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Abstract

In this paper, we exploit recent advances in full-duplex (FD) communications and self-interference suppression (SIS) to improve
the performance of an opportunistic spectrum access (OSA) system. Specifically, we consider secondary users (SUs) that are equipped
with SIS-capable radios. These radios can operate in a simultaneous transmission-and-sensing (TS) mode to improve the detection
probability of primary users (PUs), or in a simultaneous transmission-and-reception (TR) mode to enhance the SU throughput. The
radios can also revert to the standard sensing-only (SO) mode or perform channel switching (CS). The competing goals of the
full-duplex TS and TR modes give rise to a spectrum-awareness/efficiency tradeoff, which can be optimized by allowing the SU link
to adaptively switch between various modes, depending on the forecasted PU dynamics. In practice, SIS is imperfect, resulting in
residual self-interference that degrades the sensing performancein the TS mode. Accordingly, we adopt a waveform-based sensing
approach, which allows an SU to detect (with high accuracy) the PU signalin the presence of self-interference (and noise). In such
a context, we analyze the sensing performance in the TS mode by deriving the false-alarm and detection probabilities. We also
derive the throughput and the PU-SU collision probability for the TS and TRmodes, which we then use to establish an optimal
mode-selection strategy that maximizes an SU utility function subject to a constraint on the PU collision probability. This utility
rewards the SU instantly for successful communication (throughput), but also includes a long-term component that depends on the
outcomes of the action taken by the SU (the selected mode from the set{TR, TS, SO, CS}). Our results show that the proposed
adaptive strategy results in about50% reduction in the collision probability and twice the throughput of the half-duplex case. The
results also indicate that the SU should operate in the TR mode if it has a high belief regarding the PU idleness over a given channel.
As this belief decreases, the SU should switch to the TS mode to monitor any change in the PU activity while transmitting. At very
low belief values, where the PU is highly likely to be active, the SU should switchto another channel.
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Self-interference cancellation, full-duplex communications, opportunistic spectrum access, cognitive radios, spectrum aware-
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I. I NTRODUCTION

Until recently, the idea of simultaneous transmission and reception over the same channel (STAR-S) was not deemed possible.
The reason is that while a wireless device is receiving data,its own transmission produces strong self-interference, which
makes the decoding process impossible. One way to solve thisproblem is to suppress the node’s self-interference. However,
traditional self-interference suppression (SIS) techniques (e.g., RF and digital interference cancellation) have not been sufficient to
suppress the self-interference signal so that STAR-S can take place. Even simultaneous transmission and reception over different
frequencies (STAR-D) is not straightforward, particularly when the transmit and receive bands are not sufficiently separated (in
practice, filters are not ideal, and sidelobes/spectral leakage is deemed to occur). In this paper, we focus on STAR-S (the more
challenging case), which we simply refer to as full-duplex (FD) communication.

By combining novel and traditional SIS techniques, the authors in [1]–[5] have demonstrated the feasibility of FD com-
munication. In [1], the authors proposed an antenna-based SIS technique in which two properly placed transmit antennasand
one receive antenna are used to nullify self-interference at the receiving antenna. This technique has three main drawbacks.
First, it generates additional interference in the far field, i.e., it increases the interference at the receivers of other nodes in the
neighborhood. Second, it has a bandwidth limitation, as antenna placement is determined by a single carrier frequency.However,
wireless transmissions typically involve a band of frequencies. Third, the peer node may fall into a deep fading region due to
the appearance of destructive interference points in the far field. These concerns were addressed in [2], where the authors used
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only two antennas and proposed an interference cancellation mechanism based on signal inversion. Recently, the authors in [6]
proposed an FD system for 802.11ac devices using only one antenna. The main objective of these works is to bring down a
node’s self-interference to the noise level. As an example,a WiFi device has to suppress around 110 dB of its own transmitted
signal (assuming a transmit power of 20 dBm) to reduce it to the noise level [6].

In parallel with the developments in SIS techniques, there have been a number of works that exploit SIS/FD capabilities in
network-protocol design, in the contexts of MIMO communications [7]–[10] and dynamic spectrum access (DSA) [11], [12].
Assuming multiple antennas per node, the authors in [10] addressed the issue of choosing between MIMO and FD, as both need
multiple antennas. They showed that the optimal strategy isa combination of both schemes. In [13] the authors studied power
control in wireless FD devices with imperfect SIS. They developed an optimal dynamic power allocation scheme that maximizes
the sum-rate of a number of users.

In this paper, we consider a DSA system, where secondary users (SUs) have imperfect SIS capabilities, allowing them to
suppress a fraction of their self-interference. This partial SIS capability can be exploited to support simultaneous transmission-
and-sensing (TS) by the SU so as to reduce the collision probability with primary users (PUs), or simultaneous transmission-and-
reception (TR) to enhance the SU throughput. The ability to operate in either mode gives rise to a spectrum awareness/efficiency
tradeoff. More specifically, an SU may improve the spectrum utilization by operating in the TR mode, which will dramatically
increase the throughput of the SU link. On the other hand, theSU may exploit its SIS capabilities in the TS mode, enabling it to
monitor the PU activity while transmitting and to quickly vacate the channel whenever such activity is detected. This motivates
the need for an “optimal“ transmission-sensing-receptionstrategy introduced in this paper.

In a practical DSA system, SUs may have to switch to a different operation mode rather than the TS and TR modes to either
avoid collision with PUs or to exploit another opportunity on a different channel. Specifically, since the sensing efficiency in
the TS mode decreases as the SIS efficiency decreases, in somecases the SU needs to operate in a sensing-only (SO) mode to
achieve an acceptable sensing outcome. Also, having a relatively high belief that the PU is active may return a high collision
probability in the TS/TR modes. In that case, the SU should stop transmission and just monitors the channel. Consideringthe
availability of multiple idle channels, an SU may decide to perform channel switching (CS) if the PU is more likely to return
to the current operational channel.

An important aspect of the system design is to determine the strategy followed by SUs to adaptively switch between different
modes (TR, TS, SO, and CS), considering the highly dynamic spectrum environment and the possibility of colliding with PUs.
Our objective is to find the optimal strategy that maximizes the SU’s utility (e.g., goodput) under a constraint on the PU collision
probability. This strategy is found to be threshold-based,with thresholds that depend on the SU’s belief about the PU’sstate.
Based on this belief, the SU will take an optimal action and then update this belief according to the outcome of the action taken.
The outcome is ACK/NACK in case of a transmission decision, free/busy in case of a sensing decision, and decoded/undecoded
in case of reception. The SU may also get a combination of these outcomes in the TR and TS modes.

The problem of finding the optimal access strategy at an SU device has been studied before [14]–[17], but for half-duplex (HD)
devices. In [14], the authors considered the quickest detection problem of the PU idle period when multiple PUs are present.
In their scheme, the SU chooses an action from the following:spectrum sensing, channel switching, or data transmission. The
authors in [15] studied the sensing-throughput tradeoff and proposed a scheme in which the SU can have multiple consecutive
sensing or transmission periods, determined according to the SU’s belief about the state of the PU. In their scheme, the SU has
only two options: spectrum sensing or data transmission. The objective was to maximize the SU’s utility, which rewards the SU
for successful transmission and penalizes it for collisions. Another adaptive scheme was proposed in [17], where a secondary
transmitter adapts its sensing and transmission durationsaccording to its belief regarding the PU state of activity. In this case,
the SU can either stay idle, sense the spectrum, or transmit its data. The motivation behind the “staying idle“ action wasto save
energy when the probability that the PU is idle is very low.

In [11], we proposed applying SIS/FD in DSA systems and introduced the TR and TS modes. However, our treatment was
limited to energy-based spectrum sensing (for the TS mode).Energy detection cannot differentiate between a PU signal and
a residual self-interference signal. Hence, it is inefficient under low SIS capabilities. This problem is unlikely to happen in
waveform-based sensing, whereby the sensed waveform is contrasted with well-known patterns (pilots, preambles, etc.) of the
PU signal. In [11], we also studied the traditional sensing-throughput tradeoff for the TR and TS modes and determined the
optimal sensing and transmission durations for the SU that maximizes its throughput subject to a constraint on the SU/PU
collision probability. However, this paper is different because in [11], we only considered the TR and TS modes. Unlike this
paper, we have not discussed in [11] the belief update process, the outcomes of different modes, the utility formulation, or the
derivations of the optimal strategy.

