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This paper reports a new procedure for specifying monochromatic nonradiating
~NR! current distributions~NR sources! and the electric and magnetic fields they
produce~NR fields!. Vector spherical harmonics and a Fourier–Bessel series are
used to derive a new vector spherical-wave expansion for continuous NR fields
confined within a spherical volume. The analysis yields complete orthogonal sets in
terms of which all such NR fields can be expanded. By making use of a Maxwell
operator representation for NR current distributions, we obtain a new series expan-
sion for NR current distributions confined within a spherical volume. The analysis
also yields complete sets for such NR current distributions. The developed theory is
illustrated with special cases. ©2000 American Institute of Physics.
@S0022-2488~00!01202-0#

I. INTRODUCTION

Classical current distributions which do not radiate@nonradiating~NR! sources# have been
studied since the early days of electromagnetic theory~see Ref. 1 for a review and relevan
references!. Interest in such a class of sources originated from their connection with ce
aspects of classical electron theory, primarily the question of the electromagnetic self-forc
radiation reaction.2 NR sources were used in interesting papers by Schott3,4 and Bohm and
Weinstein5 and, more recently, by Goedecke,6 in efforts to model charged particles and atoms
manifestations of NR source states. In more recent years, most of the~renewed! interest in NR
sources has been linked to their role in inverse source and inverse scattering theories whe
arise as the null space of the mapping from the source~scatterer! to the field.7–9 Investigations on
this subject have addressed both scalar10–14 and electromagnetic sources,1,15–17 including both
deterministic and random sources.18–20 The vast majority of workers have focused on the sca
formulation, as opposed to the vector, electromagnetic formulation. The latter is the focus
presentation.

This paper reports a new procedure for specifying monochromatic NR current distribu
and the electric and magnetic fields they produce~NR fields!. Our analysis is based on standa
vector spherical harmonics and a Fourier–Bessel series and yields new representations a
functions for NR sources and fields confined within a spherical volume. The results derived
paper provide a systematic way to construct such wave objects and are therefore rele
computational aspects of inverse source/inverse scattering reconstruction. In fact, part
motivation for the research reported here was provided by the need for representational to
NR source components of scattering objects in certain source-type integral equation~STIE!
methods.21–23 In Ref. 23, basis functions to represent NR sources in rectangular coordinates
derived, and applied to the problem of reconstructing, via inverse scattering surveys, the
tutive properties of an unknown object. The spherical coordinate counterparts of the NR s
results in Ref. 23 were developed first for scalar, spherically symmetric sources in Ref. 1

a!Electronic mail: emarengo@ece.arizona.edu
8450022-2488/2000/41(2)/845/22/$17.00 © 2000 American Institute of Physics
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extended later to the nonspherically symmetric case in a recent contribution coauthored by
us ~E.A.M.!.24 The present work generalizes, to the electromagnetic case, that in Ref. 24.

The remainder of this paper is organized as follows. In Sec. II, localized NR current d
butions and the fields they produce are characterized as solutions of an overspecified bo
value problem of the inhomogeneous vector wave equation. This characterization is base
well-known Maxwell operator representation for NR current distributions derived first in Ref
In Secs. III and IV, a new method is developed for specifying NR current distributions and
fields confined within a spherical volume. In both sections we impose certain continuity
differentiability restrictions on NR sources and fields which can, however, be relaxed by de
with the various vector differential operators in a weak derivative or distributional sense. In
III, vector spherical harmonics and a Fourier–Bessel series are used to derive a new serie
sentation for continuous NR fields confined within a spherical volume. The analysis also
complete orthogonal sets in terms of which all such NR fields can be expanded. In Sec. I
derive a new series representation for the NR current distributions associated with the NR fi
Sec. III. Our analysis also yields complete sets for all such NR current distributions. In Sec.
general theory is applied to the special cases of spherically symmetric NR sources and NR s
with dipolar angular dependence~NR loops of current contained within a spherical region!. Sec-
tion VI contains our concluding remarks.

II. THE DEVANEY–WOLF REPRESENTATION

In Gaussian system of units, the Maxwell equations in free space reduce, under time-ha
conditions, to25

¹•E~r !54pr~r !,

¹•H~r !50,
~1!

¹3E~r !5 i
v

c
H~r !,

¹3H~r !5
4p

c
J~r !2 i

v

c
E~r !.

In Eq. ~1!, E(r ) and H(r ) are, respectively, the space-dependent parts of the time-harm
electric and magnetic fieldsE(r ,t)5R$E(r )e2 ivt% andH(r ,t)5R$H(r )e2 ivt%, whereR de-
notes the real part;r and t denote the position and time, respectively; andv is the frequency of
oscillation. In addition,c is the speed of light in vacuum and

r~r !5¹•J~r !/~ iv! ~2!

and J(r ) are, respectively, the space-dependent parts of the time-harmonic charge and
distributionsq(r ,t)5R$r(r )e2 ivt% andJ(r ,t)5R$J(r )e2 ivt%. For the sake of brevity, we sha
refer henceforth to the space-dependent partsE(r ) and H(r ) of the electric and magnetic field
E(r ,t) andH(r ,t), respectively, as ‘‘the electric and magnetic fields.’’ Similarly, we shall re
to J(r ) as ‘‘the current distribution.’’

It is a well established fact~see, e.g., Refs. 15 and 23! that any NR current distributionJNR(r )
of compact supports admits the representation~henceforth to be referred to as ‘‘the Devaney
Wolf representation’’!
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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JNR~r !5
1

4p i S c

kD @¹3¹3ENR~r !2k2ENR~r !#, ~3!

whereENR(r ) is a vector field of compact supports. Furthermore, with every NR current distr
butionJNR(r ) there is associated one and only one such fieldENR(r ) and this field is precisely the
electric field produced by the NR current distribution15 ~see also Ref. 23, pp. 1107–1108!. The
scalar counterpart of the Devaney–Wolf representation appears to have been derived
Friedlander26 and has been used extensively in inverse source/inverse scattering theory.8,10,11,23

To simplify the following analysis, in the remainder of this paper we will restrict our atten
to continuous NR electric and magnetic fields that are confined within a spherical volumeD:r
<a of radiusa.0, and that possess continuous curl and divergence on the boundaryr 5a of the
volumeD. We shall refer henceforth to NR fields obeying all of these properties as ‘‘well beh
NR fields.’’ Well behaved NR fields are seen to obey, in view of the Maxwell equations~1!, the
following overspecified boundary conditions:

ENR~r !ur 5a50,

¹3ENR~r !ur 5a50,
~4!

