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Abstract—We examine the performance of a rate-0.9 struc-
tured irregular repeat-accumulate (S-IRA) code on a perpen-
dicular magnetic recording (PMR) channel with media noise.
To account for the presence of data-dependent media noise, a
pattern-dependent-noise-predictive (PDNP) channel detector is
employed, in which the prediction filters are trained using the
LMS algorithm. We compare the error rate performance of the
S-IRA code with that of a Reed-Solomon (RS) code of the same
length and rate, with the PDNP detector present in both cases.
Our results show that the S-IRA code achieves a gain of over 1
dB relative to the RS code for sector error rates down past 10−4,
but only if the columns of its H-matrix are properly permuted.
We have also estimated that the linear density gain attainable
by the S-IRA code relative to the RS code is about 8% for the
operating point we have chosen.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have been demon-
strated to have near-capacity performance on many channels
in the past decade [1][2][3]. Because of this, their potential has
been studied for many applications, including wireless com-
munication channels [4][5] and magnetic recording channels
[6]-[11]. Their effectiveness for magnetic storage is particu-
larly challenging due to: the binary-input constraint, severe
intersymbol interference, colored noise, including pattern-
dependent noise, and a requirement for a very low sector error
rate.

In the present paper, we examine the applicability of LDPC
codes to magnetic storage via computer simulations using a
perpendicular recording model with pattern-dependent media
noise. The application of LDPC codes to perpendicular mag-
netic recording has been studied in prior works [8]-[12], but
none of these papers contain all of the following components:
• a length N = 4551, dimension K = 4096, rate-0.9 LDPC

code that is a structured irregular repeat-accumulate (S-
IRA) code

• comparison to a Reed-Solomon (RS) code of the same
length and rate, both in terms of SNR gain and user
density gain

• a PR1 partial response equalization target
• a pattern-dependent noise-predictive (PDNP) soft-output

partial response detector
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• a discussion of the need for an interleaver or, equivalently,
permuted columns in the code’s parity-check matrix H.

• media-noise percentages of 5%, 50%, and 95%
The results in this paper allow us to evaluate the potential

gain offered by an LDPC code relative to a RS code. It
also demonstrates the importance of the proper ordering of
H matrix columns, an issue also considered in [13].

The paper is organized as follows. In Section II, we describe
the discrete-time perpendicular recording channel model and
the receiver front end. In Section III, we discuss the prediction
filter design and the soft-output PDNP channel detector that
attempts to whiten the noise. In Section IV, we give some de-
tails about the S-IRA code we used and discuss the importance
of H matrix column permutations. In Section V, we compare
the performance of the S-IRA code with the RS code under
different media noise conditions. Section VI presents some
concluding remarks.

II. PERPENDICULAR MAGNETIC RECORDING CHANNEL
MODEL

The discrete-time channel model used in this paper is an
adaptation to perpendicular recording of the Lorentzian chan-
nel model by J. Moon [14]. To derive the discrete-time model,
consider the continuous-time model in Fig. 1. The transition
response is given in [15] by h(t, w) = Vmax· erf{ 0.954t

w },
where Vmax is its peak amplitude (−Vmax is its minimum
amplitude) and w = T50 is the width of the transition response
measured from −Vmax/2 to Vmax/2.1 Thus, h(t, w) is the
response of the channel to the transitions in the recorded bits,
representable as 1

2 (ak − ak−1) ∈ {0,±1}, where the code
bits ak ∈ {−1, 1}; hence, the presence of the discrete-time
differentiator (1−D)/2 in Fig. 1. The transitions suffer from
random fluctuations in position (∆tk) and width (∆wk), so
that the readback signal has the form

r(t) =
∑

k

1
2
(ak − ak−1)h(t− kTc −∆tk, w + ∆wk) + e(t),

(1)
where Tc is the channel bit spacing; e(t) is additive white
Gaussian (electronics) noise with power spectral density N0;