The contributions of this paper are as follows. First, we consider a DSA system where SUs are partially capable of SIS.
We analyze the waveform-based spectrum sensing technique for the TS mode, which is crucial especially at imperfect SIS,and
derive the false-alarm and detection probabilities. Second, we derive the probability of successful transmission forthe SU, its
achievable throughput, and the PU collision probability inboth TS and TR modes, taking into consideration that SIS may be
imperfect and assuming different channel conditions at thecommunicating SUs. Third, we propose an optimal adaptive strategy
at the SU for switching between the TR, TS, SO, and CS modes. The criteria for choosing the optimal action is to maximize the
SU’s utility subject to a constraint on the PU collision probability. To achieve this goal, we formulate the problem as a partially
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Fig. 1. System model of our DSA network, where SUs are equippedwith SIS/FD capabilities and opportunistically access thespectrum of PUs. An SUi
consists of a transceiver (SiTX acts as a transmitter, while SiRX is the receiver) with a given SIS capability factorχi.

observable decision process and analyze the four actions byformulating the myopic and long-term rewards. To the best ofour
knowledge, this is the first paper to address the optimal transmission-reception-sensing strategy for SUs with imperfect FD/SIS
capabilities.

The rest of the paper is organized as follows. We describe thesystem model in Section II. In Section III, we derive the
false-alarm and detection probabilities under waveform-based sensing for the TS mode and compare them with the HD case.
We formulate the SU decision process and obtain the optimal adaptive SU spectrum access strategy in Section IV. Finally,we
present our numerical results and conclude the paper in Sections V and VI, respectively.

II. SYSTEM MODEL

As shown in Figure 1, we consider a DSA network, where SUs are opportunistically operating on the licensed PUs channels.
PUs can access the available channels at will, and are not aware of the SU’s presence. The PU activity is modeled as an alternating
ON/OFF random process. Let the OFF and ON durations be denoted by X andY , with corresponding probability distributions
fX andfY , and means̄X and Ȳ , respectively. These distributions are assumed to be independent and can be constructed at the
SU through measurements [18], [19].

Each secondary device is capable of partial or complete SIS,enabling it to operate in the TS and TR modes, along with the
SO and CS modes. We useχi to quantify the SIS capability of theith SU, χi ∈ [0, 1]. Specifically,χi is the ratio between
the residual self-interference signal and the original one. If χi = 0, the node can totally suppress the self-interference signal
(i.e., perfect SIS); otherwise, it can only suppress a fraction 1− χi of its self-interference (i.e., imperfect SIS). As an example,
for a residual self-interference signal of power (in watts)equal to1% of the power of the original self-interference signal, this
translates intoχi =

√
0.01 = 0.1. χi may differ from one node to another, depending on the employed SIS technique.

We assume that at a given time instant, and a given frequency,only one SU link is active in a given geographical area. Hence,
we focus on the case where different SU links cannot interfere with each other, for example, by implementing an appropriate
channel access scheme. Existing techniques can be used to tackle the issue of secondary-secondary interference (see [20], for
example), and will not be addressed here. LetPi andσ2

i denote the transmission power and noise variance at nodei, and lethij

be the channel gain between transmitteri and receiverj. Although the opportunistic spectrum consists of multiplechannels, the
SU can only monitor/operate on one channel at a time. Sensingmultiple channels has already been discussed in several papers,
and can be easily incorporated [21].

To sum up how our system works, consider the secondary link shown in Figure 1, which consists of two nodes, SU1 and SU2.
SU1, for example, starts its communication with its peer with aninitial belief value. Depending on the adaptive access strategy,
the SU chooses the optimal action that maximizes its utilitywhile maintaining a certain QoS threshold for the PU communication.
The action’s outcome may be ACK/NACK in case of transmission, free/busy in case of sensing, and decoded/undecoded in case
of reception. The SU may also get a combination of these outcomes in the TR and TS modes. Depending on these outcomes,
the SU updates its belief about the PU state. Getting an ACK/free/decoded outcome will increase the SU’s belief that the PU is
idle with a certain degree. However, getting a NACK/busy/undecoded outcome will increase the SU’s belief that the PU is busy.
Based on this belief, and according to our spectrum access strategy, the SU will take the optimal action, and so on.

A. SU Operation Modes

1) TS mode:Using SIS techniques, the SU can carry out the spectrum sensing process while transmitting its data. This has
two advantages over the Listen-Before-Talk (LBT) scheme. First, from the SU’s perspective, transmitting while sensing increases
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(a) Transmission-Sensing (TS) mode

(b) Transmission-Reception (TR) mode

Fig. 2. FD operation modes for the SU.

the SU throughput, and reduces the frequency of interrupting its transmission (such interruptions are detrimental to any real-time
communications). Second, the SU can monitor the PU activitywhile transmitting. Hence, a better PU detection performance is
achieved. This parallel sensing process may be done over multiple (consecutive) short periods instead of one long sensing period.
To do that, the SU performsm sensing actionsTSi, i = 1, 2, . . . ,m, while transmitting data for a period ofT seconds (see
Figure 2(a)). The motivation behind this approach is to account for the tradeoff between sensing efficiency and the timeliness
in detecting PU activity. On the one hand, increasing the sensing duration improves the sensing efficiency. However, such an
increase implies delaying the time to make a decision regarding the change of PU activity. Thus, in the TS mode, we have
a total of m sensing durations. If at the end of any given sensing period,PU activity is detected, the SU aborts its current
transmission and updates its belief to determine the next action. We use the termFD sensingto refer to the sensing process
in the TS mode. Note that under imperfect SIS, such sensing has worse performance than the traditional SO mode due to the
residual self-interference signal.

2) TR mode:In the TR mode, the SU transmits and receives data simultaneously over the same channel, as shown in Figure
2(b). Denote the transmission and reception durations byT and TR, respectively. For simplicity, we assume thatTR = T .
Although operating in the TR mode enhances the SU’s throughput, the SU will not be able to monitor the PU state. Hence, the
probability of colliding with the PU will be higher than thatof the TS mode.

3) SO mode:In this mode, the SU senses the spectrum for a durationTS , which we refer to asHD sensing. Under imperfect
SIS, the TS mode is not always efficient. Hence, the SU may switch to the SO mode to get more accurate sensing results.

4) CS mode:The SU may switch to another channel and carry out spectrum sensing on this new channel if it believes that
the PU is very likely to return to the currently used channel.Existing techniques can be used to select the channel sensing order
(see [22], for example). However, any previous informationabout the new channel that was obtained from prior sensing attempts
are discarded.

Although we will not consider the transmission-only (TO) mode as an option, we will use it for comparison purposes. The
reason for not considering it is that the sensing cost is almost negligible. Hence, there is no advantage of the TO mode over the
TS mode.

III. WAVEFORM-BASED FD SENSING

A significant amount of DSA literature has focused on energy-based sensing. Despite its simplicity, this technique cannot
differentiate between different types of users. In the TS mode, residual self-interference can cause energy detectionto wrongly
indicate PU activity. In this paper, we study the sensing performance of the TS mode, assuming waveform-based sensing.

Waveform-based sensing utilizes known patterns in the PU signal, such as preambles and pilot symbols. These patterns are
typically used for channel estimation, synchronization, equalization, etc. To detect the presence of the PU signal, waveform-based
sensing correlates a known pattern with the received signal[23], [24]. In this section, we analyze waveform-based sensing under
FD operation and derive the false-alarm and detection probabilities for the SU, assuming a given SIS factorχ.

In the TS mode, the hypothesis test of whether the channel is occupied by a PU or not can be formulated as follows:

r(n)=

{

χ s(n)+w(n) H0 (if PU is idle) (1a)
l(n)+χ s(n)+w(n) H1 (if PU is busy) (1b)

wherer(n) is thenth sample of the discretized received signal,s(n) is the self-interfering SU signal,l(n) is the received PU
signal, andw(n) is the additive white Gaussian noise with varianceσ2

w. We assume thats(n) is a zero-mean complex random
signal with varianceσ2

s . We also assume that all signal samples are independent, hence r(n)’s are also independent.
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In the case of HD sensing, where no self-interference is present, the hypothesis test can be written as:

r̃(n) =

{

w(n) H0 (if PU is idle) (2a)
l(n) + w(n) H1 (if PU is busy) (2b)

where r̃(n) is thenth sample of the received signal in the HD case.
The performance of any sensing technique is measured by the false-alarm probability(Pf ) and the detection probability(Pd).