¹•ENR~r !ur 5a50,

¹3¹3ENR~r !ur 5a50.

The third and fourth conditions of Eq.~4! force the charge and current distributions associa
with well behaved NR fields to vanish on the boundaryr 5a of D. They thus ensure that th
associated NR charge and current distributions will possess compact support inD. The purpose of
Sec. III is to characterize all well behaved NR fields using~1! the vector spherical harmonics

Pl
m~u,f!5 r̂Yl

m~u,f!,

Bl
m~u,f!5

1

Al ~ l 11!
r̂3LYl

m~u,f!, ~5!

Cl
m~u,f!5

1

Al ~ l 11!
LYl

m~u,f!,

whereYl
m(u,f) is the spherical harmonic of degreel and orderm ~as defined in Ref. 25, pp

98–99! andL52 i r3¹ is the orbital angular momentum operator@see, e.g., Ref. 25, Eq.~16.25!#,
~2! a Fourier–Bessel series, and~3! the overspecified boundary conditions~4!. On the other hand
the goal of Sec. IV is to characterize all NR sources associated with well behaved NR fie
making use of the Devaney–Wolf representation Eq.~3!.

III. A PROCEDURE FOR SPECIFYING NR FIELDS

This section provides a new procedure for specifying well behaved NR electric fields. M
odologically, we use a spherical vector function expansion to represent any continuous
function that is confined within the spherical volumeD:r<a and vanishes on the boundaryr
5a of D. Later we impose the additional constraints¹3ENR(r )ur 5a50 and¹•ENR(r )ur 5a50.

We have the following theorem.
Theorem 1: Any continuous vector functionF(r ) that is confined within the spherical volum

D:r<a and vanishes on the boundaryr 5a of D can be represented, forr<a, in the form
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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F~r !5 (
n50

`

(
l 50

`

(
m52l

l

@a~n,l ,m;n!Pl
m~u,f!1b~n,l ,m;n!Bl

m~u,f!

1c~n,l ,m;n!Cl
m~u,f!#cn;n~r !, ~6!

wherePl
m(u,f), Bl

m(u,f), andCl
m(u,f) are defined in Eq.~5! and

cn;n~r !5
A2/a3

u j n11~bn,n!u
j nS bn,n

r

aD , ~7!

where

j n~x!5Ap

2x
Jn11/2~x! ~8!

is the spherical Bessel function of the first kind of ordern, wheren is an arbitrary non-negative
integer. The parametersbn,n are consecutive zeros ofj n(x), i.e., j n(bn,n)50, n50,1,2, . . . . The
expansion coefficientsa(n,l ,m;n), b(n,l ,m;n), andc(n,l ,m;n) are given by

a~n,l ,m;n!5E
r<a

dr r 2cn;n~r !E
4p

dVPl
m* ~u,f!•F~r !

5E
r<a

dr r 2cn;n~r !E
4p

dVYl
m* ~u,f!@ r̂•F~r !#, ~9!

b~n,l ,m;n!5E
r<a

dr r 2cn;n~r !E
4p

dVBl
m* ~u,f!•F~r !

5
1

Al ~ l 11!
E

r<a
dr r 2cn;n~r !E

4p
dV@ r̂3LYl

m~u,f!#* •F~r ! ~10!

and

c~n,l ,m;n!5E
r<a

dr r 2cn;n~r !E
4p

dVCl
m* ~u,f!•F~r !

5
1

Al ~ l 11!
E

r<a
dr r 2cn;n~r !E

4p
dV@LYl

m~u,f!#* •F~r !, ~11!

wheredV5sinududf and an asterisk denotes the complex conjugate.
Proof: The proof of this result is straightforward and will not be given in detail. The

ingredients of the proof are~1! the completeness and orthogonality of the vector functi
Pl

m(u,f), Bl
m(u,f), andCl

m(u,f) over the unit sphere~see, e.g., Ref. 27, pp. 1898–1900!; ~2! the
Fourier–Bessel series, which one can use to represent any function ofr defined over the interva
@0,a# that is at least piecewise continuous and vanishes atr 5a ~see, e.g., Eq.~11.51! in Ref. 28!;
and~3! the orthogonality property of the set of ordinary Bessel functionsJn(bn,n (r /a)) for fixed
non-negative integern and variable indexn in the r interval @0,a# @see, e.g., Eq.~ 11.168! in Ref.
28#. The latter property ensures that@see, e.g., Eq.~11.169! in Ref. 28#

E
r<a

dr r 2cn;n~r !cn8;n~r !5dn,n8, ~12!
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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wheredn,n8 is the Kronecker delta. The vector functionsPl
m(u,f), Bl

m(u,f), andCl
m(u,f) are

mutually perpendicular in view of the propertyr•L50 @see, e.g., Eq.~16.27! in Ref. 25#. They
obey the orthogonality conditions

E
4p

dVPl
m* ~u,f!•Pl 8

m8~u,f!5d l ,l 8dm,m8,

E
4p

dVBl
m* ~u,f!•Bl 8

m8~u,f!5d l ,l 8dm,m8, ~13!

E
4p

dVCl
m* ~u,f!•Cl 8

m8~u,f!5d l ,l 8dm,m8 .

Equation~13! follows from L2Yl
m(u,f)5l (l 11)Yl

m(u,f) @see, e.g., Eq.~16.24! in Ref. 25#.
Also, P0

0(u,f)51/A4p r̂ while B0
0(u,f)50 andC0

0(u,f)50.
The following result follows immediately from Theorem 1.
Theorem 2: Any well behaved NR electric fieldENR(r ) admits a representation of the form

Eq. ~6! @i.e., with F(r ) substituted byENR(r )# subject to the constraints

(
n50

`

a~n,l ,m;n!a~n;n!50,

(
n50

`

b~n,l ,m;n!a~n;n!50, ~14!

(
n50

`

c~n,l ,m;n!a~n;n!50,

where

a~n;n!5
1

u j n11~bn,n!u
d

dr
j nS bn,n

r

aD ur 5a .

Proof: That ENR(r ) is representable in the form Eq.~6! follows from Theorem 1 and the
above-imposed restrictions onENR(r ). After evaluating¹3ENR(r ) with ENR(r ) given by the
representation Eq.~6!, with F(r )5ENR(r ), we obtain, by enforcing the condition¹
3ENR(r )ur 5a50, the result

(
n50

`

(
l 51

`

(
m52l

l

@c~n,l ,m;n!a~n;n!Bl
m~u,f!2b~n,l ,m;n!a~n;n!Cl

m~u,f!#50, ~15!

where we have discarded unnecessary constants. In deriving Eq.~15! we have made use of th
results~see Appendix A!