1The continuous-time parameter t here is normalized by the reciprocal
of the head-medium velocity.
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Fig. 1: Continuous-time channel model and receiver front end.
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Fig. 2: Second-order continuous-time channel model.

the transition position deviation (“jitter”) ∆tk is modeled as
truncated Gaussian (|∆tk| ≤ Tc/2) with variance σ2

t ; and the
width deviation ∆wk is single-sided Gaussian, with Gaussian
variance σ2

w. The normalized linear channel bit density is given
by Dc = T50/Tc and the user bit density is given by Du =
RDc = RT50/Tc, for code rate R.

By ignoring the width deviation ∆wk (jitter is the dominant
source of media noise) and approximating h(t−kTc−∆tk, w)
by three Taylor series terms, we may write

r(t) ≈
∑

k

ak
1
2
p(t− kTc)

+
∑

k

1
2
(ak − ak−1)∆tk

∂

∂t
h(t− kTc)

+
∑

k

1
2
(ak − ak−1)

(∆tk)2

2
∂2

∂t2
h(t− kTc) + e(t), (2)

where p(t) = h(t)−h(t−Tc) is the dibit response and where
we dropped the dependency of h(t, w) on w. Noting that
the last three terms in (2) represent noise, the corresponding
second-order channel model is shown in Fig. 2.

Let Rp(D) denote the overall noiseless transition response
from the channel input up to the sampler. The matched filter
(MF) is matched to 1

2p(t) and the discrete-time partial re-
sponse equalizer Q(D) shapes the overall noiseless transition
response into the prescribed target response F (D) = 1 + D.
The equalizer is designed using the MMSE criterion, i.e.,
Q(D) = F (D)/[Rp(D)+N0]. Let the combined discrete-time
response of the first-order derivative filter and the MF be de-
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Fig. 3: Second-order discrete-time channel model.

noted by R
(1)
hp (D) and let R

(2)
hp (D) represent the second-order

derivative filter counterpart. Then the discrete-time model for
the equalizer output rk given channel input ak and electronics
noise ek is given in Fig. 3.

The signal-to-noise ratio (SNR) in this paper is defined with
respect to the electronics noise: SNR = V 2

max/N0. A given
simulation data point will be specified as a function of this
SNR and the jitter percentage, defined as

JP =
σ2

t Et/2
N0 + σ2

t Et/2
· 100%, (3)

where Et =
∫

[∂h
∂t ]2dt. The jitter percentage is measured at the

input to the equalizer. Because the second-order jitter power is
much smaller than the first-order jitter power, it is not included
in the JP definition.

III. CHANNEL DETECTOR

Using a standard BCJR detector designed under the AWGN
assumption is far from optimal due to the presence of
equalizer-colored noise and pattern-dependent noise. One
straightforward way to improve the performance is to whiten
the noise using noise-predictive filters which modify branch
metric computations with the help of PDNP filters. A PDNP
maximum-likelihood (ML) detector based on linear prediction
theory for the underlying signal-dependent noise was proposed
in [16]. Also in [17], the PDNP technique was applied to a
belief propagation-based sub-optimal detector. In this section
we review some of the principles of the PDNP-ML detector,
particularly how they apply to our situation.
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Denote the channel input bit sequence by a, the equalized
noiseless channel output sequence by s(a), and the noise se-
quence by n(a), all of length N . The equalized channel output
sequence is r(a) = s(a)+n(a) where the ith signal sample is
given by si =

∑I
j=0 fjai−j and the equalization target F (D)

has I + 1 coefficients f0, f1, · · · , fI . The ML detector finds
the bit sequence a that maximizes the conditional pdf

N∏

i=1

p(ri|ri−1, · · · , r1;a)

=
N∏

i=1

1√
2πσp(a)

exp

{
− [ri − si − n̂i(a)]2

2σ2
p(a)