Pf andPd are defined as the probabilities that the SU declares the sensed channel to be busy given hypothesisH0 andH1,
respectively. A good system should have highPd to reduce collisions between SUs and PUs. At the same time, a lowerPf value
results in a higher SU throughput due to a reduction in the missed transmission opportunities.

The decision metric, denoted byM , in waveform-based sensing is based on correlating the received samplesr(n)’s with known
pattern samples, and then comparingM against a given thresholdγ to determine the state of the sensed channel. Formally,M
is given by:

M = Re

[

N
∑

n=1

r(n) l∗(n)

]

(3)

wherel∗(n) is the conjugate ofl(n), N is the number of samples, andRe is the real value. Substituting (1a) and (1b) into (3),
we obtainM under hypothesisH0 andH1, denoted byM0 andM1, respectively:

M0 = Re

[

N
∑

n=1

(χ s(n) l∗(n) + w(n) l∗(n))

]

(4)

M1 =

N
∑

n=1

|l(n)|2 +Re

[

N
∑

n=1

(χ s(n) l∗(n) + w(n) l∗(n))

]

. (5)

For FD sensing,Pf andPd are given by:

Pf = Pr [M0 > γ] = 1− FM0
(γ) (6)

Pd = Pr [M1 > γ] = 1− FM1
(γ) (7)

whereFM0
(γ) andFM1

(γ) are the CDFs of the random variablesM0 andM1, respectively.
Proposition 1: Using the central limit theorem (for a largeN ), the pdf ofM0 can be approximated by a Gaussian distribution

with meanµM0
= 0 and the following variance:

σ2
M0

=
N

2

[

χ2E |s(n)|2 E |l(n)|2 + E |w(n)|2 E |l(n)|2
]

. (8)

Hence, the false-alarm probability can be written as:

Pf = Q

(

γ − µM0

σM0

)

(9)

whereQ is the complementary distribution function of a standard Gaussian random variable. Substituting forµM0
andσ2

M0
in

(9), we get the false-alarm probability for FD sensing as follows:

Pf = Q

(

γ

χ2σ2
s + σ2

w

√

2

N SNR(FD)

)

(10)

whereSNR(FD) is the SNR at the secondary receiver while sensing the spectrum in the FD case and is given by:

SNR(FD) =
E |l(n)|2

χ2E |s(n)|2 + E |w(n)|2
. (11)

Note thatSNR(FD) contains the self-interference term, in addition to noise.Furthermore, the number of samplesN can be
described as a function of the sensing durationTSi, i = 1, 2, . . . ,m, and the sampling ratefS as follows:

N = TSifS . (12)

Proposition 2: For a largeN , the pdf ofM1 can be approximated by a Gaussian distribution with meanµM1
= N E |l(n)|2
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and the following variance

σ2
M1

= N

[

E |l(n)|4 − E 2 |l(n)|2

+
1

2

(

χ2E |s(n)|2 E |l(n)|2 + E |w(n)|2 E |l(n)|2
)

]

.

See the Appendix for the proof of the previous two propositions.
The detection probability for the waveform-based FD sensing can be written as follows:

Pd = Q

(

γ − µM1

σM1

)

. (13)

Substituting forµM1
andσ2

M1
in (13), we get:

Pd = Q









γ/
(

χ2σ2
s + σ2

w

)

−N SNR(FD)

√

N
[

(α− 1)
(

SNR(FD)
)2

+ SNR(FD)/2
]









(14)

whereα is a parameter of the PU signal that is related to its randomness [23]. As an exampleα = 2 for complex Gaussian
signals and can range from 1 to 2 for other signal types. Formally, α is defined as follows:

α
def
=

E |l(n)|4

E 2 |l(n)|2
. (15)

The false-alarm and detection probabilities in (10) and (14) for FD sensing converge to HD sensing at perfect SIS (i.e.,χ = 0),
as shown in the following equations for a specific sensing duration TSi, i = 1, 2, . . . ,m:

P̃f = Q

(

γ

σ2
w

√

2

N SNR(HD)

)

(16)

P̃d = Q









γ/
(

σ2
w

)

−N SNR(HD)

√

N
[

(α− 1)
(

SNR(HD)
)2

+ SNR(HD)/2
]









(17)

where P̃f and P̃d are the false-alarm and detection probabilities for HD sensing, respectively, andSNR(HD) is the SNR at the
secondary receiver while sensing the spectrum in the HD case:

SNR(HD) =
E |l(n)|2

E |w(n)|2
. (18)

Pf andPd derived in (10) and (14) for FD sensing are functions of the sensing thresholdγ. The optimal sensing threshold
γ∗ can be determined according to the system requirements onPf and (1 − Pd). For a targetPf or Pd, γ∗ can be calculated
by finding the inverse of theQ-functions in (10) and (14), respectively. As an example, for a system with a requirement that
Pf and (1 − Pd) are equal. The optimal sensing thresholdγ∗ can be determined by equatingPf with 1 − Pd in (9) and (13),
resulting in:

γ∗ =
µM0

σM1
+ µM1

σM0

σM0
+ σM1

. (19)

Substituting thisγ∗ in (9) and (13), and after some mathematical manipulations,we obtain the following forPf andPd:

Pf = Q





√
N SNR(FD)

√

(α− 1)SNR(FD) + 1/2 +
√

1/2



 (20)
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Fig. 3. A time diagram for PUs activities at different frequencies (f1 and f2) and the SU interaction with them using our optimal strategy (top). The SU’s
belief variation with time is then shown below the time diagram(middle). A description of the shapes used to describe the TR,TS, SO, and CS modes is shown
at the bottom. The outcomes notations are:{A} for ACK, {N} for NACK, {D} for decoded,{U} for undecoded,{F} for free, and{B} for busy. Note that
this figure aims to deliver the main general idea of our adaptivepolicy (some simplifications are done to not complicate the figure).

Pd = 1−Q





√
N SNR(FD)

√

(α− 1)SNR(FD) + 1/2 +
√

1/2



 . (21)

IV. OPTIMAL SU STRATEGY

In this section, we present an optimal strategy for operating an FD-capable SU link.

A. Problem Formulation

To optimize the selection of the operational mode at an SU, weformulate the problem as a partially observable decision
process. LetS = {0, 1} be the state space, which defines the actual state (idle or busy) of the channel currently being observed
by the SU. The action space at an SU is given byA = {TR,TS,SO,CS}. While observing the PU channel, the SU has to
choose an action from the setA. The outcome/observation space for the SU depends on the action taken. Since the TR action
consists of two simultaneous processes (transmission and reception), there exist two outcomes for each of these processes.
Specifically, for the reception part, the SU will observe theoutcome{D}, which means that the SU was able to decode the
received message, or the outcome{U}, which stands for undecoded message. For the transmission part of the TR mode, the SU
may get ACK or a NACK from the peer SU, which are denoted by{A} and{N}, respectively. Similarly, a TS action consists
of two simultaneous processes (transmission and sensing).The SU will also observe two outcomes for the sensing process:
({F} for free or{B} for busy). The outcomes of the transmission part of the TS mode are similar to that of the TR action.
Finally, the observed outcomes for the SO/CS actions are{F} or {B}. Altogether, these various actions result in an observation
spaceO = {D,U,A,N, F,B}. Later on, we present a reward function, which maps the stateand action space to a reward value.

Our objective is to let the SU choose actions sequentially intime so as to maximize the expected reward over some random
finite horizon. This can be done using stochastic dynamic programming. It is known that the sufficient statistics for choosing
the optimal action at each timet is the belief [25], which is defined as the a posteriori probability pt ∈ [0, 1] that the PU is
idle at timet given the observation history. We consider a similar setup as in [15] for the partially observable decision process
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part, where the time indext is defined as the time elapsed since the PU has switched from ONto OFF. Hence,t = 0 is the
start of the PU idle period (with some negligible error compared to the actual start of the PU idle period), which is assumed
to be known to the SU, and thereforep0 = 1 − P̃f .1 Starting fromt = 0, the SU keeps tracking of time, and applying the
optimal mode selection policy until switching to a new channel (CS action). At this time, the SU resets the algorithm and keeps
sensing/switching between different channels until catching the start of the PU idle period. Once the beginning of an idle period
is detected, the SU sets its timer tot = 0, and then starts applying the optimal policy. While derivingour optimal policy, we
assume that both communicating SUs always have data to transmit. However, at the end of this section, we will discuss the more
general case that accounts for the traffic flow between different SUs.