¹3F j nS bn,n

r

aD r̂Yl
m~u,f!G52

i

r
j nS bn,n

r

aDLYl
m~u,f!,

¹3F j nS bn,n

r

aDLYl
m~u,f!G5

i l ~ l 11!

r
j nS bn,n

r

aD r̂Yl
m~u,f!1

1

r

d

dr F r j nS bn,n

r

aD G r̂
3LYl

m~u,f!, ~16!
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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¹3F j nS bn,n

r

aD r̂3LYl
m~u,f!G52

1

r

d

dr F r j nS bn,n

r

aD GLYl
m~u,f!.

Similarly, by evaluating¹•ENR(r ) with ENR(r ) given by Eq. ~6!, with F(r )5ENR(r ), while
enforcing the condition¹•ENR(r )ur 5a50, one obtains

(
n50

`

(
l 50

`

(
m52l

l

a~n,l ,m;n!a~n;n!Yl
m~u,f!50. ~17!

In deriving Eq.~17! we have made use of the results~see Appendix A!

¹•F j nS bn,n

r

aD r̂Yl
m~u,f!G5F2

r
j nS bn,n

r

aD1
d

dr
j nS bn,n

r

aD GYl
m~u,f!,

¹•F j nS bn,n

r

aDLYl
m~u,f!G50, ~18!

¹•F j nS bn,n

r

aD r̂3LYl
m~u,f!G52

i l ~ l 11!

r
j nS bn,n

r

aDYl
m~u,f!.

Finally, Eq.~14! follows from Eqs.~15! and~17! and the orthogonality relations~13!. The fourth
of the overspecified boundary conditions Eq.~4!, i.e., ¹3¹3ENR(r )ur 5a50, is automatically
satisfied so long as Eq.~14! holds, as we will see in Sec. IV.

Now, n is an arbitrary non-negative integer. In the remainder of the paper we will restric
analysis to the special casen50, although the general theory applies to arbitrary non-nega
integersn.

A. Special case: n50

For n50 we obtain from Theorem 2

ENR~r !5 (
n50

`

(
l 50

`

(
m52l

l

@a~n,l ,m!Pl
m~u,f!1b~n,l ,m!Bl

m~u,f!1c~n,l ,m!Cl
m~u,f!#cn~r !,

~19!

where we have defined

a~n,l ,m!5a~n,l ,m;n50!,

b~n,l ,m!5b~n,l ,m;n50!,
~20!

c~n,l ,m!5c~n,l ,m;n50!,

cn~r !5cn;n50~r !5A2/a3b0,nj 0S b0,n

r

aD .

For this special case we obtain

b0,n5~n11!p, ~21!
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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j 0S b0,n

r

aD5

sinS b0,n

r

aD
b0,n

r

a

~22!

and the constraint relations~14! reduce to

(
n50

`

~21!n11~n11!a~n,l ,m!50,

(
n50

`

~21!n11~n11!b~n,l ,m!50, ~23!

(
n50

`

~21!n11~n11!c~n,l ,m!50,

where we have discarded unnecessary constants.

B. An orthonormal basis for NR fields

We can now use the results established in Sec. III A to generate an orthonormal basis
well behaved NR electric fields. Following the vector counterpart of the procedure used in R
for scalar fields, we define the three sequences of NR electric fields$Ea

(p,l ,m)(r )%, $Eb
(p,l ,m)(r )%,

and$Ec
(p,l ,m)(r )%, with p51,2,. . . ; l 50,1,. . . ; andm52l ,2l 11, . . . ,l , where

Ea
(p,l ,m)~r !5Pl

m~u,f! (
n50

p

va
(p)~n!cn~r !,

Eb
(p,l ,m)~r !5Bl

m~u,f! (
n50

p

vb
(p)~n!cn~r !, ~24!

Ec
(p,l ,m)~r !5Cl

m~u,f! (
n50

p

vc
(p)~n!cn~r !,

where the expansion coefficientsva
(p)(n), vb

(p)(n), andvc
(p)(n) must obey, by analogy with Eq

~23!, the constraint equations

(
n50

p

~21!n11~n11!v j
(p)~n!50, j 5a,b,c. ~25!

Next, we impose the orthonormality conditions

E
D

d3rEj
(p,l ,m)* ~r !•Ej

(p8,l 8,m8)~r !5d l ,l 8dm,m8dp,p8 , j 5a,b,c. ~26!

In view of Eq. ~12!, Eq. ~13!, and Eq.~24!, the condition Eq.~26! yields

(
n50

p

v j
(p)* ~n!v j

(p8)~n!5dp,p8 , j 5a,b,c. ~27!
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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It follows at once from Theorem 2 and the definitions and constraints forEa
(p,l ,m)(r ),

Eb
(p,l ,m)(r ), andEc

(p,l ,m)(r ) above that any well behaved NR electric fieldENR(r ) can be written
as

ENR~r !5 (
p51

`

(
l 50

`

(
m52l

l

@ua~p,l ,m!Ea
(p,l ,m)~r !1ub~p,l ,m!Eb

(p,l ,m)~r !

1uc~p,l ,m!Ec
(p,l ,m)~r !#, ~28!

where

uj~p,l ,m!5E
D

d3rEj
(p,l ,m)* ~r !•ENR~r !, j 5a,b,c. ~29!

Thus, the vector functionsEa
(p,l ,m)(r ), Eb

(p,l ,m)(r ), and Ec
(p,l ,m)(r ), with p51,2,. . . ; l

50,1,. . . ; and m52l ,2l 11, . . . ,l , form an orthonormal basis for all well behaved N
electric fields, so long as the expansion coefficientsv j

(p,l ,m)(n,l ,m) in Eq. ~24! satisfy the con-
straint relations~25! and the orthonormality conditions~27!.