}
, (4)

where n̂i(a) is the optimal linear prediction of the ith noise
sample and σ2

p(a) is the prediction error variance. From linear
prediction theory, if the noise is Markov of order Q, it can
be perfectly modeled using a Qth-order autoregressive (AR)
process and perfectly whitened using an optimal prediction
filter with Q taps. For the media noise model we are consid-
ering, though the underlying Markov order is unknown, it has
been shown that the optimal predictors can be approximated
using finite-length predictors of order L [16]. Assuming the
prediction filter taps are given by q(a) = [q1(a), . . . , qL(a)]
for each bipolar N -sequence a, the ith predicted noise sample
is

n̂i(a) =
L∑

l=1

ql(a) ·ni−l(a) =
L∑

l=1

ql(a) · [ri−l−si−l(a)]. (5)

q(a) and σ2
p(a) can be obtained by using the Yule-Walker

equation from prediction theory.

Accommodating all bipolar N -sequences a to realize the
above algorithm in a PDNP-BCJR detector is not feasible.
Thus, in practice a finite segment of a is utilized. Let ã =
{ai−P , . . . , ai, . . . , ai+F } be the finite segment of a at time
index i, with P past bits and F future bits. Therefore, there
are 2P+F+1 input patterns, prediction filters, and prediction
error variances. q(ã) and σ2

p(ã) can be obtained as described
above.

The resulting PDNP-BCJR detector operates on a trellis
expanded from the trellis of the PR target, using (4) to
calculate the branch metrics. The conventional BCJR detec-
tor has a trellis with 2I states with each state labeled by
[ai−I , . . . , ai−1]. For the PDNP-BCJR detector, the number of
states is expanded to 2max(P,I+L)+F and each state is labeled
by [ai−max(P,I+L), . . . , ai, . . . , ai+F−1].

By solving the Yule-Walker equation for AR modeling
which involves inversion of the correlation matrices obtained
from real data through sample statistics, the predictor tap
weights and the error variances can be obtained. But without
a complete knowledge of the noise statistics and a confident
noise model, matrix inversion may cause stability problems. In
[16], the authors proposed a method which applies the LMS
algorithm to train the predictor taps and error variances from
real data.

In the LMS algorithm, the filter taps are trained by the
following recursive equation:

qk+1(ã) = qk(ã) + 2µ · ek(ã) · nk(ã), (6)

where nk(ã) = [nk−1(ã), . . . , nk−L(ã)] and µ is the step size
that controls the convergence speed. Throughout this paper,
the channel is equalized to a PR1 target (I = 1) and F = 1,
P = I + L.

For each channel condition characterized by SNR and JP ,
a proper µ is chosen to make the filters converge within 400
training samples. The length of prediction filters L is deter-
mined by training the filters under various channel conditions
with µ = 0.02, Dc = 1.67 and L ∈ {0, 1, · · · , 6}. We found
that L = 3 is large enough to achieve a sufficiently low MSE.
Therefore, for the rest of the paper, we set L = 3 and use
2I+L+F = 25 predictors.

IV. THE S-IRA LDPC CODE

The LDPC code-based simulation model is depicted in
Fig. 4. The LDPC code we use in this paper is a rate-0.9
(4551, 4096) structured irregular repeat-accumulate (S-IRA)
code [18]. The nominal parity-check matrix H for the LDPC
code has the form H = [H1 H2], where H1 consists of an
array of circulant permutation matrices and H2 is an M ×M
“dual-diagonal” matrix (M is the number of parity bits):

H2 =




1
1 1

...
1 1

1 1




. (7)

For this code, H1 has column weight 5.
The interleaver Π and de-interleaver Π−1 in Fig. 4 are

necessary to mitigate the bursty nature of the PDNP-BCJR
detector output. This characteristic can be seen in the auto-
covariance function of the log likelihood ratio (LLR) magni-
tudes at the input to the LDPC decoder. Fig. 5 shows three
interleaver situations for the worst-case recorded sequence,
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Fig. 5: Covariance functions of LDPC decoder inputs.

a = [+1 −1 +1 −1 ...], on the 95% JP channel. Our
simulations used a uniform parity insertion interleaver, which
spreads the parity bits evenly among the information bits with
the purpose of reducing the correlations of the LDPC code’s
parity bits (which correspond to low weight columns). There-
fore, to show the effect of this interleaver on the parity bits,
Fig. 5 plots the covariance of detector output LLR magnitudes
corresponding to the parity bits after de-interleaving.