Figure 3 shows a simplified example to illustrate how the SU will adaptively choose its optimal actions and update its belief
according to the resulting outcomes. In this example, we have two channels (f1 and f2) occupied with PUs, and an SU link,
where two SUs are trying to opportunistically communicate on one of these channels. Assume that the SU starts monitoring
channelf1, which is happened to be busy. After getting multiple busy outcomes, it decides to switch to another channelf2,
which is sensed free after multiple busy outcomes. At this point the SU starts its timer (i.e.,t = 0). In that case, the belief
happens to be larger than a certain threshold (say, threshold 3), then the SU starts with the TR mode. The outcomes of the
first TR action are ACK and decoded. Hence, as shown in the figure, the SU’s belief increases and recommends the TR mode
again. However, it happened that the SU receives a NACK and undecoded for the third TR action (may be for a deep fading
at this time instance). The SU then updates its belief, whichdecreases below threshold 2, which implies that the SU should
sense the spectrum (i.e., SO mode). The SU keeps sensing until the belief goes over threshold 2. In that case, the SU switches
to the TS mode and updates its belief according to the outcomes that it gets. The SU continues switching between different
operation modes and updates its belief accordingly as shownin Figure 3 until its belief goes below threshold 1. In that case the
SU switches to another channel, and so on. Note that the PU hasreturned to channelf2, while the SU is operating on the same
channel. However, it happened that the SU is in the TS mode, which makes the SU detect the PU activity while transmitting.
In that case the SU stops its transmission quickly to preventcollision with the PU (see Figure 3 above).

Following any given actiona ∈ A and depending on the observationo ∈ O, the SU updates its beliefpt and will also gain
a certain reward. Letπ be the policy that maps the SU’s beliefpt to the action spacea ∈ A at each timet. Define the value
function U(pt, t) as the maximum expected total reward at timet when the current belief ispt. This function specifies the
performance of the optimal policyπ∗, starting from beliefpt. Based on Bellman equation, we have the following:

U(pt, t) = max {UTR(pt, t), UTS(pt, t), USO(pt, t), UCS(pt, t)} (22)

whereUTR(pt, t), UTS(pt, t), USO(pt, t), andUCS(pt, t) are the expected total rewards if the SU decides to operate inthe TR, TS,
SO, and CS modes, respectively, at timet and then follows the optimal policyπ∗

Lemma 1: U(pt, t) is a convex function ofp for a givent.
Proof: We use a similar argument as in [15], [26] to prove this lemma. Let 0 ≤ λ ≤ 1 and 0 ≤ p1, p2 ≤ 1. Assume that the
initial statep is determined according to the outcome of flipping a biased-coin with a probabilityλ that a head appears. We set
p = p1 if a head appears, andp = p2 if a tail appears. The best reward that we can get if we know theoutcome of the coin
flipping is λU(p1, t)+(1−λ)U(p2, t). However, if we do not know the outcome of the coin flipping, the best achieved reward is
U(λp1+(1−λ)p2, t). Since, the best reward with no information will not be higher than that achieved with information available.
Therefore,U(λp1+(1−λ)p2, t) ≤ λU(p1, t)+(1−λ)U(p2, t). �

B. Reward Function

In this section, we formulate the SU utility for various actions. Define the immediate and expected future reward that theSU
gains from taking actioni asR(M)

i (M for myopic) andR(L)
i (L for long-term), respectively. The probability that theith SU

observes outcomeo is denoted byw(i)
o . The updated belief probability for outcomeo at nodei is denoted byE(i)

o . Defineq(T )
t

as the probability that the PU will remain idle during the transmission periodT , given that the PU is idle at timet. Similarly,
defineq(S)

t (i) as the probability that the PU will remain idle duringTSi, i = 1, 2, . . . ,m, given that the PU is idle at the start
of this sensing duration. These two quantities can be expressed as follows:

q
(T )
t =

1− FX(t+ T )

1− FX(t)
(23)

q
(S)
t (i) =

1− FX

(

t+
∑i

j=1 TSj

)

1− FX

(

t+
∑i−1

j=1 TSj

) . (24)

whereFX(t) is the CDF of random variableX evaluated at pointt.
Next, we derive the reward function for various SU modes.

1As an example, the SU may keep sensing a busy channel in an HD fashion until it gets a free outcome. In that case the initial belief p0 = 1− P̃f .



9

1) TR mode:The myopic reward for the SU link, consisting of nodesa and b, under the TR mode can be formulated as
follows:

R
(M)
TR =

∑

i∈{a,b}

w
(i)
D T log

(

1 + SNR(i)TR

)

. (25)

wherew(i)
D is the probability that theith SU has successfully decoded the received message, andSNR(i)TR is the SNR in the TR

mode at nodei, which is given by:

SNR(i)TR =
Pj |hji|2

σ2
i + χ2

iPi |hii|2
. (26)

In (26), hii is the gain of the self-interfering channel at nodei.
Since the two communicating SUs may experience different channel conditions, the ability to receive data differ from one

node to another. Although, we assume that the PU signal affects both SUs equally, the interference level may differ from one
node to another because of other interference sources. Hence, a successful decoding process at one node does not imply that the
other node will be able to decode its packet. Also, the SU might get an ACK although the PU is ON, due to deep channel fading
between the primary transmitter and the secondary receiver. All of these features are captured in the following two probabilities,
which may differ from one SU to another [15]:
δ
(i)
0 : probability that theith secondary transmitter receives a NACK although the PU is OFF.
δ
(i)
1 : probability that theith secondary transmitter receives a NACK given that the PU is ON.
When the ACK/NACK reflects only whether a collision occurs with the PU or not, we haveδ(i)0 = 0 andδ(i)1 = 1.
The probability that theith SU, i = a, b successfully decode the received message is as follows:

w
(i)
D = ptq

(T )
t

(

1− δî0

)

+
(

1− ptq
(T )
t

)(

1− δî1

)

. (27)

where î denotes the peer node of SU nodei (i.e., for link (a, b), if i = a, then î = b and vice versa).
Using Bayes’ rule, the probability that the PU is idle afterT given that theith SU successfully decode the received message

(i.e., the belief update) is:
E(i)
D =

[

ptq
(T )
t

(

1− δî0

)]

/w
(i)
D . (28)

Similarly, the probability that theith SU failed to decode the received message and the belief update in that case can be written,
respectively, as follows:

w
(i)
U = ptq

(T )
t δî0 +

(

1− ptq
(T )
t

)

δî1 (29)

E(i)
U =

[

ptq
(T )
t δî0

]

/w
(i)
U . (30)

Since we assume that transmission errors in ACK/NACK are negligible, the probability of receiving an ACK/NACK at nodei
is the same as the probability that its peer node succeed/fail in decoding the message. This is also applied to the belief update for
the corresponding cases. Hence,w

(i)
A , E(i)

A , w
(i)
N , andE(i)

N will be formulated similarly asw(i)
D , E(i)

D , w
(i)
U , andE(i)

U , respectively.
There are four possible outcomes for the TR mode. An SU may receive an ACK for correct transmission and be able to

successfully decode the received message, or the SU may get an ACK and an undecoded message. The other two outcomes of
the TR mode is to either get a NACK and a decoded message, or a NACK and an undecoded message. Hence, the expected
future reward for an SU link obtained at theith SU can be formulated as follows:

R
(L)
TR =

∑

k={A,N}
l={D,U}

w
(i)
k w

(i)
l U

(

E(i)
k E(i)

l , t+ T
)

(31)

where the summation over the two indices(k, l) can be calculated by considering the four possible combinations (A,D), (A,U),
(N,D), (N,U).
Finally,

UTR(pt, t) = R
(M)
TR + η R

(L)
TR (32)

whereη ∈ [0, 1] is the discount factor, which determines how far you take thefuture reward into consideration while formulating
the secondary utilities. Atη = 0, the SU only cares for the immediate reward. The final beliefpt+T will be the multiplication
of the two updatesE(i)

O1
E(i)
O2

, whereO1 ∈ {A,N}, andO2 ∈ {D,U}.
2) TS mode:The myopic reward of the TS mode is different from that of the TR mode because the SU is monitoring the

spectrum while transmission. Hence, the SU could abort transmission if a busy outcome is observed after anyTSj , j = 1, 2, . . . ,m.
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Therefore, the myopic reward in the TS mode, assuming that SUi is transmitting to SUj will be formulated as follows:

R
(M)
TS =

m
∏

l=1

w
(i)
F (l)w

(i)
A T log

(

1 + SNR(j)TS

)

(33)

where the SNR in the TS mode at nodej is given by:

SNR(j)TS =
Pi |hij |2

σ2
j

. (34)

∏m

l=1 w
(i)
F (l)w

(i)
A is the probability of successful transmission in the TS mode, which has two conditions. First, SUi gets a free

outcome after each and every sensing period of them sensing durations. This probability is denoted by
∏m

l=1 w
(i)
F (l). Second,

SU i receives an ACK from SUj at the end ofT , which is denoted by probabilityw(i)
A . DefinePf = [Pf,1 Pf,2 . . . Pf,m] and

Pd = [Pd,1 Pd,2 . . . Pd,m] asm-dimensional vectors that represent the false-alarm and detection probabilities, respectively, for
them FD sensing periods in the TS mode.