Now we note that Eqs.~25! and~27! can be jointly satisfied, as follows from the fact that ea
basis field,Ej

(p,l ,m)(r ), j 5a,b,c, is defined from Eq.~24! by a sum ofp11 linearly independent
functions, while condition~27! only involves the firstp011 of these functions, wherep0 is the
lower of p,p8. This consideration leads to the following procedure for constructing the ortho
mal set. The basis fieldsEj

(1,l ,m)(r ), j 5a,b,c, are constructed withv j
(1)(0) andv j

(1)(1) chosen so
as to obey conditions~25! and ~27! with p5p851. The basis fieldsEj

(2,l ,m)(r ), j 5a,b,c, are
constructed withv j

(2)(0) andv j
(2)(1) selected so as to satisfy Eq.~27! with p51 andp852. This

leavesv j
(2)(2) arbitrary and also leavesv j

(2)(0) andv j
(2)(1) arbitrary up to a single multiplicative

constant. The multiplicative constant andv j
(2)(2) are then uniquely determined from the constra

equation~25! and the orthonormality condition~27! with p52 andp852. The above-outlined
step-by-step procedure is elaborated in Appendix B and can be used to construct the rem
basis fieldsEj

(p,l ,m)(r ), j 5a,b,c, i.e., those corresponding top.2. By means of this procedur
we have found the coefficientsv j

(p)(n) to be defined, for arbitraryp51,2,. . . , by theexpressions

v j
(p)~0!5H (

n50

p21

~n11!21
@(n50

p21~n11!2#2

~p11!2 J 21/2

, ~30!

v j
(p)~n!5~21!n~n11!v j

(p)~0!,0,n,p, ~31!

and

v j
(p)~p!5v j

(p)~0!
~21!p11(n50

p21~n11!2

p11
. ~32!

Finally, we note that the expansion coefficientsv j
(p)(n) obey, in view of Eqs.~25! and ~27!,

the same constraint equations fori 5a, b, andc. This enables us to use Eqs.~30!–~32! to express
Eq. ~24! in the convenient form

Ea
(p,l ,m)~r !5Fp~r !Pl

m~u,f!,

Eb
(p,l ,m)~r !5Fp~r !Bl

m~u,f!, ~33!

Ec
(p,l ,m)~r !5Fp~r !Cl

m~u,f!,

where
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Fp~r !5 (
n50

p

v j
(p)~n!cn~r !, j 5a,b,c

5H (
n50

p21

~n11!21
@(n50

p21~n11!2#2

~p11!2 J 21/2

3H F( n50
p21 ~21!n~n11!cn~r !G1~21!p11

(n50
p21~n11!2

p11
cp~r !J . ~34!

Thus, we obtain from Eq.~34! and Eqs.~20! and ~21!

F1~r !5
2A2p

A5a3 F j 0S p
r

aD1 j 0S 2p
r

aD G ,
F2~r !5

3p

A35a3 F j 0S p
r

aD24 j 0S 2p
r

aD25 j 0S 3p
r

aD G ,
F3~r !5

2A2p

A105a3 F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD114j 0S 4p
r

aD G , ~35!

F4~r !5
p

A33a3 F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD230j 0S 5p
r

aD G ,
F5~r !5

6A2p

A5005a3 F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD
125j 0S 5p

r

aD155j 0S 6p
r

aD G
and so on. The result Eq.~34! is of great value since it gives explicit form to the orthonormal s

IV. A PROCEDURE FOR SPECIFYING NR CURRENT DISTRIBUTIONS

In this section we make use of the Devaney–Wolf representation Eq.~3! and the results of
Sec. III to characterize all NR current distributions associated with well behaved NR field
using the representation Eq.~3! with ENR(r ) given by Eqs.~19!–~22! subject to the constrain
conditions~23!, we obtain, forr<a, the following representation for the NR current distributio
associated with the NR electric fields in Sec. III:

JNR~r !5
1

4p i S c

kD @¹3¹3ENR~r !2k2ENR~r !#

5
1

4p i S c

kD (
n50

`

(
l 50

`

(
m52l

l

@Ra
(n,l ,m)~r !Pl

m~u,f!1Rb
(n,l ,m)~r !Bl

m~u,f!

1Rc
(n,l ,m)~r !Cl

m~u,f!#, ~36!

where
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Ra
(n,l ,m)~r !5A2/a3b0,nH a~n,l ,m!F l ~ l 11!

r 2
2k2G j 0S b0,n

r

aD
2b~n,l ,m!

iAl ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G J , ~37!

Rb
(n,l ,m)~r !5A2/a3b0,nH b~n,l ,m!F F ~n11!p

a G2

2k2G j 0S b0,n

r

aD
2a~n,l ,m!

iAl ~ l 11!

r

d

dr
j 0S b0,n

r

aD J , ~38!

and

Rc
(n,l ,m)~r !5A2/a3b0,nc~n,l ,m! j 0S b0,n

r

aD H F ~n11!p

a G2

1
l ~ l 11!

r 2
2k2J . ~39!

In deriving Eqs.~38! and ~39! we have made use of the fact that24

¹2 j 0S b0,n

r

aD5
1

r 2

d

dr F r 2
d

dr
j 0S b0,n

r

aD G52F ~n11!p

a G2

j 0S b0,n

r

aD ~40!

and

¹2Yl
m~u,f!52

L2

r 2
Yl

m~u,f!52
l ~ l 11!

r 2
Yl

m~u,f!. ~41!

Also, in carrying out the manipulations leading to Eqs.~37!–~39! we have made use of th
following results~see Appendix C!:

¹3¹3F j 0S b0,n

r

aD r̂Yl
m~u,f!G5

l ~ l 11!

r 2
j 0S b0,n

r

aD r̂Yl
m~u,f!2

i

r

d

dr
j 0S b0,n

r

aD r̂3LYl
m~u,f!,

¹3¹3F j 0S b0,n

r

aDLYl
m~u,f!G5H F ~n11!p

a G2

1
l ~ l 11!

r 2 J j 0S b0,n

r

aDLYl
m~u,f!, ~42!

¹3¹3F j 0S b0,n

r

aD r̂3LYl
m~u,f!G52

i l ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G r̂Yl
m~u,f!

1F ~n11!p

a G2

j 0S b0,n

r

aD r̂3LYl
m~u,f!.

The charge densityrNR(r ) corresponding to the NR current distributionJNR(r ) in Eq. ~36! is
evaluated by using the procedure employed to derive Eq.~18! in Appendix A. We obtain from
Eqs.~36! to ~39!
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rNR~r !5¹•JNR~r !/~ iv!

52
1

4pv S c

kD (
n50

`

(
l 50

`

(
m52l

l H 1

r 2

d

dr
@r 2Ra

(n,l ,m)~r !#2
i l ~ l 11!

r
Rb

(n,l ,m)~r !J Yl
m~u,f!,

~43!

where

1

r 2

d

dr
@r 2Ra

(n,l ,m)~r !#5A2/a3b0,nH a~n,l ,m!F F l ~ l 11!

r 2
2k2G d

dr
j 0S b0,n

r

aD2
2k2

r
j 0S b0,n

r

aD G
2b~n,l ,m!

iAl ~ l 11!

r 2

d2

dr2 F r j 0S b0,n

r

aD G J . ~44!