The interleaver and de-interleaver are conceptual quantities
and can in practice be realized by re-ordering the columns of
the LDPC code parity-check matrix. It is possible to select the
column permutation (equivalently, select Π) to accommodate
both the presence of a modulation code and soft decoding [13].

A reliable way of characterizing the ability of a code
to combat correlated noise or correlated fading is via the
parameter Lmax [19]. Given an LDPC code’s H matrix,
Lmax is defined to be the longest erasure burst length that is
guaranteed to be correctable by the iterative erasure decoding
algorithm based on that matrix. For the code described above,
we found that Lmax = 181 erasures, an efficiency of only
181/455 = 0.39. Lmax can be greatly improved by permuting
the columns of H so that the “weak” parity columns (i.e.,
the submatrix H2) do not all occur together. For example,
the uniform parity insertion interleaver yields Lmax = 239
(efficiency 0.52). We also considered a random interleaver for
which Lmax = 300 (efficiency 0.66).

V. PERFORMANCE RESULTS

In this section, we present performance results on the PMR
channel with recording density Ds = 1.67 by simulating the
second-order discrete-time model described in Section II. To
make a fair comparison between the LDPC code in Section
IV with RS codes, we simulate a rate-0.9 RS code (455, 410)
with symbols over GF (210). Since the code rate is fixed to
R = 0.9 for both codes, the user density Du = 1.5.
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Fig. 6: Performances on PMR channel with 5% jitter noise.

The LDPC decoder is a sum-product algorithm (SPA)
decoder which updates soft information iteratively based on
the modified H matrix corresponding to the uniform parity
insertion interleaver. One can also use a more carefully de-
signed structured column permutation for S-IRA codes [13]
to achieve better performance. Although most of our results
focus on the parity-insertion interleaver, later in this section
we compare the performance of this interleaver to the random
interleaver and to no interleaving.

As indicated in the system model of Fig. 4, we do not feed
soft information back to the PDNP BCJR detector in order to
maintain detector/decoder complexity to a manageable level.
An additional gain on the order of 0.5 dB is possible if such
global iterations are used, but instead we use 50 local iterations
at the S-IRA SPA decoder. The performance measures used are
frame error rate (FER) and bit error rate (BER), but further
clarification is necessary since FER can correspond to both
systematic bits and parity bits, or to only systematic bits. We
denote by FERall the probability that a decoded code block
contains one or more bit errors anywhere in the block and by
FERsys the probability that a decoded code block contains one
or more errors among the systematic bits. The latter definition
is applicable to recording devices for which an outer CRC
code is available so that the LDPC information word is a
CRC word. Whereas the parity bits for IRA codes are more
susceptible to error than the systematic bits, this is not the
case for most regular LDPC codes or for RS codes, for which
FERall ≈ FERsys. The parity bits are more susceptible to
error because they correspond to the weight-two columns of
H which have the effect also of improving the “decoding
threshold” (allowing operation in lower SNR).