The probability of getting ACK/NACK from the transmission process and the belief update in the corresponding cases are
the same as that of the TR mode. The sensing process has also two outcomes, either free or busy. We assume that if the PU is
sensed free/busy at timet at one end of the SU link, then the other SU will experience thesame situation. Also, if the PU is
sensed busy at any sensing period, this yields a failure communication and the SU should abort the TS mode.

Hence, the probability that theith SU, i = a, b gets a free outcome afterTS1 can be expressed as follows.

w
(i)
F (1) = ptq

(S)
t (1) (1− Pf,1) +

(

1− ptq
(S)
t (1)

)

(1− Pd,1) . (35)

Similarly, the probability that theith SU gets a free outcome afterTSj , j = 2, 3, . . . ,m given that it got a free outcome at
TS(j−1) is as follows:

w
(i)
F (j) = q

(S)
t (j) (1− Pf,j) +

(

1− q
(S)
t (j)

)

(1− Pd,j) . (36)

The belief update afterTS1 andTSj , j = 2, 3, . . . ,m in the case of a free outcome can be written, respectively, asfollows:

E(i)
F (1) =

[

ptq
(S)
t (1) (1− Pf,1)

]

/w
(i)
F (1) (37)

E(i)
F (j) =

[

q
(S)
t (j) (1− Pf,j)

]

/w
(i)
F (j). (38)

Similarly, the probability that theith SU, i = a, b gets a busy outcome afterTS1 is:

w
(i)
B (1) = ptq

(S)
t (1)Pf,1 +

(

1− ptq
(S)
t (1)

)

Pd,1. (39)

Generally, the probability of getting a busy outcome afterTSj , j = 2, 3, . . . ,m given that it got a free outcome atTS(j−1) is as
follows:

w
(i)
B (j) = q

(S)
t (j)Pf,j +

(

1− q
(S)
t (j)

)

Pd,j . (40)

The belief update afterTS1 andTSj , j = 2, 3, . . . ,m in the case of a busy outcome can be written, respectively, asfollows:

E(i)
B (1) =

[

ptq
(S)
t (1)Pf,1

]

/w
(i)
B (1) (41)

E(i)
B (j) =

[

q
(S)
t (j)Pf,j

]

/w
(i)
B (j). (42)

TS mode is different from other modes as the SU may not continue till the end of the transmission duration. This happens
if the SU gets a busy outcome at the end of any sensing durationTSi, i = 1, 2 . . . ,m. However, if the SU gets a free outcome
after every sensing periodTSi, i = 1, 2 . . . ,m, there are two possible outcomes. The SU may get a Free and ACKfor correct
reception or Free and NACK for incorrect reception. Puttingall together, the expected future reward in the TS mode can be
formulated as follows:

R
(L)
TS =

m
∑

j=1

w
(i)
B (j)

j−1
∏

l=1

w
(i)
F (l)U

(

E(i)
B (j)

j−1
∏

l=1

E(i)
F (l), t+

j
∑

l=1

TSl

)

+
∑

k={A,N}

w
(i)
k

m
∏

l=1

w
(i)
F (l)U

(

E(i)
k

m
∏

l=1

E(i)
F (l) , t+ T

) (43)
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Finally,
UTS(pt, t) = R

(M)
TS + η R

(L)
TS . (44)

3) SO mode:The immediate rewardR(M)
SO in the SO mode will be zero as no transmission takes place. Theoutcome of the

sensing process is either free or busy. The probability of getting a free/busy outcome and the belief update in each case can be
formulated similarly as the sensing part of the TS mode taking into consideration that the SO mode consists of a single sensing
periodTS . Hence, the expected future reward in the SO mode, assuming that SUi is sensing the spectrum, can be expressed as
follows:

R
(L)
SO =

∑

k={F,B}

w
(i)
k U

(

E(i)
k , t+ TS

)

(45)

wherew
(i)
F and w

(i)
B are the probabilities of getting a free and busy outcomes, respectively, afterTS . E(i)

F and E(i)
B are the

corresponding belief updates. Note that while formulatingthese quantities, we should include the false-alarm and detection
probabilities in the HD case (i.e.,̃Pf and P̃d). Also, the probability that the PU will remain idle during the sensing periodTS ,
given that the PU is idle at timet will be expressed as follows:

q
(S)
t =

1− FX(t+ TS)

1− FX(t)
(46)

Hence we can write the maximum expected utility that the SU gains from sensing the spectrum as:

USO(pt, t) = η R
(L)
SO . (47)

4) CS mode:The SU might choose to switch to another frequency channel (where no information about the PU state is
available) and carry out spectrum sensing, if the probability that the PU returns is very high. The analysis for this operation
mode is the same as that of SO mode, except for the beliefpt because the belief in the new channelp̂t will be the probability
that the PU is idle at timet given that no previous information is available, which can be written generally as follows:

p̂t = X̄/
(

X̄ + Ȳ
)

. (48)

The maximum expected utility for the CS mode is as follows:

UCS(p̂t, t) = η R
(L)
CS (49)

where
R

(L)
CS =

∑

k={F,B}

ŵ
(i)
k U

(

Ê(i)
k , t+ TS

)

(50)

whereŵ(i)
F , ŵ

(i)
B , Ê(i)

F and Ê(i)
B are formulated similarly asw(i)

F , w
(i)
B , E(i)

F andE(i)
B , respectively, after replacingpt by p̂t.

In the Appendix, we discuss the convexity and other properties of the SU’s utilitiesUTR(pt, t) , UTS(pt, t) , USO(pt, t) , and
UCS(p̂t, t) with respect to the belief. We also discuss howU(pt, t) varies withp for a givent.

C. Optimal Policy

After formulating the SU utilities in the four possible actions and adding a constraint on the collision probability with the PU,
our problem can be formulated as follows:

maximize
π

U(pt, t)

subject to Pi ≤ P ∗
i i ∈ {TR,TS}

(51)

wherePi, i ∈ {TR,TS} is the PU collision probability in the TR and TS modes, respectively andP ∗
i is the threshold PU collision

probability.PTR andPTS can formulated as follows:

PTR = (1− pt) + pt

(

1− q
(T )
t

)

= 1− ptq
(T )
t (52)

PTS= pt

m
∑

i=1







i−1
∏

j=1

(1− Pf,j)
(

1− q
(S)
t (i)

)







+ (1− pt). (53)

For certain probability distributions for the PU idle period as Gaussian distribution, uniform distribution, and Rayleigh distribution
(as an example),q(T )

t will approach zero at large values oft. This means that the probability that the PU returns to utilize the
channel increases witht, which is very intuitive for this type of distributions. To be able to derive our optimal threshold-based
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policy, we define a technical condition similar to the approach followed in [15]. This technical condition states that for all t > t∗,
the SU should not transmit any data (i.e. should not operate in either TR, or TS modes) as the collision probability constraint
will not be satisfied and hence, zero reward will be gained even at pt = 1. This threshold timet∗ is defined as the minimum
time where the PU collision constraint is not satisfied. Hence, U(1, t) = 0, ∀t > t∗.

t∗ = min
{

t : q
(T )
t < 1− P ∗

TR

}

. (54)

Theorem 1: The optimal policy for the SU can be written as follows:

π∗(pt) =















CS, pt < βc

SO, βc ≤ pt < βs

TS, βs < pt < βt

TR, pt ≥ βt

(55)

Proof: SinceUCS(p̂, t) is constant withpt, andUSO(pt, t) is a convex increasing function ofpt (lemma 6 in the Appendix).
Therefore, There exist at most one intersection between thetwo functions becauseUCS(p̂, t) > USO(0, t). This intersection
occurs whenpt = p̂, which is denoted byβc. This intersection exists when̂p < βs (i.e., under two conditions: strict PU collision
constraint and highly loaded PU networks). Although the first condition is guaranteed, the second one is not. In that casethe SO
region might disappear, and henceβc = βs. SinceUCS(p̂, t) > USO(pt, t) for pt < βc andUCS(p̂, t) < USO(pt, t) for pt > βc,
the first two lines of the policy shown in (55) are optimal given that the aforementioned condition is satisfied.

