ™(r)}, {ELM ()3,
and{E(p/m)(r)} with p=1,2,...; /=0,1,...; andm=—/,—-/+1,... /, where

EP™(r)=P(0, ¢)2 D) n(r),
p
B ™ (1)=BJ(6,6) 2, v (Myn(r), (24

p
EQ (1) =C(0,8) 2 v (n)un(r),

where the expansion coefficient§” (n), v{P(n), andv{”(n) must obey, by analogy with Eq.
(23), the constraint equations

p
> (=) Yn+1)vP(n)=0, j=ab,c. (25

Next, we impose the orthonormality conditions
fDd3r EP ™% (1) BP0 = 68, 1S Bppr s J=alb,cC. (26)

In view of Eq.(12), Eqg. (13), and Eq.(24), the condition Eq(26) yields

p !

> v (npvPIny=s5,,, j=ab,.c. (27
0

n=
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It follows at once from Theorem 2 and the definitions and constramtsEﬁB/ (r),
EP7™(r), andEP”™(r) above that any well behaved NR electric fi#ds(r) can be written

as

o © /

Exg(N=2 2 2 [ua(p./ . mEP"™(r)+uy(p,/,mEP"™(r)

p=1/=0 m=—/

+ug(p,/,mEP” ™ (r)], (29)
where

(o m)= | ETEPOM (1) B, j=abie (29)

D

Thus, the vector function€®”™(r), EP”™(r), and EP"™(r), with p=12,...; /
=0,1,...; andm=—/,—/+1,... /, form an orthonormal basis for all well behaved NR

electric fields, so long as the expansion coefficiers” ™ (n,/,m) in Eq. (24) satisfy the con-
straint relationg25) and the orthonormality condition7).

Now we note that Eqg25) and(27) can be jointly satisfied, as follows from the fact that each
basis field E(”™(r), j=a,b,c, is defined from Eq(24) by a sum ofp+1 linearly independent
functions, while condition27) only involves the firsip,+ 1 of these functions, wheng, is the
lower of p,p’. This consideration leads to the following procedure for constructing the orthonor-
mal set. The basis fields**"™(r), j=a,b,c, are constructed wita("(0) andvfl)(l) chosen so
as to obey cond|t|0n$25) and (27) with p=p’=1. The basis er|dE(2/ ‘™(r), j=a,b,c, are
constructed wittv{?)(0) andv{?)(1) selected so as to satisfy H@7) with p=1 andp’=2. This
leavesv{?)(2) arb|trary and also leavag®(0) andv{?)(1) arbitrary up to a single multiplicative
constant The multiplicative constant avnﬁ)(Z) are then uniquely determined from the constraint
equation(25) and the orthonormality conditiof27) with p=2 andp’=2. The above-outlined
step-by-step procedure is elaborated in Appendix B and can be used to construct the remaining
basis f|eId§E(p & M(r), j=a,b,c, i.e., those corresponding t>2. By means of this procedure

we have found the coefﬂmentép (n) to be defined, for arbitrarp=1,2,. .., by theexpressions
p—1 p— 2 —-1/2
[Zh5(n+1)%)?
vP0)={ X (n+1)%+ ———"t (30)
n=0 (p+1)
viP(n)=(-1)"(n+1)v{P(0),0<n<p, (31)
and
—1)PF1IxPzln+1)2
v{P(p)=v{P(0) e (32)

p+1
Finally, we note that the expansion coefficienfg)(n) obey, in view of Eqs(25) and(27),
the same constraint equations fera, b, andc. This enables us to use Eq80)—(32) to express
Eq. (24) in the convenient form
EP™(r)=Fy(r)PR(6,6),
P ™ (r)=Fy(r)BR(6,¢), (33
EP ™ (r)=Fy(r)C(6,0),

where
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p

Fp(r)=EOVEp’(n)¢n(r), j=ab,c

[3P-in+1)212] 2
(p+1)?

p—1
:[ 20 (n+1)2

p—1 n } p+122;(1’(n+1)2
X o (=1 n+L)eh(r) | +(—1) TS (r). (34
Thus, we obtain from Eq.34) and Eqgs(20) and(21)
2\/_ r r
Fi(r)= \/%T{Jo +j0(2775H,
37 | r ) r ] r
F2(r)_\/@ Jo 775 _4JO 2775)_5]0(3775) )
ry= 2\/577[ ' —4j (2 +9jol 3 + 14 (4 ” (35
Fa(r)= /1053 Jo| 73 Jo| e Jo 77 Jo| 47
r r ] r . r
Fa(r)= m[]g 4]0(277 +9jo| 37— ) 16]0(4775)—3010(5775”,
6\/577 ] r ) r ) r . r
Fs(r)=—m j —4j, 2775 +9j, 3775 —16j, am

and so on. The result E34) is of great value since it gives explicit form to the orthonormal set.

IV. A PROCEDURE FOR SPECIFYING NR CURRENT DISTRIBUTIONS

In this section we make use of the Devaney—Wolf representatiof3@nd the results of
Sec. lll to characterize all NR current distributions associated with well behaved NR fields. By
using the representation E) with Eyg(r) given by Eqs.(19)—(22) subject to the constraint
conditions(23), we obtain, for <a, the following representation for the NR current distributions
associated with the NR electric fields in Sec. IlI:

[V XV XEng(r)—K*Eng(r)]

1
INR(F) = (

© /7
i ( ) 2 2 2 [RYOM(NPI6,¢)+RE(NBI(6,¢)
+RM () CR0.4)], (36)

where
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/+ 1) ] r
a _kzllo(ﬁo,na

R{WM)(p) = \/2/a§/30n[ a(n,/,m)

ivA(/+ r
—b(n/m)%d [rlo(,BOn ] (37
+1
RY (1) = lea’g/aoﬂ{b(n/m) o )”} _kz}jo(ﬁo,n%
iv/(/+1) d r
_a(na/am) (r dr]O(B a ]1 (38)
and
2
R M(r)=2/a®Bync(n,/, m)jo(BOn [ (n+a1)77 +/(/2+1)—k2]. (39)
r
In deriving Egs.(38) and (39) we have made use of the fact tfat
. rj_1df,d. r (n+7]? r
Viio| Bongz| = Zar|Tarlo Bong||= a Jo| Bong (40)
and
pum Lz . A7+
v Y/(0.¢)=—r—2Y/(0,¢)=— 2 Y/ (60,9). (41)

Also, in carrying out the manipulations leading to E§37)—(39) we have made use of the
following results(see Appendix €

. M aom /(/ 1) id m
VXVX|jo ,30,na)rY/(9a¢)} Jo(ﬁon )rY/(ﬁ b)— Jo(,BOn rXLYP(0, ),
(n+L)w|? Z(/+1)
VXV X|jol| Bopz )LY/(ﬁ )= a + 2 JO(IBOn )LY/(9 ), (42
, r. m i7(/+1) d aom
VXV X Jo| Bong rXLY/(0,¢)}= —Zdr{ ]O(:BOn ) rY;(6,¢)
r
(n+1)7
a Jo(ﬂ0n rXLYP(0, ).

The charge densityyg(r) corresponding to the NR current distributidgg(r) in Eq. (36) is
evaluated by using the procedure employed to derive(Eg).in Appendix A. We obtain from
Egs.(36) to (39
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pnr(N =V - Ins(N/ (1)

0 0 / . ,
B 1 (c 1d 0/ m i/(/+1) n/m "
—‘m(i)r;o 2, m_E/[an“ZRi B *”]Y/(ﬁ"f’)’
(43
where
1d Z(/+1) d . r\ 2k? r
r_zd_[ r2R{™(r)]= \2/a ﬂ0n|a(n )H(r—z_kz mlo(ﬁo,n __JO(IBOn
NG /+1 d?
_b(n,/, I ( d |: ]O(IBOnr (44)

By referring to the constraint conditiori23), Jyg(r) andpyg(r), defined by Eqs(36)—(39) and
Eqgs.(43) and(44), respectively, can be shown to vanish on the boundarg of D, as expected
from Egs.(1) and(4).