By referring to the constraint conditions~23!, JNR(r ) andrNR(r ), defined by Eqs.~36!–~39! and
Eqs.~43! and~44!, respectively, can be shown to vanish on the boundaryr 5a of D, as expected
from Eqs.~1! and ~4!.

We can apply now a procedure analogous to that used in Sec. III B to generate a~nonorthogo-
nal! basis for NR current distributions confined withinD. Thus, we build the three sequences
NR current distributions$Ja

(p,l ,m)(r )%, $Jb
(p,l ,m)(r )%, and $Jc

(p,l ,m)(r )% associated with the se
quences of NR fields$Ea

(p,l ,m)(r )%, $Eb
(p,l ,m)(r )%, and $Ec

(p,l ,m)(r )%, respectively, withp
51,2,. . . ; l 50,1,. . . ; andm52l ,2l 11, . . . ,l , where

Ja
(p,l ,m)~r !5

1

4p i S c

kD @¹3¹3Ea
(p,l ,m)~r !2k2Ea

(p,l ,m)~r !#

5
1

4p i S c

kDA2/a3(
n50

p

va
(p)~n!b0,nH F l ~ l 11!

r 2
2k2G j 0S b0,n

r

aDPl
m~u,f!

2
iAl ~ l 11!

r

d

dr
j 0S b0,n

r

aDBl
m~u,f!J , ~45!

Jb
(p,l ,m)~r !5

1

4p i S c

kD @¹3¹3Eb
(p,l ,m)~r !2k2Eb

(p,l ,m)~r !#

5
1

4p i S c

kDA2/a3(
n50

p

vb
(p)~n!b0,nH 2

iAl ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD GPl
m~u,f!

1F F ~n11!p

a G2

2k2G j 0S b0,n

r

aDBl
m~u,f!J ~46!

and

Jc
(p,l ,m)~r !5

1

4p i S c

kD @¹3¹3Ec
(p,l ,m)~r !2k2Ec

(p,l ,m)~r !#

5
1

4p i S c

kDA2/a3(
n50

p

vc
(p)~n!b0,nF F ~n11!p

a G2

1
l ~ l 11!

r 2
2k2G j 0S b0,n

r

aDCl
m~u,f!.

~47!
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In deriving Eqs.~45!–~47! we have made use of Eq.~42!. The expansion coefficientsva
(p)(n),

vb
(p)(n), andvc

(p)(n) are defined by Eqs.~30!, ~31!, and~32!.
Finally, by following a procedure analogous to that employed in deriving Eqs.~43! and~44!,

we find the charge densitiesra
(p,l ,m)(r ), rb

(p,l ,m)(r ), andrc
(p,l ,m)(r ) associated with the basis NR

current distributionsJa
(p,l ,m)(r ), Jb

(p,l ,m)(r ), andJc
(p,l ,m)(r ), respectively, to be given from Eqs

~45!, ~46!, and~47! by

ra
(p,l ,m)~r !5¹•Ja

(p,l ,m)~r !/~ iv!

5
1

4p
A2/a3(

n50

p

va
(p)~n!b0,nF d

dr
j 0S b0,n

r

aD1
2

r
j 0S b0,n

r

aD GYl
m~u,f!, ~48!

rb
(p,l ,m)~r !5¹•Jb

(p,l ,m)~r !/~ iv!

5
1

4pv S c

kDA2/a3(
n50

p

vb
(p)~n!b0,nH iAl ~ l 11!

r 2

d2

dr2 F r j 0S b0,n

r

aD G
1

i l ~ l 11!

r F F ~n11!p

a G2

2k2G j 0S b0,n

r

aD J Yl
m~u,f!, ~49!

and

rc
(p,l ,m)~r !5¹•Jc

(p,l ,m)~r !/~ iv!50. ~50!

V. SPECIAL CASES

In this section we examine the two simplest classes of NR current distributions that c
constructed from the results of Secs. III and IV. They are:~1! spherically symmetric NR curren
distributions, and~2! NR current distributions with dipolar angular dependence.

A. Spherically symmetric NR current distributions „case l 50…

We consider next the simple example of spherically symmetric NR current distributions.
NR current distributions are purely longitudinal, which automatically makes them NR. An
ample is provided by a spherically symmetric charge distribution undergoing oscillatory r
motion. Spherically symmetric NR current distributions can be constructed by using the
functionsJa

(p,0,0)(r ), Jb
(p,0,0)(r ), andJc

(p,0,0)(r ), corresponding to the casel 50, m50 in Eqs.~45!,
~46!, and~47!. In particular,

Ja
(p,0,0)~r !5

iv

~4p!3/2
A2/a3(

n50

p

va
(p)~n!b0,nj 0S b0,n

r

aD r̂ , ~51!

Jb
(p,0,0)(r )50 andJc

(p,0,0)(r )50. The coefficientsva
(p)(n) in Eq. ~51! are given by Eqs.~30!–~32!

while b0,n is defined by Eq.~21!. Then we obtain from Eq.~51!

Ja
(1,0,0)~r !5

iv

4
A 2

5pa3F j 0S p
r

aD1 j 0S 2p
r

aD G r̂ ,

Ja
(2,0,0)~r !5

3iv

8
A 1

35pa3F j 0S p
r

aD24 j 0S 2p
r

aD25 j 0S 3p
r

aD G r̂ ,

Ja
(3,0,0)~r !5

iv

4
A 2

105pa3F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD114j 0S 4p
r

aD G r̂ , ~52!
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Ja
(4,0,0)~r !5

iv

8
A 1

33pa3F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD230j 0S 5p
r

aD G r̂ ,

Ja
(5,0,0)~r !5

3iv

4
A 2

5005pa3F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD125j 0S 5p
r

aD
155j 0S 6p

r

aD G r̂ ,

and so on. On the other hand, the associated charge densitiesra
(p,0,0)(r ) are given from Eq.~48! by

ra
(p,0,0)~r !5

1

~4p!3/2
A2/a3(

n50

p

va
(p)~n!b0,nF2

r
j 0S b0,n

r

aD1
d

dr
j 0S b0,n

r

aD G . ~53!

Now we can represent any well behaved spherically symmetric NR current distributionJ(r )
as

J~r !5 (
p50

`

qa~p,0,0!Ja
(p,0,0)~r !, ~54!

where

qa~p,0,0!5E
D

d3rJa
(p,0,0)* ~r !•J~r !. ~55!

Finally, the NR fieldsEa
(p,0,0)(r ) produced by the NR current distributionsJa

(p,0,0)(r ) are found
from Eqs.~20!, ~24!, and~51! to be given by

Ea
(p,0,0)~r !52

4p i

v
Ja

(p,0,0)~r !. ~56!

Spherically symmetric NR current distributions are then seen to be, apart from a proportio
factor, identical to the NR fields they produce. It is not hard to show that this applies to
time-harmonic longitudinal NR current distribution.

B. NR sources and fields with dipolar angular dependence „case l 51, m 50…

We consider next the case of NR sources and fields with dipolar angular dependence, i
sources and fields described by series expansions overJc

(p,1,0)(r ) and Ec
(p,1,0)(r ), respectively,

corresponding to the casel 51, m50. Physically, NR current distributions of this kind a
similar to a loop of current confined within a spherical region. These NR current distribution
formed by superposing certain radiating magnetic dipole-like sources in a way that make
radiated fields cancel out forr .a by destructive interference, as we shall show in the followi
The electric counterpart of these NR collections of magnetic dipoles~i.e., NR collections of
electric dipoles! can be built, by duality, using the results of this section.

In this case we obtain from the Devaney–Wolf representation Eq.~3! and Eqs.~28!, ~29!, and
~47!

ENR~r !5 (
p50

`

uc~p,1,0!Ec
(p,1,0)~r !, ~57!

where
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uc~p,1,0!5E
D

d3rEc
(p,1,0)* ~r !•ENR~r ! ~58!

and

J~r !5 (
p50

`

qc~p,1,0!Jc
(p,1,0)~r ! ~59!

where

qc~p,1,0!5E
D

d3rJc
(p,1,0)* ~r !•J~r !. ~60!

By using

LY1
0~ r̂ !5 iufA 3

4p
sinu, ~61!

whereuf is the unit vector in the positivef direction, the basis fieldsEc
(p,1,0)(r ) are found from

Eqs.~33! and ~61! to be given by

Ec
(p,1,0)~r !5 iufA 3

8p
sinuFp~r !, ~62!

whereFp(r ) is defined by Eq.~34!. For example, forp51,2,. . . ,5, the basis fieldsEc
(p,1,0)(r ) are

given explicitly by Eqs.~35! and~62!. On the other hand, the associated NR current distribut
Jc

(p,1,0)(r ), defined from Eq.~47! as

Jc
(p,1,0)~r !5

1

4p i S c

ka3/2D LY1
0~u,f! (

n50

p

vc
(p)~n!b0,nF F ~n11!p

a G2

12/r 22k2G j 0S b0,n

r

aD ,

~63!

are found from Eqs.~21! and ~61! to be given by

Jc
(p,1,0)~r !5uf

c

4k
A 3

4pa3
sinu (

n50

p

vc
(p)~n!~n11!F F ~n11!p

a G2

12/r 22k2G j 0F ~n11!p
r

aG ,
~64!

where the coefficientsv i
(p)(n) are given by Eqs.~30!–~32!. By using Eq.~64! and Eqs.~30!–~32!

we obtain

Jc
(1,1,0)~r !5uf

c

2k
A 3

20pa3
sinuH F S p

a D 2

12/r 22k2G j 0S p
r

aD1F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD J ,

Jc
(2,1,0)~r !5uf

c

4k
A 3

280pa3
sinuH 3F S p

a D 2

12/r 22k2G j 0S p
r

aD
212F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD215F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD J ,
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Jc
(3,1,0)~r !5uf

c

4k
A 1

140pa3
sinuH 2F S p

a D 2

12/r 22k2G j 0S p
r

aD28F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD
118F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD128F S 4p

a D 2

12/r 22k2G j 0S 4p
r

aD J , ~65!

Jc
(4,1,0)~r !5uf

c

4k
A 1

88pa3
sinuH F S p

a D 2

12/r 22k2G j 0S p
r

aD24F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD
19F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD216F S 4p

a D 2

12/r 22k2G j 0S 4p
r

aD
230F S 5p

a D 2

12/r 22k2G j 0S 5p
r

aD J ,

Jc
(5,1,0)~r !5uf

c

4k
A 3

20020pa3
sinuH 6F S p

a D 2

12/r 22k2G j 0S p
r

aD
224F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD154F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD
296F S 4p

a D 2

12/r 22k2G j 0S 4p
r

aD1150F S 5p

a D 2

12/r 22k2G j 0S 5p
r

aD
1330F S 6p

a D 2

12/r 22k2G j 0S 6p
r

aD J ,

and so on. Finally, it follows from Eq.~50! that rc
(p,1,0)(r )50 for all p51,2, . . . .

We recall15 that a necessary and sufficient condition for a current distributionJNR(r ) localized
within D to be NR is the vanishing of the multipole moments

al ,m52
4p

l ~ l 11! S 1

cD E
D

d3rJNR~r !•$¹3@ j l ~kr !~LYl
m~u,f!!* #%50,

~66!

bl ,m5
4p i

l ~ l 11! S k

cD E
D

d3rJNR~r !•@ j l ~kr !~LYl
m~u,f!!* #50.

We show next that—as expected—the basis current distributions with dipolar angular depen
considered here obey the NR conditions~66!. By making the substitutionJNR(r )5Jc

(p,1,0)(r ), with
Jc

(p,1,0)(r ) given by Eq.~63!, into the first of the expressions~66! for the multipole moments while
using the second equation of Eq.~16! with n5l and the fact that the vector functionsr̂Yl

m(u,f),
LYl

m(u,f), and r̂3LYl
m(u,f) are mutually perpendicular one concludes thatal ,m50. Thus,

each of the basis current distributionsJc
(p,1,0)(r ) generates zero electric multipole momentsal ,m .

This is not surprising since, physically, each of the terms in the series expansion Eq.~63!, repre-
senting the basis current distributionsJc

(p,1,0)(r ), is essentially a radiating magnetic dipole. How
ever, when superposed, the fields produced by these radiating magnetic dipoles cancel
destructive interference in the region outside the source, i.e., forr .a, as we shall show next.

The magnetic multipole moments corresponding to the basis current distributionJc
(p,1,0)(r ) are

seen from Eqs.~63! and ~66! to be
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bl ,m5a23/2F (
n50

p

vc
(p)~n!b0,nI ~n;k,a!Gd l ,1dm,0 , ~67!

where we have made use of the orthogonality of the vector spherical harmonicsLYl
m(u,f) over

the unit sphere and where

I ~n;k,a!5E
0

a

dr r 2 j 1~kr !F F ~n11!p

a G2

12/r 22k2G j 0S b0,n

r

aD
5

p

2~kb0,n /a!1/2F F ~n11!p

a G2

2k2G E
0

a

dr rJ3/2~kr !J1/2S b0,n

r

aD
1

p

~kb0,n /a!1/2E0

a

dr~1/r !J3/2~kr !J1/2S b0,n

r

aD . ~68!

It is shown in Appendix D that

E
0

a

dr u~r !v~r !F r ~a22k2!2
~n22m2!

r G5aFu~a!
d

dr
v~r !ur 5a2v~a!

d

dr
u~r !ur 5aG , ~69!

where

u~r !5Jn~ar !,
~70!

v~r !5Jm~kr !,

where n,m,a,k are arbitrary real numbers. We can now obtain an expression for the int
I (n;k,a) in Eq. ~68! by using Eqs.~69! and ~70! for n53/2, m51/2, a5k, and k5b0,n /a
5 @(n11)p#/a. We obtain

I ~n;k,a!52
p

2~kb0,n!1/2
a3/2J3/2~ka!

d

dr
J1/2S b0,n

r

aD U
r 5a

. ~71!

Now we use J1/2(x)5A(2x/p) j 0(x) to express the value of the derivativ
(d/dr) J1/2(b0,n r /a)ur 5a in Eq. ~71! in terms of (d/dr) j 0(b0,n (r /a))ur 5a . We obtain

I ~n;k,a!52a3/2Ap

2k
J3/2~ka!

d

dr
j 0S b0,n

r

aD U
r 5a

52~21!n11A p

2ka
J3/2~ka!. ~72!

By substituting from Eq.~72! into expression~67! for the magnetic multipole momentsb1,0 and
imposing the constraint conditions~25! we obtain

b1,052S p3

2 D 1/2

k21/2a22J3/2~ka! (
n50

p

~21!n11~n11!vc
(p)~n!50. ~73!

Finally, it follows from Eqs.~67! and ~73! that, as expected, the magnetic multipole mome
bl ,m50 which confirms the NR nature of the basis NR current distributionsJc

(p,1,0)(r ).
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VI. CONCLUSION

The Devaney–Wolf representation for NR sources was introduced in Ref. 15 and has
played a key role in the inverse source/inverse scattering disciplines. In this paper we have
out a detailed analysis of this representation in a spherical coordinate system, obtainin
representations and basis functions for NR sources and fields associated with a given sp
domain. We have provided explicit expressions for the NR source representations and
functions in question. In so doing, we have enhanced their applicability to problems of o
reconstruction.

For the sake of clarity and to simplify some of our manipulations, we restricted our atte
to continuous NR fields obeying certain continuity and differentiability properties on the boun
r 5a of their spherical region of supportD ~well behaved NR fields!. The latter properties were
chosen in order to ensure the continuity of the associated NR charge–current distributions
boundary~such NR sources are therefore compactly supported inD, as desired!. The general
results developed in the paper can be extended to a broader class of NR sources and field
deals with the various vector differential operators in a weak derivative or distributional sens
plan to use elsewhere some of the results presented here in formulations of inverse source
scattering problems for sources/scatterers obeying prescribed continuity and differentiabilit
straints~smoothness constraints! in addition to localization constraints. A canonical example
provided by an inverse source problem wherein the unknown source is knowna priori to be
continuous on the boundaryr 5a of its region of localizationD. There the so-called minimum
energy solutions11 would not, in general, represent valid solutions~because of the continuity
constraint! and NR source components described by the results derived in this paper would
to be included.
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APPENDIX A: DERIVATION OF EQS. „16… AND „18…

Here we outline our derivation of Eqs.~16! and~18!. The first equation of Eq.~16! is obtained
via

¹3F j nS bn,n

r

aD r̂Yl
m~u,f!G52 r̂3¹F j nS bn,n

r

aDYl
m~u,f!G

52
i

r H 2 i r3¹F j nS bn,n

r

aDYl
m~u,f!G J

52
i

r
j nS bn,n

r

aDLYl
m~u,f!,

where we have usedL j n(bn,n r /a)50 and¹3 r̂50. The second of Eq.~16! is obtained via
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¹3F j nS bn,n

r

aDLYl
m~u,f!G

5¹ j nS bn,n

r

aD3LYl
m~u,f!1 j nS bn,n

r

aD¹3LYl
m~u,f!

5
d

dr
j nS bn,n

r

aD r̂3LYl
m~u,f!1 i j nS bn,n

r

aD @2r¹2Yl
m~u,f!1¹Yl

m~u,f!#

5
i l ~ l 11!

r
j nS bn,n

r

aD r̂Yl
m~u,f!1F d

dr
j nS bn,n

r

aD1

j nS bn,n

r

aD
r

G r̂3LYl
m~u,f!,

where we have used Eq.~41! and the operator identities~see Ref. 28, p. 109!

¹5 r̂
]

]r
2

i

r
r̂3L ~A1!

and

i¹3L5r¹22¹S 11r
]

]r D . ~A2!

The third equation of Eq.~16! is obtained by the manipulations

¹3F j nS bn,n

r

aD r̂3LYl
m~u,f!G5 i¹3F r j nS bn,n

r

aD¹Yl
m~u,f!G

5 i
d

dr F r j nS bn,n

r

aD G r̂3¹Yl
m~u,f!

52
1

r

d

dr F r j nS bn,n

r

aD G@2 i r3¹Yl
m~u,f!#

where we have usedr̂3LYl
m(u,f)5 ir ¹Yl

m(u,f) ~see Ref. 28, p. 109! and¹3¹50.
On using Eq.~2.45! in Ref. 28 and

L52 i r3¹5 i S uu

1

sinu

]

]f
2uf

]

]u D ,

whereuu anduf are the unit vectors in the positiveu andf directions, respectively, we obtain

¹•F j nS bn,n

r

aD r̂Yl
m~u,f!G5

1

r 2

d

dr F r 2 j nS bn,n

r

aD GYl
m~u,f!