UTR(pt, t) andUTS(pt, t) are proved to be convex increasing functions ofpt at a givent (Lemmas (2), (3), (4), and (5) in the
Appendix). SinceUTR(1, t) > UTS(1, t) and sinceβt ≥ βs (Generally, the amount of interference induced by the SU on the PU in
the TR mode is higher than that of the TS mode), therefore bothfunctions intersects together atβt. SinceUTS(pt, t) > UTR(pt, t)
for pt < βt (asUTR(pt, t) goes to zero for violating the PU collision constraint) andUTS(pt, t) < UTR(pt, t) for pt > βt, the last
two lines of the policy shown in (55) are optimal. Note thatUTS(pt, t) goes to zero∀pt < βs due to the violation of the PU collision
constraint. �

The above theorem states that the SU should utilize the opportunity of having a high belief that the PU is idle and operate
in the TR mode ifpt ≥ βt, whereβt is the transmission-reception threshold. In that case the SU will dramatically increase
the throughput by transmitting and receiving data simultaneously over the same channel. If the belief decreases and falls in the
following rangeβs < pt < βt, the SU should monitor the spectrum while transmitting (i.e., operate in the TS mode) as the
probability that the SU returns is now relatively high.βs is called the sensing threshold. In that case, the SU still getting some
throughput (lower than TR mode), however a lower collision probability is achieved. The SU should stop transmitting, and carry
out HD sensing (i.e., SO mode) ifpt is relatively low (i.e.,βc ≤ pt < βs) because in that case the probability that the PU returns
to the channel is too high and the PU collision constraint will not be satisfied. Hence, a better sensing quality and a temporarily
channel vacation is required.βc is called the channel switching threshold. At very low belief valuespt < βc, where the PU is
most likely to return to use the channel, the SU should take the CS action. This happens when the probability that the PU is
idle in a new channel (where no information is available) is higher than the current belief.

To solve our problem, we have to find the threshold timet∗, where our condition is satisfied and then apply backward induction
to find the thresholdsβc, βs, βt and the maximum utility for the SUU(p, t) for different values ofp and t.

D. Discussion of the optimal policy

In this section, we will highlight some important features of our optimal policy that should be considered in our FD DSA
network. Until this point of discussion, we assumed that SUsalways have data to transmit. That is, if the optimal policy
recommends the TR mode, then SUs will carry out simultaneoustransmission and reception over the same frequency. But, what
if one of the nodes does not have data to its peer at this instant? This motivates the refinement of our adaptive strategy to account
for SU’s traffic flow. Before doing that, let us first discuss how we define master/slave nodes, and data/control phases in the
following two items:
• Master and slave nodes: A master node is a designation given to any SU device that executes the optimal adaptive decision

strategy. The master node is the one that takes a final decision about the operation mode, whether receiving data while
transmitting, sensing the spectrum while transmitting, switching to another channel, or solely sensing the spectrum.The
slave node is the SU device that is receiving orders from the master node with regard to starting, continuing, or stopping
transmission. This is done through control packets. In the present design, the node that initiates the communication isthe
master node, and the other one is the slave node. However, these roles may change over time, depending on which node
has traffic to send (i.e., the traffic directionality).

• Data and Control Phases: This concept is related to the organizing protocol used between SUs, equipped with SIS/FD
capabilities, to communicate with each other. Once a channel is thought to be idle by the initiating SU, the time frame will
be divided into two alternating phases: data phase and control phase. SUs will start communicating together in the data
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Fig. 4. False-alarm probability vs. sensing time for FD sensing at different values ofχ.

phase where data packets only are exchanged. Also, spectrumsensing is executed in the data phases as well. After that, a
control phase is established between the two nodes, which has two goals. First, this control phase is used to confirm the
correct reception of packets transmitted in the previous data phase in both directions, if applicable. Second, the control
phase is used by the master node to trigger the slave node to start, continue, or stop transmission while receiving. If the
two nodes switch to another channel, the data and control phases will be terminated (until finding a free channel) and the
sensing durations can be optimized separately, without thedata and control phases restrictions.

The four possible modes (TR, TS, SO, and CS) represent a single SU’s perspective. However, the link’s operation is determined
by the mode of operation at the two communicating nodes. Hence, these modes of operation should be written as follows: TR-TR,
TS-R (or R-TS), SO, and CS. For instance, if an SU is transmitting and receiving data simultaneously, the other SU will also be
transmitting and receiving data, which is indicated by the TR-TR mode. However, if an SU is transmitting and sensing, itspeer
will be only in the reception mode, which defines the TS-R mode, where{R} stands for reception. The threshold-based structure
discussed so far has to be adjusted with the SUs traffic load. For instance, assume that the optimal strategy recommends the
master SU to operate in the TR mode, while the slave node does not have data to transmit. In this case, the master SU node
can operate in the TS mode while the slave SU can only receive data. To implement this, the header of the transmitted packet
should be modified to include a bit (name it the “more packets“(MP) bit) that tells whether the transmitter has more packets in
its queue or not. The two communicating SUs can utilize the MPbit to determine the final decision.

Another crucial point in FD DSA networks to be considered in our design is the FCC requirements. Consider the scenario
where SUs are operating in the idle PU period using the TR mode. In the case of good channel conditions, both nodes will keep
ACKing their packets, updating their beliefs, and will not switch to any other mode unless they collide with the PU (in that
case they will get NACKs), or whent > t∗. To avoid this blind communication without monitoring the PU channel, SUs should
periodically switch to any of the sensing modes (TS or SO), ifthey violate the FCC requirements discussed next. The FCC
imposes rules for operating opportunistic wireless networks. One of these rules is the periodic sensing interval, which means
that any channel used by an SU has to be sensed everyTreq seconds to check for the PU activity. The SU has to vacate the
channel quickly if a PU activity is detected. Hence, this part of the decision strategy states that each SU link has to maintain a
maximum duration ofTreq seconds between sensing periods, whether it was operating in the SO or TS modes.

V. NUMERICAL RESULTS

We use the following parameters unless otherwise is mentioned. The sampling frequency and the SU signal power arefS =
6MHz andσ2

s = 5, respectively andSNR(HD) = −20dB. For evaluatingPf andPd, we consider a complex Gaussian primary
signal withα = 2. The PU idle period is uniformly distributed in the range[0, 1000]. We also setTS = 1, m = 30, T = 30,
δ0 = 0.01, andδ1 = 0.99.

A. Performance Metrics

1) False-Alarm And Detection Probabilities:The impact of the residual self-interference signal onPf andPd for waveform-
based sensing is shown in Figures 4 and 5, respectively. Asχ increases the performance of the waveform-based sensing gets
worse (i.e.,Pf increases andPd decreases) due to the increment in the residual self-interference. We also notice thatPf andPd

converges to HD sensing at perfect SIS. In imperfect sensingschemes, increasing the sensing duration improves the performance
of the sensing technique. At low SNR regions, the SU needs around 20% increment in the sensing duration to achieve the
samePf andPd (achieved for HD sensing) for20% residual self-interference from the original SU signal andneeds about80%
increment inTS for χ = 0.4 (i.e., for a residual self-interference signal that is40% of the original transmitted signal).



14

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Sensing Time (sec)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 

χ=0; perfect SIS
χ=0.2; imperfect SIS
χ=0.4; imperfect SIS

Fig. 5. Detection probability vs. sensing time for FD sensingat different values ofχ.

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

Time: t (sec)

P
U

 C
ol

lis
io

n 
P

ro
ba

bi
lit

y

 

 

TR mode, TO mode
TS mode

Fig. 6. PU collision probability vs.t for TR, TS, and TO modes atp = 1 andPf = 0.1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

SIS Capability Factor: χ

S
U

 T
hr

ou
gh

pu
t (

na
ts

/s
ec

/H
z)

 

 

TR mode
TS mode

χ
th

Fig. 7. SU’s throughput vs.χ for TR and TS modes atp = 1, Pf = 0, Pd = 1, σ2
s = 15 andSNR(HD)

= 5dB.