We can apply now a procedure analogous to that used in Sec. Il B to genénatecathogo-
nal) basis for NR current distributions confined witHin Thus, we build the three sequences of
NR current distributiongJ*™(r)}, {3%™(r)}, and {J(p/m)(r)} associated with the se-
quences of NR flelds{E(p/m)(r)} {ElP/ m)(r)} and {E(p/ M(r)}, respectively, withp
=12,...;/=041, ..;andm=—-/,—/+1,.../, where

)[VXVXE(p/m)(r) K2EP ™ (r)]

J(D 7, m)(l’)—
J(/+1 )

1 [c P /(/
N (p)
i (k \/2/a3n§0 vap(n)ﬁo,nH > Z]Jo<ﬂ0n
|\//(/+l d

r

PY(6,¢)

JO(BOn B4, d’)] (45)

1
IPCm(r)= ( [VXVXEP™(r)—Kk2EP ™ (r)]

1 (c . J/(7+1) d
:4_171(E \/2/a3nZO vgp)(n)ﬁo,n[ I (r2 dr[”o(ﬂon ) P/(e )
(n+1)7]? )
—k=|jo ,30n BJ(0,¢) (46)

and

1
I ()= 77( [VXVXEP" ™ (r)—k2EP™(1)]

_1c
T4k

(n+1)7
a

2 J(/+1
+ ( ) 21 (ch Cl(0,9).

r.2

p
¢2/a3n§o v (n) B,

(47)
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In deriving Egs.(45)—(47) we have made use of E¢42). The expansion coefficients” (n),
viP(n), andv{P(n) are defined by Eqg30), (31), and(32).

Finally, by following a procedure analogous to that employed in deriving &@s.and (44),
we find the charge densitigg”” ™ (r), p>"™(r), andp(p/ ™ (r) associated with the basis NR
current distributionsI™”"™(r), J(p/m)(r) andJ{” m)(r) respectively, to be given from Egs.
(45), (46), and(47) by

PP M (1) =V IP M (1) /(i w)

1 p
=E\/2/a3n§0 (”)(n)BOn[ Jo(BOn

Y7(0,¢), (49

2. r
FJo ﬁo,na

PP () =V-IP () (i)

1 [c P iV/(/+1) d? r
:m<E \/2/a3nzo Vl(jp)(n),Boyn[ 2 e [ jo( ng
i/(/+1D)[[(n+1)7]? . r
+ (r ( a T _kZ}JO(ﬁO,nE)]Yr/n(ai(ﬁ)l (49)
and
pP M)y =v. 3P M (1)/(iw)=0. (50)

V. SPECIAL CASES

In this section we examine the two simplest classes of NR current distributions that can be
constructed from the results of Secs. Il and IV. They &tg:spherically symmetric NR current
distributions, and2) NR current distributions with dipolar angular dependence.

A. Spherically symmetric NR current distributions (case 7=0)

We consider next the simple example of spherically symmetric NR current distributions. Such
NR current distributions are purely longitudinal, which automatically makes them NR. An ex-
ample is provided by a spherically symmetric charge distribution undergoing oscillatory radial
motion. Spherically symmetric NR current distributions can be constructed by using the basis
functionsJPP20(r), 3P0 (r), anddPO)r), corresponding to the cagé=0, m=0 in Egs.(45),

(46), and(47). In particular,

iw P . A
IO )= (47T)3/2\/2/a3nzo Vgp)(n)ﬁo,nlo<ﬂo,na r (5D

JPO0ry=0 andIP2%(r)=0. The coefficientsP(n) in Eq. (51) are given by Eqs(30)—(32)
while By, is defined by Eq(21). Then we obtain from Eq51)

i 2 |, ri.
IO = =/ el 2775)%

r M-
—4j0(27T5) —5j0(3175”r,

T—|t+]
al Tlo

r

3iw 1 .
IGO0 )= —— —3[Jo T3

8 357a

i 2 ]
KW=y 105na3b° "a

377
a

+ 1410(477 Hr (52
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3600y = 0 Ll w L] —ajo| 205 + 01| 3| 160 4| 3010| 5] |F
a ~8 V33,42 Jo| 73 Jo| 273 Jo| 972 lo| 473 Jo| 7| |1
3(5.00), _3iw 2 i —4jql 2 ' +9i 3 ' —16j,| 4 ' +25j0| 5 '
a  (r)= 4 \/500 a310 T Jo| 272 Jo| 972 lo| 472 lo| 972

F!

. r

and so on. On the other hand, the associated charge depg?t?eos%(r) are given from Eq(48) by

1 P 2 ry d r
(P.0.0) ) — 5733 G) Zi e —
pa ) = (4m) 2/a ngo va’(n)Bon ol Bong | T drlo(’go"‘a . (53
Now we can represent any well behaved spherically symmetric NR current distritdtipn
as
J(r)= 2 da(p.0,03Pr), (54)
p=0
where
0a(p.0,0)= fDdergpw(r).J(r)_ (55)

Finally, the NR fieldsE{"*°)(r) produced by the NR current distributiod$*Xr) are found
from Egs.(20), (24), and(51) to be given by

A7i
EPOOr) == —3%%r). (56)

Spherically symmetric NR current distributions are then seen to be, apart from a proportionality
factor, identical to the NR fields they produce. It is not hard to show that this applies to any
time-harmonic longitudinal NR current distribution.

B. NR sources and fields with dipolar angular dependence (case 7=1, m=0)

We consider next the case of NR sources and fields with dipolar angular dependence, i.e., NR
sources and fields described by series expansions %e(r) and E("%(r), respectively,
corresponding to the casé=1, m=0. Physically, NR current distributions of this kind are
similar to a loop of current confined within a spherical region. These NR current distributions are
formed by superposing certain radiating magnetic dipole-like sources in a way that makes their
radiated fields cancel out for>a by destructive interference, as we shall show in the following.
The electric counterpart of these NR collections of magnetic dipbles NR collections of
electric dipoleg can be built, by duality, using the results of this section.

In this case we obtain from the Devaney—Wolf representatioi®@@nd Eqs(28), (29), and

(47

Enr(r) = EO ue(p, 1,0 EPOr), (57)

where
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Ue(p,1,0)= JDd3rE£"*1’°>*(r>-ENR<r) (58)
and
J<r>=p§0 Ae(p,1,003P+r) (59)
where
ae(p,1,0 = JDderép’l"’)*(r)-J(r). (60)
By using

3
0 ~ s .
LYl(r)—|u¢\/—47Tsm 0, (61)

whereu,, is the unit vector in the positiveb direction, the basis fieIdEﬁp'l'o)(r) are found from
Egs.(33) and(61) to be given by

/3
EPLO(r) = Ug gsin OF (1), (62)

whereF ,(r) is defined by Eq(34). For example, fop=1,2,...,5, the basis fieldégp'l’o)(r) are
given explicitly by Eqs(35) and(62). On the other hand, the associated NR current distributions
JP-1O)r), defined from Eq(47) as

1 (n+1)7]? _ r
IO = — (k 35| L Y10, ¢)E &(n)Bon H 2 +2/r2—k2bo(/so,n5 ,
(63
are found from Egs(21) and(61) to be given by
1.0) 0y c 3 (n+1)7]? ) r
Jpt )(f)—U¢4k sm&E vP(n)(n+1) - +2Ir2—K2|j, (n+1m|,
(64)
where the coefficients(P)(n) are given by Eqs(30)—(32). By using Eq.(64) and Eqs(30)—(32)
we obtain
c 3 \? r 2 r
(1,1,0) H _ 2_1L21; _ _ 2__ 1,2 _
Je A =uy, 62K asslnﬁ( (a +2Ir k}]o T + +2Ir k}jo(ZWa”,
IOy =y — 3 inola|[Z 2+2/r2—k2j .
¢ 4k N 2807a° a %\ "a

(%
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c 1 2 r 2m\2 r
J‘(:S’l’o)(r)zugb@ —14077a35in0{2[<§ —|-2/r2_k2bO Ly —8[(% +2/r2_k2}j0(2775)
37\? 1. r 4r\? . r

+18 | — +2Ir2—K?j, 3m_|+28|— +2/r2—K?|j, 4m |1 (65

2

2 r 2
+2/r2—k2}j0(7r—)—4{(—ﬂ
a a

2

c 1 [ r
(4,1,0), _ _ - o 2__L2|; _
Je ) Up 21 887Ta3sm6: ( a +2/rc—k }jO(ZWa)

3m\? ) r 4
—| +2I?=K?|jo| 3m=|—16 | —
a a a

51\2 ) r
=30 [ —| +2kr2—K?|jo| 57 =] ¢,
a a

c 3 m
JGL0) Y=y —\/:sina[GH—
e D=l 20020ra3 a

2

+9

_ r
+2/r2—k2}10(4775>

2

T—
a

+2/r2—|<2}j0

2 ) r 3m\? ) r
=24 —| +2h2—K?|jo| 2= | +54 | —| +2[r?—K?|jo| 37—
a a a a
47\? . r 5\ ? . r
—96 | —| +2ir2—K?|jo| 4m—=|+150 | —| +2/r2—K?|jo| 57—
a a a a

6
LS |
a
and so on. Finally, it follows from Eq50) that p{*"*%(r)=0 for all p=1,2,... .

We recall® that a necessary and sufficient condition for a current distribukig(r) localized
within D to be NR is the vanishing of the multipole moments

2 r
+2/r2—k2}jo<6wa)

4

&m=" /1)

1
E) fDd3fJNR(f)'{VX[j/(kr)(LY?(ﬂ.tﬁ))*]}:O,
(66)

b, = 4qi
v

k
EU Ar dne()- [ (KT (LY(0,6))* ]=0.
D

We show next that—as expected—the basis current distributions with dipolar angular dependence
considered here obey the NR conditid66). By making the substitutiodyg(r)=JP%(r), with
J(Cp'l*o)(r) given by EQq.(63), into the first of the expressiorié6) for the multipole moments while
using the second equation of E46) with v=/" and the fact that the vector functioﬁ‘s‘?(e,@,
LY"(6,¢), and rx LY?(6,¢) are mutually perpendicular one concludes that,=0. Thus,
each of the basis current distributioﬁ@'l'o)(r) generates zero electric multipole momeats,, .
This is not surprising since, physically, each of the terms in the series expansi¢@3Eqgepre-
senting the basis current distributioﬂg"l'o)(r), is essentially a radiating magnetic dipole. How-
ever, when superposed, the fields produced by these radiating magnetic dipoles cancel out by
destructive interference in the region outside the source, i.er>fa, as we shall show next.

The magnetic multipole moments corresponding to the basis current distrildfﬁijo??(r) are
seen from Eqs(63) and (66) to be
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p

> viP(n)Bonl (nik,a)

n=0

b/,m: a73/2

0/10mo, (67)

where we have made use of the orthogonality of the vector spherical harmori{®, ¢) over
the unit sphere and where

(n+1)m|?

I(n;k,a)=fadrr2j1(kr)
0

. r
+2/r2— kz}jo( ,Bo,na

2

(n+1)w 2

a

ko

" 2(kBon/a)"?

a r
f dr sz/z(kr)Jl/z( Bonz
0 a

. (68)

' a "
+ [ dr(1r)Jgkr)d ( r
(kﬂo,n/a)llzjo (1/r)Jg2(kr)dyzd Bong

It is shown in Appendix D that

(n?—m?)

r(a®—«?)— ;

=a

a d d
fodrU(r)v(r) u(a)av(r)|r=a_v(a)au(r)|r=a}a (69)

where

u(r)=Js(ar),
(70
v(r)=Jm(&r),

wheren,m,a,x are arbitrary real numbers. We can now obtain an expression for the integral
I(n;k,a) in Eq. (68) by using Egs.(69) and (70) for n=3/2, m=1/2, a=k, and k=g, /a
=[(n+1)m]/a. We obtain

I(n;k,a)= (71

T ke (B °
Z(kﬁovn)llz 3/ dr 1/2 O,na

r=a

Now we use Jyp(X)=+v(2x/m)jo(X) to express the value of the derivative
(d/dr) 3y Bont/a)|;=a in EQ. (71) in terms of @/dr) jo(Bon(r/a))|,—. We obtain

d r
: _ e T ; -
I(n;k,a)=—a \/2k33/2(ka)dr10(,30,na .

=—(-1"*t \/%Js/z(ka)- (72

By substituting from Eq(72) into expressior(67) for the magnetic multipole moments , and
imposing the constraint conditior{&5) we obtain

3\ 12 p
byo=— <7> k™% 233(ka) 2, (=)™ Hn+ v (n)=0. (73

Finally, it follows from Egs.(67) and (73) that, as expected, the magnetic multipole moments
b, »=0 which confirms the NR nature of the basis NR current distributiA$Xr).
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VI. CONCLUSION

The Devaney—Wolf representation for NR sources was introduced in Ref. 15 and has since
played a key role in the inverse source/inverse scattering disciplines. In this paper we have carried
out a detailed analysis of this representation in a spherical coordinate system, obtaining new
representations and basis functions for NR sources and fields associated with a given spherical
domain. We have provided explicit expressions for the NR source representations and basis
functions in question. In so doing, we have enhanced their applicability to problems of object
reconstruction.

For the sake of clarity and to simplify some of our manipulations, we restricted our attention
to continuous NR fields obeying certain continuity and differentiability properties on the boundary
r=a of their spherical region of suppoli (well behaved NR fields The latter properties were
chosen in order to ensure the continuity of the associated NR charge—current distributions on that
boundary(such NR sources are therefore compactly supporteD,ims desired The general
results developed in the paper can be extended to a broader class of NR sources and fields if one
deals with the various vector differential operators in a weak derivative or distributional sense. We
plan to use elsewhere some of the results presented here in formulations of inverse source/inverse
scattering problems for sources/scatterers obeying prescribed continuity and differentiability con-
straints(smoothness constraints addition to localization constraints. A canonical example is
provided by an inverse source problem wherein the unknown source is kagpviori to be
continuous on the boundary=a of its region of localizatiorD. There the so-called minimum
energy solutions would not, in general, represent valid solutiofieecause of the continuity
constraint and NR source components described by the results derived in this paper would have
to be included.
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APPENDIX A: DERIVATION OF EQS. (16) AND (18)
Here we outline our derivation of Eq&l6) and(18). The first equation of Eq.16) is obtained

via

VXl|i,

ﬂy,n;) FYT<0,¢>}=—F><V Jy(ﬁv,n;)vw,q&)}

—irxVv

u(m%) Y26, ¢)“

LYJ(0,4),

B i r
__F]V ﬁv,na

where we have usedj (8, ,r/a)=0 andVxr=0. The second of Eq16) is obtained via
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X1y

Bun )'—Y/(é’ (b)}

_VJV(an XLY/(0¢)+J ﬁv,n% VXLY,r/n(aa¢)
d
i B PXLYR0.9) 511 g L0V 0.0+ Y090
g
i/(/+1) d ey I Beng) | -
f (IBVn )Y/(0¢)+ erV(BVn T rXLY/(0!¢):

where we have used E41) and the operator identitigsee Ref. 28, p. 109
V=r——Fr><L (A1)

and

J
iVXL=rV?-V T+r—-|. (A2)

The third equation of Eq(16) is obtained by the manipulations

X\ 1| Buns | PXLYD(0,0) | =1V 1], B0 VY?(M)}
d N
- d—{ | Bunt][Fxwvic0.0
__td ( Ty
__Fd_ ,BVn [—IFXVY/(0,¢)]

where we have usedx LYT(6,$)=irVY"(0,¢) (see Ref. 28, p. 10%nd VX V=0.
On using Eq(2.45 in Ref. 28 and

1 9 a)

LZ—irXV:i(Uemﬁ—lw,ﬁ ,

whereu, andu,, are the unit vectors in the positiveand ¢ directions, respectively, we obtain

1d
(an )rY/(a(ﬁ)}:_zd_ r JV(ﬂvn ) Y/(0¢)
2
:[F (ﬂvn Ju(ﬁvn Y/(0¢)
and
, ( r\. " ( d J 2 om
Jv ﬂv,na rXLY/(01¢) rSlnelV an a0<5|n0ﬁ) Slna?& Y/(0!¢)

The last expression can be simplified by usisge Ref. 28, p. 109
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1 9/ 9 1 &
L=—— —|sind—|—-———
Sir? 6 9¢p?

so that

r. i r
V[Jv(ﬂvna rXLYr/n(eaqs)}:_:._Jv(ﬁv,na) LZYT(Q,(Z))
B i7(/+1)

. M om
= flv(ﬁv,na Y/(0!¢)

The above-mentioned divergence calculations correspond to the first and third equations of Eq.
(18). The second equation of E(L8) is obtained in a single step using the same procedure.

APPENDIX B: PROCEDURE TO EVALUATE THE COEFFICIENTS Vf,p)(n)
It follows from Eq. (25) that
viV(1)=23v{Y(0). (B1)
On the other hand, Eq27) with p=p’=1 yields
ViR viP()?=1. (82

Without loss of generality we choosérp)(O) to be a real and positive coefficient. Then we obtain
from Egs.(B1) and(B2)

vit(0)=2/5,

(B3)
vit(1)=1/5.
Equation(27) with p=1 andp’=2 yields

vi?(1)=-2v{?(0). (B4)

Equation(27) with p=p’=2 yields
VO + v 2+ [viP(2)|2=1. (B5)

It follows from Eq. (25) that

—vi?(0)+2v{?(1)-3v{?(2)=0. (B6)

By solving simultaneously EqsB4), (B5), and (B6) while requiring v{*)(0) to be real and
positive we obtain

v{?(0)=3170,
vi?(1)=—6/\70, (B7)
v{?(2)=—5170.

APPENDIX C: DERIVATION OF EQ. (42)

The first equation of Eq42) is obtained from the first equation of E{.6), with v=0, and
Egs.(41), (A1), (A2) via
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r\.
VXVX]jo ﬂo,na)rYn/j(G'@

) 1. r m
=—-iVX Flo(ﬂo,na LY,/W@)}

11 r
=-iV FJo(ﬂo,na XLYJ(0,¢)— (BOn VXLYJ(6,¢)
o .dj1 - m 1. r 5 n
=g Jo ﬂOn rXLY/(G:d’)_?Jo ﬁo,na (rVve=V)Y (6,¢)

d[1 r 1. AN /(/+1)
= Nar IO(IBOn + ol Bong | (TXLYA(0.6)+ ——F— o ,30n rYJ(6,¢)
r
/(/+1)

i d
(,30n rY?(6,¢)— JO(,BOn rXLYT(6,¢).

r2

The second equation of E¢42) follows from Eq.(16), with »=0, and Eq.(40) via

VX VX

Jo BOn LYJ(0,¢)

i/(/+1)
e,

IBOn )I’Y/(ﬁ ¢)

1 d
r ar Mo /30n

A(/+1
= ort]

r

_ 7+ 1d?[ . r
(/30n )'—Y/(t9 ¢)———{ Jo(ﬁo,n—)
r2 dr2 a

FxLY?(&,g&)]

1d([1d .
LY/(0¢)— dr[ [ d [rJO(ﬁon )H}LY/(01¢)

LY}(0,)

A7+ L r "
= 7~V |lo| Bong | (LY/(8,9)
r

/+1
:[ & P )]JO(BOn
r

The third equation of Eq42) follows from Eq.(16), with =0, and Eq.(40) via

(n+1)m|?
a

LYJ(0,¢).

VXVX|ijo rXLY™(6, )

r
IBO,ng

1d| . r "
:—VX[Fa[rJo(ﬁona) LY/(0a¢)}

A/ (1 d . 1d([1d
__—r Tar Jo(,BOn) rYA0.8) =~ g7 177 gr| ol Bong

r

XLYJ(6,¢)
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i/ d r
=T ar|Mo Bong

B i/(/+1) d| r
== 2 ar|o Bong

APPENDIX D: EVALUATION OF THE INTEGRAL IN EQ. (69)

rxXLY"(6, )

~ . r
rY/m(0,¢)—VZJo<ﬁo,ng

(n+1)7

< rxXLY™(6,).

rY?(6,¢)+

2 r
Jo ,Bo,na

Our starting point is the Bessel equations

Xxu"(X)+u’ (X)+X(a®—n?/x*)u(x)=0,

(D1)
Xv"(X) +Vv' (X)+X( k2= m?/x?)v(x) =0,

where

u(x)=Jn(ax),

(D2)
V(X)=Jm( kX),

wheren,m,a, x are arbitrary real numbers and the primés dre used to denote derivatives with
respect tax. By multiplying the first equation of EqD1) by v(x) and the second equation of Eq.
(D1) by u(x) we obtain

xv(X)U”(x) +u’ (X)v(x) +x(a®—n2/x*)u(x)v(x)=0 (D3)
and
Xv"(X)u(x) +v' (X)u(x)+x(k?—m?/x?)u(x)v(x)=0. (D4)

By integrating both sides of ED3) and (D4) from x=0 to x=a and subtracting the resulting
equations one obtains after some manipulations the desired resu(6®q.The procedure is
similar to that used in Ref. 28, pp. 591-592, to derive the orthogonality relation for the Bessel
functions.
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