5F2

r
j nS bn,n

r

aD1
d

dr
j nS bn,n

r

aD GYl
m~u,f!

and

¹•F j nS bn,n

r

aD r̂3LYl
m~u,f!G5

i

r sinu
j nS bn,n

r

aD F ]

]u S sinu
]

]u D1
1

sinu

]2

]f2GYl
m~u,f!.

The last expression can be simplified by using~see Ref. 28, p. 109!
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L252
1

sinu

]

]u S sinu
]

]u D2
1

sin2 u

]2

]f2

so that

¹•F j nS bn,n

r

aD r̂3LYl
m~u,f!G52

i

r
j nS bn,n

r

aDL2Yl
m~u,f!

52
i l ~ l 11!

r
j nS bn,n

r

aDYl
m~u,f!.

The above-mentioned divergence calculations correspond to the first and third equations
~18!. The second equation of Eq.~18! is obtained in a single step using the same procedure.

APPENDIX B: PROCEDURE TO EVALUATE THE COEFFICIENTS v J
„p …

„n …

It follows from Eq. ~25! that

v j
(1)~1!5 1

2v j
(1)~0!. ~B1!

On the other hand, Eq.~27! with p5p851 yields

uv j
(1)~0!u21uv j

(1)~1!u251. ~B2!

Without loss of generality we choosev j
(p)(0) to be a real and positive coefficient. Then we obt

from Eqs.~B1! and ~B2!

v j
(1)~0!52/A5,

~B3!
v j

(1)~1!51/A5.

Equation~27! with p51 andp852 yields

v j
(2)~1!522v j

(2)~0!. ~B4!

Equation~27! with p5p852 yields

uv j
(2)~0!u21uv j

(2)~1!u21uv j
(2)~2!u251. ~B5!

It follows from Eq. ~25! that

2v j
(2)~0!12v j

(2)~1!23v j
(2)~2!50. ~B6!

By solving simultaneously Eqs.~B4!, ~B5!, and ~B6! while requiring v j
(2)(0) to be real and

positive we obtain

v j
(2)~0!53/A70,

v j
(2)~1!526/A70, ~B7!

v j
(2)~2!525/A70.

APPENDIX C: DERIVATION OF EQ. „42…

The first equation of Eq.~42! is obtained from the first equation of Eq.~16!, with n50, and
Eqs.~41!, ~A1!, ~A2! via
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¹3¹3F j 0S b0,n

r

aD r̂Yl
m~u,f!G

52 i¹3F1
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j 0S b0,n

r

aDLYl
m~u,f!G

52 i¹F1

r
j 0S b0,n

r

aD G3LYl
m~u,f!2

i

r
j 0S b0,n

r

aD¹3LYl
m~u,f!

52 i
d

dr F1

r
j 0S b0,n

r

aD G r̂3LYl
m~u,f!2

1

r
j 0S b0,n

r

aD ~r¹22¹!Yl
m~u,f!

52 i H d

dr F1

r
j 0S b0,n

r

aD G1
1

r 2
j 0S b0,n

r

aD J r̂3LYl
m~u,f!1

l ~ l 11!

r 2
j 0S b0,n

r

aD r̂Yl
m~u,f!

5
l ~ l 11!

r 2
j 0S b0,n

r

aD r̂Yl
m~u,f!2

i

r

d

dr
j 0S b0,n

r

aD r̂3LYl
m~u,f!.

The second equation of Eq.~42! follows from Eq.~16!, with n50, and Eq.~40! via

¹3¹3F j 0S b0,n

r

aDLYl
m~u,f!G

5¹3H i l ~ l 11!

r
j 0S b0,n

r

aD r̂Yl
m~u,f!

1
1

r

d

dr F r j 0S b0,n

r

aD G r̂3LYl
m~u,f!J

52
i

r F i l ~ l 11!

r
j 0S b0,n

r

aD GLYl
m~u,f!2

1

r

d

dr H r F1

r

d

dr F r j 0S b0,n

r

aD G G J LYl
m~u,f!

5
l ~ l 11!

r 2
j 0S b0,n

r

aDLYl
m~u,f!2

1

r

d2

dr2 F r j 0S b0,n

r

aD GLYl
m~u,f!

5H F l ~ l 11!

r 2
2¹2G j 0S b0,n

r

aD J LYl
m~u,f!

5H F ~n11!p

a G2

1
l ~ l 11!

r 2 J j 0S b0,n

r

aDLYl
m~u,f!.

The third equation of Eq.~42! follows from Eq.~16!, with n50, and Eq.~40! via

¹3¹3F j 0S b0,n

r

aD r̂3LYl
m~u,f!G

52¹3H 1

r

d

dr F r j 0S b0,n

r

aD GLYl
m~u,f!J

52
i l ~ l 11!

r H 1

r

d

dr F r j 0S b0,n

r

aD G J r̂Yl
m~u,f!2

1

r

d

dr H r F1

r

d

dr F r j 0S b0,n

r

aD G G J r̂

3LYl
m~u,f!
1 Nov 2006 to 150.135.222.53. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



th
.

g

essel

nless

ere,

.

ntennas

pt. Soc.

alar

omatic

865J. Math. Phys., Vol. 41, No. 2, February 2000 A new procedure for specifying nonradiating . . .

Downloaded 2
52
i l ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G r̂Yl
m~u,f!2¹2 j 0S b0,n

r

aD r̂3LYl
m~u,f!

52
i l ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G r̂Yl
m~u,f!1F ~n11!p

a G2

j 0S b0,n

r

aD r̂3LYl
m~u,f!.

APPENDIX D: EVALUATION OF THE INTEGRAL IN EQ. „69…

Our starting point is the Bessel equations

xu9~x!1u8~x!1x~a22n2/x2!u~x!50,
~D1!

xv9~x!1v8~x!1x~k22m2/x2!v~x!50,

where

u~x!5Jn~ax!,
~D2!

v~x!5Jm~kx!,

wheren,m,a,k are arbitrary real numbers and the primes (8) are used to denote derivatives wi
respect tox. By multiplying the first equation of Eq.~D1! by v(x) and the second equation of Eq
~D1! by u(x) we obtain

xv~x!u9~x!1u8~x!v~x!1x~a22n2/x2!u~x!v~x!50 ~D3!

and

xv9~x!u~x!1v8~x!u~x!1x~k22m2/x2!u~x!v~x!50. ~D4!

By integrating both sides of Eq.~D3! and ~D4! from x50 to x5a and subtracting the resultin
equations one obtains after some manipulations the desired result Eq.~69!. The procedure is
similar to that used in Ref. 28, pp. 591–592, to derive the orthogonality relation for the B
functions.
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