15

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time: t (sec)

O
pt

im
al

 P
ol

ic
y 

T
hr

es
ho

ld
s

 

 

β
t

β
s

β
c

TR mode

TS mode

SO mode

CS mode
t*

Fig. 8. Optimal policy thresholds vs.t. The decision region is divided into four parts: TR, TS, SO , and CS.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Belief

S
U

 U
til

ity

TR mode

TS mode

SO mode
CS mode

Fig. 9. SU utilities in the TR, TS, SO, and CS modes vs. the belief at t = 0. The final SU utility is the maximum of these four utilities.

2) PU Collision Probability: The advantage of the TS mode over the TR mode is the lower collision probability. Figure 6
shows the variation of the PU collision probability for the TR, TS, and TO mode witht. As t increases, the collision probability
increase as the PU is more likely to return to utilize the channel. As shown in Figure 6, the SU can achieve a lower collision
probability in the TS mode than that of the TR mode. This improvement may reach in certain scenarios up to50% reduction in
the collision probability.

3) SU Throughput:Figure 7 shows a comparison between the achievable SU’s throughput in the TS mode (assuming long
enoughTS) and the TR mode at different values ofχ. The SU’s throughput in the TR mode decreases asχ increases due to
residual self-interference. Hence, working in a FD fashionis not always optimal especially at highχ values. According to our
simulation setup, the threshold SIS factor where the SU should switch to the TS mode isχth = 0.38. Also, ast increases the
SU’s throughput decreases due to the increment in the probability that PU returns.

B. Transmission-Sensing-Reception Strategy

We use backward induction to find the optimal thresholds and the maximum SU utility. We setη = 0.3, P ∗
TR = 0.2, P ∗

TS =
0.4, Pf = 0.01, Pd = 0.99,SNR(HD) = 20dB, and Ȳ = 2000.

The variation ofβt, βs andβc with t is shown in Figure 8, which shows the mechanism of our optimalpolicy. The SU should
operate in TR mode as long aspt ≥ βt, switch to TS mode whenβs < pt < βt, switch to SO mode whenβc ≤ pt < βs, and
finally switch to a new channel whenpt < βc. The SU should also switch to a new channel ift > t∗ as the PU is more likely
to return to utilize the channel, which justifies the convergence ofβt, βs andβc to 1 for t > t∗. Note thatβc is constant (for
t < t∗) because it depends on the channel availability, when no information is known. Hence,βc = 500/2500 = 0.2 according
to our setup.

Figure 9 shows the variation of the maximum SU utilities for the TR, TS, SO, and CS modes withpt. The final SU utility is
the maximum of these four utilities. Note that the utility inthe CS mode is constant withp because it is independent of the SU
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belief in the currently used channel. The abrupt reduction for the SU utilities in the TR and TS modes is due to the violation
of the PU collision probability constraints.

VI. CONCLUSIONS

We consider a novel application of FD communications in DSA networks, where we analyzed the performance metrics of
the TR and TS modes, namely the throughput and collision probability. We determined the optimal switching policy of SUs,
equipped with SIS/FD capabilities, that maximizes the SU’sutility subject to a constraint on the PU collision probability. To
enable the TS mode, we analyzed the waveform-based sensing in the case of imperfect SIS, and derived the false-alarm and
detection probabilities. Using our adaptive strategy, theSU can achieve about50% reduction in the collision probability and
double the throughput comparing to the HD case. Finally, an optimal threshold-based strategy is obtained, which depends on the
SU’s belief regarding the idleness of the PU. Our results indicate that the SU should operate in the TR mode if it has a high
belief that the PU is idle. As this belief decreases, the SU should adaptively switch to the TS mode to monitor any change in
the PU activity while transmitting. At very low belief values, where the PU is more likely to be active, the SU should switch to
another channel.

One possible direction of future work is to address how SUs will negotiate in the control phase to determine the final action
given that both nodes may have different traffic flows. Another direction for future work could be to optimize the parallelsensing
durations of the TS mode taking into account the tradeoff between sensing efficiency and the timeliness in detecting PU activity.
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APPENDIX

A. Proofs for Waveform-based Sensing

Proof of Proposition 1: The mean ofM0 can be expressed as follows:

µM0
= Re

[

N
∑

n=1

E (χ s(n) l∗(n) + w(n) l∗(n))

]

= 0. (56)

Sinces(n), l(n), andw(n) are independent, the above result holds. The SU signal (and similarly for other signals) can be
written as a function of the real and imaginary components asfollows: s(n) = sr(n) + jsi(n). Hence, the variance ofM0 is:

σ2
M0

=

N
∑

n=1

Var (Re [(χ s(n) l∗(n) + w(n) l∗(n))])

= N
[

χ2 {Var (sr(n)lr(n)) + Var (si(n)li(n))}+Var (wr(n)lr(n)) + Var (wi(n)li(n))
]

= N
[

χ2
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E
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E
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+E
(

s2i (n)
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E
(
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)}

+E
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w2
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)

E
(
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w2
i (n)
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E
(

l2i (n)
)]

=
N

2

[

χ2E |s(n)|2 E |l(n)|2+E |w(n)|2 E |l(n)|2
]

. �

Proof of Proposition 2: Due to independence, the mean ofM1 is expressed as follows:

µM1
=

N
∑

n=1

E |l(n)|2 +Re

[

N
∑

n=1

E (χ s(n) l∗(n) + w(n) l∗(n))

]

= N E |l(n)|2 (57)

The variance ofM1 can be shown to be:
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)

]

. �

B. Proofs for SU utilities

Lemma 2: UTR(pt, t) increases inp for a givent.
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Proof: To prove this lemma we have to show that the first order derivative of UTR(pt, t) with regard top is non-negative. We
will start first with the myopic reward and then the long term reward of (32).

RM ′

TR =
∑

i∈{a,b}

qTt

(

δ
(i)
1 − δ

(i)
0

)

T log
(

1 + SNR(i)TR

)

(58)

Which is non-negative asδ(i)1 > δ
(i)
0 . The long term reward consists of four terms as shown in (31).For the ACK/Decoded term,

we have the following:
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Assume, for the time being, thatU (pt, t) is an increasing function ofp (we will justify this assumption while proving lemma
(7) by backward induction). SinceE(i)

D ≥ E(i)
U for i = a, b. Therefore, the following inequalities hold:
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Therefore, the first four terms of (61) are non-negative. It can also be proved that
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are non-negative. Hence, the last four terms of (61) are alsonon-negative, which completes the proof. �

Lemma 3: UTR(pt, t) is a convex function ofp for a givent.
Proof: To simplify the analysis of this lemma, we consider the casewhereδ(a)0 = δ

(b)
0 and δ

(a)
1 = δ

(b)
1 . From (58), the second

order derivative of the myopic rewardRM ′′

TR = 0. Next, we find the second order derivative of the long term reward.
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RL′

TR is non-negative asE(a)
D ≥ E(a)

U andU (pt, t) is an increasing function ofp. The second order derivative ofRL
TR can be

expressed as follows.
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SinceU (pt, t) is a convex function ofp. ThereforeRL′′

TR ≥ 0 and henceUTR(pt, t) is convex. �

Lemma 4: UTS(pt, t) increases inp for a givent.
Proof:
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GenerallyPd > Pf andδ1 > δ0. HenceRM ′

TS ≥ 0. Next we will find the first order derivative for the long term reward in the TS
mode. To do that, we will split the long term reward shown in (43) into two parts to beRL
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′

(

E(b)
U

m
∏

l=1

E(a)
F (l), t+ T

)

(

E(b)
U E(a)

F (1)
)

′ m
∏

l=2

E(a)
F (l)

(67)
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Z
′

2 =
[

qTt

(

δ
(b)
1 − δ

(b)
0

)

w
(a)
F (1) + w

(b)
D qSt (1) (Pd,1 − Pf,1)

]

C1U

(

E(b)
D

m
∏

l=1

E(a)
F (l) , t+ T

)

+ C1

m
∏

l=2

E(a)
F (l)U

′

(

E(b)
D

m
∏

l=1

E(a)
F (l) , t+ T

)

[

qSt (1)E
(b)
D

(

1− δ
(b)
1

)

(1− Pf,1) + qTt E
(a)
F (1)

(

1− δ
(b)
0

)

(1− Pd,1)
]

+
[

−qTt

(

δ
(b)
1 − δ

(b)
0

)

w
(a)
F (1) + w

(b)
U qSt (1) (Pd,1 − Pf,1)

]