Figures 6, 7, and 8 present the performance results for the
S-IRA and RS codes on the PMR channel with Du = 1.5
and with jitter percentages of 5%, 50% and 95%, respectively.
The parity-insertion column permutation for the S-IRA code
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Fig. 7: Performances on PMR channel with 50% jitter noise.

was used in all cases in these figures. For 5% jitter noise,
we see that the gain from the PDNP-BCJR detector over the
conventional non-predictive BCJR detector for the S-IRA code
is about 3.7 dB at FERsys = 10−5, and the S-IRA code
provides a gain of 1 dB over the RS code. With 50% jitter
noise, the PDNP-BCJR detector provides a 2.4 dB gain at
FERsys ∼ 10−5 over the traditional BCJR detector for the S-
IRA code, and the S-IRA code provides a gain of about 1.3
dB over the RS code at FERsys = 10−4. For 95% jitter noise,
the gain of PDNP detector is 2.5 dB at FERsys ∼ 10−4 and
the S-IRA code offers a 1.1 dB gain at FERsys ∼ 10−4.

As observed from the figures, the PDNP-BCJR detector
achieves the largest gain over the non-predictive BCJR detec-
tor with 5% jitter noise. This shows that the PDNP detector is
more effective at whitening the colored noise due to electronics
noise than that from jitter noise. In support of this statement,
in Fig. 9 the correlation function at the detector input for the
JP = 5% case has larger tails than that for the JP = 95%
case. We note that the plot is based on the worse-case data
sequence and the same total noise power, with electronics
noise dominating in the JP = 5% case. We conjecture that
increasing the detector parameters F and P would improve
the performance of the JP = 95% case, but this will require
further work.

Notice in all three figures the FERall curves suffer from a
floor. Most of the floor-inducing frame errors are attributable
to errors in the parity bits. The FERall error-rate floor can be
lowered by using a more random H column permutation. In
Fig. 10, we compare the performance of a computer-generated
random interleaver (equivalently, column permutation) with
the parity-insertion permutation and with no permutation on
the 95% jitter channel. It is observed that the random permuta-
tion does indeed lower the floor significantly. Further research
would be required to understand if an optimal permutation can
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be designed.
We remark that the S-IRA code used in this paper has a very

low error-rate floor on the binary-input AWGN channel: the
FERall curve starts to floor at 10−7 [20]. It is the presence of
data-dependent correlated media noise and the bursty nature of
the detector that raises the floors. The error-rate floor has been
one of the major concerns regarding the application of LDPC
codes in magnetic recording. However, when an outer CRC
code is available so that FERsys is the appropriate performance
measure, then it appears that there is no floor down to at
worst FERsys ∼ 10−6. (Simulating very much below this
level would take many weeks.) Additionally, the floors can
be improved by using a very high-rate outer RS or BCH
code since the frame errors in the floor region usually have
only a few bit errors [20]. Another approach to improve the
LDPC floor is to design codes and/or permutations which yield
improved performance in the presence of correlated noise.

While the results in Figures 6, 7 and 8 demonstrate that
a coding gain of a least 1 dB is attainable by the S-IRA
code relative to the RS code, it is not clear how this SNR
gain translates to user density gain. Toward this end, for the
JP = 95% case, we increased the user density in our S-IRA
simulator until its FERsys curve coincided with that of the RS
code. Specifically, we increased the user density Du from 1.5
to 1.62 and simulated the same S-IRA code again under the
same channel conditions as the 95% jitter noise simulations in
Fig. 8. In attempting to make a fair comparison between the
two user densities, we fix the jitter noise variance σ2

t for the
two densities for a given SNR. Since the transition response is
fixed (so is Et) and JP = 95%, for every given SNR point, σ2

t

can be calculated from (3). Fig. 11 shows that the S-IRA code
with Du = 1.62 has comparable performance to the RS code
with Du = 1.5. Hence, the 1 dB gain in error rate performance
translates to a (1.62−1.5)/1.5 = 8% increase in user density.
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VI. CONCLUSION

In this paper, we evaluate the performance of a S-IRA LDPC
code on perpendicular magnetic recording channel using a
pattern-dependent noise-predictive BCJR detector. From sim-
ulations, we show that the S-IRA code provides an SNR gain
of at least 1 dB which amounts to a user density gain of 8%.
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