C1U

(

E(b)
U

m
∏

l=1

E(a)
F (l), t+ T

)

+ C1

m
∏

l=2

E(a)
F (l)U

′

(

E(b)
U

m
∏

l=1

E(a)
F (l), t+ T

)

[

qSt (1)E
(b)
U δ

(b)
1 (1− Pf,1) + qTt E

(a)
F (1)δ

(b)
0 (1− Pd,1)

]

(68)

SinceU (pt, t) is an increasing function ofp (To be justified in lemma (7)). SinceE(b)
D ≥ E(b)

U . Therefore, the first and third
terms ofZ

′

2 are non-negative. Hence,Z
′

2 ≥ 0

Z1 = w
(a)
B (1)U

(

E(a)
B (1), t+ TS1

)

+ w
(a)
F (1)w

(a)
B (2)U

(

E(a)
F (1)E(a)

B (2), t+ TS1 + TS2

)

+ w
(a)
F (1)w

(a)
F (2)w

(a)
B (3)U

(

E(a)
F (1)E(a)

F (2)E(a)
B (3), t+ TS1 + TS2 + TS3

)

+ . . .
(69)

To simplify the proof, the first term of (69) can be safely neglected. The reason is that the probability of getting a busy outcome
after TS1 (very small period) is almost negligible, given thatpt is sufficiently large (to satisfy the PU collision probability
constraint) andm is large enough. Note also that the probability that the PU will switch its state duringTS1 is very small given
that the PU’s ON and OFF periods are much longer thanTS1.

Z
′

1=qSt (1) (Pd,1−Pf,1)w
(a)
B (2)U

(

E(a)
F (1)E(a)

B (2), t+

2
∑

l=1

TSl

)

+w
(a)
F (1)w

(a)
B (2)U

′

(

E(a)
F (1)E(a)

B (2), t+

2
∑

l=1

TSl

)

E
′(a)
F (1)E(a)

B (2)

+ qSt (1) (Pd,1 − Pf,1)w
(a)
F (2)w

(a)
B (3)U

(

E(a)
F (1)E(a)

F (2)E(a)
B (3), t+

3
∑

l=1

TSl

)

+ w
(a)
F (1)w

(a)
F (2)w

(a)
B (3)U

′

(

E(a)
F (1)E(a)

F (2)E(a)
B (3), t+

3
∑

l=1

TSl

)

E
′(a)
F (1)E(a)

F (2)E(a)
B (3) + . . .

≥ 0 �

Lemma 5: UTS(pt, t) is a convex function ofp for a givent.
Proof: First for the Myopic reward:

RM ′′

TS = 2C1T qSt (1)q
T
t (Pd,1 − Pf,1)

(

δ
(b)
1 − δ

(b)
0

)

log
(

1 + SNR(b)TS

)

≥ 0 (70)

Next, we will find the second order derivative of the long termreward. LetC2 =
∏m

l=2 E
(a)
F (l). We first start with findingZ

′′

2

and then proceed toZ
′′

1 .
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Z
′′

2 = 2C1q
T
t q

S
t (1)

(

δ
(b)
1 − δ

(b)
0

)

(Pd,1 − Pf,1)
[

U
(

E(b)
D E(a)

F (1)C2, t+ T
)

− U
(

E(b)
U E(a)

F (1)C2, t+ T
)]

+ C1C2

[

qTt

(

δ
(b)
1 − δ

(b)
0

)

w
(a)
F (1) + w

(b)
D qSt (1) (Pd,1 − Pf,1)

] [

U
(

E(b)
D E(a)

F (1)C2, t+ T
)]

′

+ C1C
2
2U

′′

(

E(b)
D E(a)

F (1)C2, t+ T
)(

E(b)
D E(a)

F (1)
)

′
[

qSt (1)E
(b)
D

(

1− δ
(b)
1

)

(1− Pf,1) + qTt E
(a)
F (1)

(

1− δ
(b)
0

)

(1− Pd,1)
]

+ C1C2U
′

(

E(b)
D E(a)

F (1)C2, t+ T
) [

qSt (1)E
′(b)
D

(

1− δ
(b)
1

)

(1− Pf,1) + qTt E
′(a)
F (1)

(

1− δ
(b)
0

)

(1− Pd,1)
]

+ C1C2

[

−qTt

(

δ
(b)
1 − δ

(b)
0

)

w
(a)
F (1) + w

(b)
U qSt (1) (Pd,1 − Pf,1)

] [

U
(

E(b)
U E(a)

F (1)C2, t+ T
)]

′

+ C1C
2
2U

′′

(

E(b)
U E(a)

F (1)C2, t+ T
)(

E(b)
U E(a)

F (1)
)

′
[

qSt (1)E
(b)
U δ

(b)
1 (1− Pf,1) + qTt E

(a)
F (1)δ

(b)
0 (1− Pd,1)

]

+ C1C2U
′

(

E(b)
U E(a)

F (1)C2, t+ T
) [

qSt (1)E
′(b)
U δ

(b)
1 (1− Pf,1) + qTt E

′(a)
F (1)δ

(b)
0 (1− Pd,1)

]

(71)

SinceU (pt, t) is an increasing function ofp (to be justified) and sinceE(b)
D ≥ E(b)

U . ThereforeU
(

E(b)
D E(a)

F (1)C2, t+ T
)

≥
U
(

E(b)
U E(a)

F (1)C2, t+ T
)

and hence the first term ofZ
′′

2 is non-negative. Since convex functions have always an increasing

slope and sinceU (pt, t) is proved to be a convex function ofp. Therefore the second and fifth terms of (71) are non-negative.
HenceZ

′′

2 is non-negative.

Z
′′

1 = w
(a)
B (2)E2(a)

B (2)qSt (1) (1− Pf,1) (1− Pd,1) E
′(a)
F (1)

(

1/w
′(a)
F (1)

)

U
′′

(

E(a)
F (1)E(a)

B (2), t+
2
∑

l=1

TSl

)

+ w
(a)
F (2)E2(a)

F (2)w
(a)
B (3)E2(a)

B (3)qSt (1) (1−Pf,1) (1−Pd,1) E
′(a)
F (1)

(

1/w
′(a)
F (1)

)

U
′′

(

E(a)
F (1)E(a)

F (2)E(a)
B (3), t+

3
∑

l=1

TSl

)

+ . . .

SinceU (pt, t) is a convex function ofp. ThereforeZ
′′

1 is non-negative, which completes the proof. �

Lemma 6: USO(pt, t) is an increasing and convex function ofp for a givent.
Proof:

RL′

SO= qSt

(

P̃d − P̃f

) [

U
(

E(a)
F , t+ TS

)

− U
(

E(a)
B , t+ TS

)]

+
qSt

(

1− P̃f

)(

1− P̃d

)

U
′

(

E(a)
F , t+ TS

)

w
(a)
F

+
qSt P̃f P̃dU

′

(

E(a)
B , t+ TS

)

w
(a)
B

(72)

Where

qSt =
1− FX (t+ TS)

1− FX (t)
. (73)

RL′

SO is non-negative asE(a)
F ≥ E(a)

B andU (pt, t) is an increasing function ofp. The second order derivative ofRL
SO can be

expressed as follows.

RL′′

SO =

[

qSt

(

1− P̃f

)(

1− P̃d

)]2

U
′′

(

E(a)
F , t+ TS

)

[

w
(a)
F

]3 +

[

qSt P̃f P̃d

]2

U
′′

(

E(a)
B , t+ TS

)

[

w
(a)
B

]3 (74)

SinceU (pt, t) is a convex function ofp. ThereforeRL′′

SO ≥ 0 and henceUSO(pt, t) is convex. �

Lemma 7: U(pt, t) increases inp for a givent.
Proof: This lemma can be proved using backward induction ont [15]. SinceU(pt, t) = 0∀t > t∗ (asU(pt, t) is convex in
p andU(1, t) = 0, ∀t > t∗). Therefore,U(pt, t) is an increasing function ofp, ∀t > t∗. Assume that fort ≥ t∗ − k, U(pt, t)
increases inp. Let us now check whetherU(pt, t) increases inp or not for time instantt = t∗−k− 1. Using (22), and since we
proved thatUTR(pt, t) , UTS(pt, t) , USO(pt, t) , andUCS(p̂t, t) are increasing functions ofp (Lemmas ((2), (4), (6)). Note that
U(pt, t

∗ − k) increases inp by the induction hypothesis. Therefore,U(pt, t
∗ − k− 1) also increases inp. �


