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Abstract

In this paper, we exploit recent advances in full-duplex (FD) comnatinns and self-interference suppression (SIS) to improve
the performance of an opportunistic spectrum access (OSA) syspatifi§ally, we consider secondary users (SUs) that are equipped
with SIS-capable radios. These radios can operate in a simultaneosmisaion-and-sensing (TS) mode to improve the detection
probability of primary users (PUs), or in a simultaneous transmissidrseception (TR) mode to enhance the SU throughput. The
radios can also revert to the standard sensing-only (SO) mode armpedhannel switching (CS). The competing goals of the
full-duplex TS and TR modes give rise to a spectrum-awareness/efficteadeoff, which can be optimized by allowing the SU link
to adaptively switch between various modes, depending on the forddastaelynamics. In practice, SIS is imperfect, resulting in
residual self-interference that degrades the sensing perfornmatice TS mode. Accordingly, we adopt a waveform-based sensing
approach, which allows an SU to detect (with high accuracy) the PU sigriiaé presence of self-interference (and noise). In such
a context, we analyze the sensing performance in the TS mode by dethénfalse-alarm and detection probabilities. We also
derive the throughput and the PU-SU collision probability for the TS andmidgles, which we then use to establish an optimal
mode-selection strategy that maximizes an SU utility function subject to draorison the PU collision probability. This utility
rewards the SU instantly for successful communication (throughput)also includes a long-term component that depends on the
outcomes of the action taken by the SU (the selected mode from thHgBetTS, SO, C$). Our results show that the proposed
adaptive strategy results in abdii% reduction in the collision probability and twice the throughput of the half-dupbese. The
results also indicate that the SU should operate in the TR mode if it has a Highrbgarding the PU idleness over a given channel.
As this belief decreases, the SU should switch to the TS mode to monitor angeln the PU activity while transmitting. At very
low belief values, where the PU is highly likely to be active, the SU should switc@nother channel.
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I. INTRODUCTION

Until recently, the idea of simultaneous transmission awtption over the same channel (STAR-S) was not deemedfmossi
The reason is that while a wireless device is receiving diggapwn transmission produces strong self-interferencdeichv
makes the decoding process impossible. One way to solveptbldem is to suppress the node’s self-interference. Hewev
traditional self-interference suppression (SIS) techeg(e.g., RF and digital interference cancellation) hatdaen sufficient to
suppress the self-interference signal so that STAR-S dangkace. Even simultaneous transmission and receptiondifferent
frequencies (STAR-D) is not straightforward, particwanthen the transmit and receive bands are not sufficientlarségd (in
practice, filters are not ideal, and sidelobes/spectrdialga is deemed to occur). In this paper, we focus on STAR<S rtbre
challenging case), which we simply refer to as full-dupl&®) communication.

By combining novel and traditional SIS techniques, the axghin [1]-[5] have demonstrated the feasibility of FD com-
munication. In [1], the authors proposed an antenna-bas&deghnique in which two properly placed transmit antenaag
one receive antenna are used to nullify self-interferericthe receiving antenna. This technique has three main drekgb
First, it generates additional interference in the far figlel., it increases the interference at the receivers dafratiodes in the
neighborhood. Second, it has a bandwidth limitation, asrara placement is determined by a single carrier frequétmyever,
wireless transmissions typically involve a band of frequies. Third, the peer node may fall into a deep fading regioe @
the appearance of destructive interference points in théefld. These concerns were addressed in [2], where the sutised

This is a technical report for our paper titled "Adaptive fisaission-Reception-Sensing Strategy for Cognitive Radith Full-duplex Capabilities”, which
was Published in IEEE DySPAN 2014.



only two antennas and proposed an interference cancellatechanism based on signal inversion. Recently, the aithdg]
proposed an FD system for 802.11ac devices using only oremnat The main objective of these works is to bring down a
node’s self-interference to the noise level. As an exangpM/iFi device has to suppress around 110 dB of its own tratenit
signal (assuming a transmit power of 20 dBm) to reduce it &rthise level [6].

In parallel with the developments in SIS techniques, thereshbeen a number of works that exploit SIS/FD capabilities i
network-protocol design, in the contexts of MIMO commutiimas [7]-[10] and dynamic spectrum access (DSA) [11], [12]
Assuming multiple antennas per node, the authors in [10lesded the issue of choosing between MIMO and FD, as both nee
multiple antennas. They showed that the optimal strategy éembination of both schemes. In [13] the authors studiedepo
control in wireless FD devices with imperfect SIS. They deged an optimal dynamic power allocation scheme that maeisn
the sum-rate of a number of users.

In this paper, we consider a DSA system, where secondary ((S&is) have imperfect SIS capabilities, allowing them to
suppress a fraction of their self-interference. This phiSIS capability can be exploited to support simultaneoassmission-
and-sensing (TS) by the SU so as to reduce the collision piiitiyawith primary users (PUs), or simultaneous transtioissand-
reception (TR) to enhance the SU throughput. The abilitygerate in either mode gives rise to a spectrum awarenessry
tradeoff. More specifically, an SU may improve the spectruitization by operating in the TR mode, which will dramatiga
increase the throughput of the SU link. On the other handSthenay exploit its SIS capabilities in the TS mode, enablirtg i
monitor the PU activity while transmitting and to quicklycate the channel whenever such activity is detected. Thitvates
the need for an “optimal“ transmission-sensing-recepsitvategy introduced in this paper.

In a practical DSA system, SUs may have to switch to a diffeogeration mode rather than the TS and TR modes to either
avoid collision with PUs or to exploit another opportunity @ different channel. Specifically, since the sensing efficy in
the TS mode decreases as the SIS efficiency decreases, incasggethe SU needs to operate in a sensing-only (SO) mode t
achieve an acceptable sensing outcome. Also, having aved§ahigh belief that the PU is active may return a high it
probability in the TS/TR modes. In that case, the SU shoudp stansmission and just monitors the channel. Considaliag
availability of multiple idle channels, an SU may decide &rfprm channel switching (CS) if the PU is more likely to metu
to the current operational channel.

An important aspect of the system design is to determinetthégy followed by SUs to adaptively switch between défar
modes (TR, TS, SO, and CS), considering the highly dynaméctspm environment and the possibility of colliding with U
Our objective is to find the optimal strategy that maximizes $U’s utility (e.g., goodput) under a constraint on the BUision
probability. This strategy is found to be threshold-baseith thresholds that depend on the SU’s belief about the Rtite.
Based on this belief, the SU will take an optimal action arghtbpdate this belief according to the outcome of the actikan.
The outcome is ACK/NACK in case of a transmission decisio@efbusy in case of a sensing decision, and decoded/ureticod
in case of reception. The SU may also get a combination oktbescomes in the TR and TS modes.

The problem of finding the optimal access strategy at an Slitdéas been studied before [14]-[17], but for half-dupld)
devices. In [14], the authors considered the quickest teteproblem of the PU idle period when multiple PUs are pnése
In their scheme, the SU chooses an action from the followapgctrum sensing, channel switching, or data transmisSioa
authors in [15] studied the sensing-throughput tradeodf proposed a scheme in which the SU can have multiple congecut
sensing or transmission periods, determined accordinge&t’s belief about the state of the PU. In their scheme, thén&s
only two options: spectrum sensing or data transmissior. difjective was to maximize the SU’s utility, which rewartle SU
for successful transmission and penalizes it for collisiohnother adaptive scheme was proposed in [17], where andanp
transmitter adapts its sensing and transmission duratioosrding to its belief regarding the PU state of activitythis case,
the SU can either stay idle, sense the spectrum, or trantndata. The motivation behind the “staying idle” action wasave
energy when the probability that the PU is idle is very low.

In [11], we proposed applying SIS/FD in DSA systems and thiced the TR and TS modes. However, our treatment was
limited to energy-based spectrum sensing (for the TS mdeegrgy detection cannot differentiate between a PU signdl a
a residual self-interference signal. Hence, it is ineffitiander low SIS capabilities. This problem is unlikely toppan in
waveform-based sensing, whereby the sensed waveform tsasted with well-known patterns (pilots, preambles,)et.the
PU signal. In [11], we also studied the traditional sendimgpughput tradeoff for the TR and TS modes and determined th
optimal sensing and transmission durations for the SU thatimmzes its throughput subject to a constraint on the SU/PU
collision probability. However, this paper is differentdagise in [11], we only considered the TR and TS modes. Unlile t
paper, we have not discussed in [11] the belief update psptlkes outcomes of different modes, the utility formulation the
derivations of the optimal strategy.

The contributions of this paper are as follows. First, wesider a DSA system where SUs are partially capable of SIS.
We analyze the waveform-based spectrum sensing techniqubd TS mode, which is crucial especially at imperfect SIs]
derive the false-alarm and detection probabilities. Sécove derive the probability of successful transmissiontfar SU, its
achievable throughput, and the PU collision probabilitybsth TS and TR modes, taking into consideration that SIS neay b
imperfect and assuming different channel conditions atcttramunicating SUs. Third, we propose an optimal adaptirstesiy
at the SU for switching between the TR, TS, SO, and CS modesciiteria for choosing the optimal action is to maximize the
SU’s utility subject to a constraint on the PU collision pability. To achieve this goal, we formulate the problem asadially



Fig. 1. System model of our DSA network, where SUs are equippiéid SIS/FD capabilities and opportunistically access $pectrum of PUs. An SU
consists of a transceiver {Bx acts as a transmitter, while;Bx is the receiver) with a given SIS capability factey.

observable decision process and analyze the four actiorisrimulating the myopic and long-term rewards. To the besbuf
knowledge, this is the first paper to address the optimaktrégsion-reception-sensing strategy for SUs with imper/SIS
capabilities.

The rest of the paper is organized as follows. We describesyiséeem model in Section Il. In Section IIl, we derive the
false-alarm and detection probabilities under wavefoasel sensing for the TS mode and compare them with the HD case
We formulate the SU decision process and obtain the optii@btave SU spectrum access strategy in Section V. Finaigy,
present our numerical results and conclude the paper inoBsct and VI, respectively.

II. SYSTEM MODEL

As shown in Figure 1, we consider a DSA network, where SUs ppwitunistically operating on the licensed PUs channels.
PUs can access the available channels at will, and are not afithe SU’s presence. The PU activity is modeled as amailtieg
ON/OFF random process. Let the OFF and ON durations be diibytél andY’, with corresponding probability distributions
fx and fy, and meansX andY’, respectively. These distributions are assumed to be amtmt and can be constructed at the
SU through measurements [18], [19].

Each secondary device is capable of partial or complete &i8hling it to operate in the TS and TR modes, along with the
SO and CS modes. We usg to quantify the SIS capability of théh SU, x; € [0,1]. Specifically, y; is the ratio between
the residual self-interference signal and the original. dhe; = 0, the node can totally suppress the self-interference kigna
(i.e., perfect SIS); otherwise, it can only suppress a ifbact — y; of its self-interference (i.e., imperfect SIS). As an ex&mp
for a residual self-interference signal of power (in wagglal to1% of the power of the original self-interference signal, this
translates intoy; = +/0.01 = 0.1. x; may differ from one node to another, depending on the empI&I& technique.

We assume that at a given time instant, and a given frequenby,one SU link is active in a given geographical area. Hence
we focus on the case where different SU links cannot interfeith each other, for example, by implementing an apprtgria
channel access scheme. Existing techniques can be useckle tiae issue of secondary-secondary interference (e fi
example), and will not be addressed here. Peindo? denote the transmission power and noise variance at f)catel leth;;
be the channel gain between transmittand receiverj. Although the opportunistic spectrum consists of multigihannels, the
SU can only monitor/operate on one channel at a time. Semsirtiple channels has already been discussed in severatgap
and can be easily incorporated [21].

To sum up how our system works, consider the secondary linkwshn Figure 1, which consists of two nodes, Sahd SU.
SU;, for example, starts its communication with its peer withigitial belief value. Depending on the adaptive accessesisa
the SU chooses the optimal action that maximizes its utiityle maintaining a certain QoS threshold for the PU comrmation.
The action’s outcome may be ACK/NACK in case of transmissfoge/busy in case of sensing, and decoded/undecodedeén cas
of reception. The SU may also get a combination of these outsoin the TR and TS modes. Depending on these outcomes
the SU updates its belief about the PU state. Getting an A€&lflecoded outcome will increase the SU’s belief that tiasP
idle with a certain degree. However, getting a NACK/busgeroded outcome will increase the SU’s belief that the PUissyb
Based on this belief, and according to our spectrum acces®egy, the SU will take the optimal action, and so on.

A. SU Operation Modes

1) TS mode:Using SIS techniques, the SU can carry out the spectrumragpsocess while transmitting its data. This has
two advantages over the Listen-Before-Talk (LBT) scheniistHFrom the SU's perspective, transmitting while segsincreases
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Fig. 2. FD operation modes for the SU.

the SU throughput, and reduces the frequency of interrgptintransmission (such interruptions are detrimentaintp real-time
communications). Second, the SU can monitor the PU actwhiite transmitting. Hence, a better PU detection perforoeais
achieved. This parallel sensing process may be done ovéipfaulconsecutive) short periods instead of one long sengeriod.

To do that, the SU performs: sensing actiond’s;, ¢ = 1,2,...,m, while transmitting data for a period &f seconds (see
Figure 2(a)). The motivation behind this approach is to aotdor the tradeoff between sensing efficiency and the timek

in detecting PU activity. On the one hand, increasing thesisgnduration improves the sensing efficiency. Howeverhsarc
increase implies delaying the time to make a decision réggrthe change of PU activity. Thus, in the TS mode, we have
a total of m sensing durations. If at the end of any given sensing peifidl,activity is detected, the SU aborts its current
transmission and updates its belief to determine the neidradVe use the ternkFD sensingto refer to the sensing process
in the TS mode. Note that under imperfect SIS, such sensiagiaase performance than the traditional SO mode due to the
residual self-interference signal.

2) TR mode:In the TR mode, the SU transmits and receives data simultesheover the same channel, as shown in Figure
2(b). Denote the transmission and reception durations’bgnd T, respectively. For simplicity, we assume thgt = 7.
Although operating in the TR mode enhances the SU’s throuighpe SU will not be able to monitor the PU state. Hence, the
probability of colliding with the PU will be higher than thaf the TS mode.

3) SO mode:In this mode, the SU senses the spectrum for a durdtignvhich we refer to a$iD sensing Under imperfect
SIS, the TS mode is not always efficient. Hence, the SU mayckwii the SO mode to get more accurate sensing results.

4) CS mode:The SU may switch to another channel and carry out spectrunsirgg on this new channel if it believes that
the PU is very likely to return to the currently used chanisisting techniques can be used to select the channel geosier
(see [22], for example). However, any previous informatdsout the new channel that was obtained from prior senstegpts
are discarded.

Although we will not consider the transmission-only (TO) eieoas an option, we will use it for comparison purposes. The
reason for not considering it is that the sensing cost is simegligible. Hence, there is no advantage of the TO modetbee
TS mode.

Ill. WAVEFORM-BASED FD SENSING

A significant amount of DSA literature has focused on endrgyed sensing. Despite its simplicity, this technique cainn
differentiate between different types of users. In the TSlengesidual self-interference can cause energy detetdiamongly
indicate PU activity. In this paper, we study the sensinggoerance of the TS mode, assuming waveform-based sensing.

Waveform-based sensing utilizes known patterns in the Bdasi such as preambles and pilot symbols. These patteens ar
typically used for channel estimation, synchronizatiaqyaization, etc. To detect the presence of the PU signalefeam-based
sensing correlates a known pattern with the received si@33| [24]. In this section, we analyze waveform-based senander
FD operation and derive the false-alarm and detection ibities for the SU, assuming a given SIS factor

In the TS mode, the hypothesis test of whether the channeldspied by a PU or not can be formulated as follows:

(n) = X s(n)+w(n) Hy (if PU is idle) (1a)
"L Um) 4y s(n)+w(n)  H (if PU is busy) (1b)
wherer(n) is thenth sample of the discretized received signdh) is the self-interfering SU signal(n) is the received PU

signal, andw(n) is the additive white Gaussian noise with variamce We assume that(n) is a zero-mean complex random
signal with variancer2. We also assume that all signal samples are independerte hen)’s are also independent.



In the case of HD sensing, where no self-interference isepteshe hypothesis test can be written as:

[ w(n) H, (if PU is idle) (2a)
7n) = { I(n) +w(n)  H (if PU is busy) (2b)

wherer(n) is thenth sample of the received signal in the HD case.

The performance of any sensing technique is measured byfgedlarm probability Py) and the detection probability?;).
P; and P; are defined as the probabilities that the SU declares theedestsannel to be busy given hypotheéis and H;,
respectively. A good system should have highto reduce collisions between SUs and PUs. At the same tinmyer IP°; value
results in a higher SU throughput due to a reduction in theseddransmission opportunities.

The decision metric, denoted By, in waveform-based sensing is based on correlating thévezteamples (n)’s with known
pattern samples, and then comparihfgagainst a given threshokd to determine the state of the sensed channel. Formally,

is given by:
N
Eymwmﬂ (3)
n=1

wherel*(n) is the conjugate of(n), N is the number of samples, ait is the real value. Substituting (1a) and (1b) into (3),
we obtainM under hypothesid¢i, and H;, denoted byM, and M;, respectively:

M = Re

N
My =Re | Y (xs(n)l*(n) + w(n) l*(n))] (4)
n=1
N N
M, = Z |l(n)|2 + Re Z (x s(n)l*(n) + w(n) l*(n))] . (5)
n=1 n=1
For FD sensingPy and P; are given by:
Py =Pr[My > =1~ Fu,(7) (6)
Py=Pr[M; >7] =1~ F, (3) W)

where Fyy;, (v) and Fy, (y) are the CDFs of the random variablg$, and M, respectively.
Proposition 1: Using the central limit theorem (for a larg€), the pdf of M, can be approximated by a Gaussian distribution
with meang,,, = 0 and the following variance:

N
o3 = 5 B s E i) +E [wm)*E ()] - (®)
Hence, the false-alarm probability can be written as:
&Q(T;Tﬂ (©)

where( is the complementary distribution function of a standardi€d&n random variable. Substituting for,;, and aﬁ/jo in
(9), we get the false-alarm probability for FD sensing atofos:

ol 2
Py = N 1
=9 (x%g v VN SNFéFD)> (10)

where SNR™D s the SNR at the secondary receiver while sensing the spedtr the FD case and is given by:
E [I(n)]?
X2E [s(n)|* + E Jw(n)[*

Note that SNRP) contains the self-interference term, in addition to nolerthermore, the number of samplés can be
described as a function of the sensing durafign, i = 1,2,...,m, and the sampling ratgs as follows:

N =Tsifs. (12)
Proposition 2: For a largeN, the pdf of M; can be approximated by a Gaussian distribution with megn= N E |l(n)|2

SNAD) —

(11)



and the following variance

N|E i) = E? |i(n)[*

2
oMy =

+5 (B s B i) + B w(n) B |Z<n>|2)].

See the Appendix for the proof of the previous two proposgio
The detection probability for the waveform-based FD semsian be written as follows:

Pi=Q (”‘“M) | (13)

0’]\41

Substituting foruy, ando3, in (13), we get:

v/ (XQO'E + 012“) — N SNE™)
\/N [(a — 1) (SNFFP)? ¢ SNFéF'”/z}

where « is a parameter of the PU signal that is related to its randemfiz3]. As an exampler = 2 for complex Gaussian
signals and can range from 1 to 2 for other signal types. Ftyma is defined as follows:

w E [I(n)[*
o = 72
E2[i(n)]

The false-alarm and detection probabilities in (10) and {@4FD sensing converge to HD sensing at perfect SIS (j.e=,0),
as shown in the following equations for a specific sensingtiom 7's;, ¢ = 1,2,...,m:

) p
Fr=0 <;V N SNFéHD)> (10

v/ (¢2) — N SNR'D
\/N [(a — 1) (SNRFD)? SNF@HD)/2}

Pi=Q

(14)

(15)

Pi=Q

17)

where P; and P, are the false-alarm and detection probabilities for HD smpsespectively, an@NR' is the SNR at the
secondary receiver while sensing the spectrum in the HD: case

SNHHD) — E [I(n)[*
E w(n)*

Py and P; derived in (10) and (14) for FD sensing are functions of thessey thresholdy. The optimal sensing threshold
~* can be determined according to the system requiremenit8;oend (1 — P,). For a targetP; or Py, v* can be calculated
by finding the inverse of thé)-functions in (10) and (14), respectively. As an example,dsystem with a requirement that

Py and (1 — P;) are equal. The optimal sensing threshgldcan be determined by equatidey with 1 — P; in (9) and (13),
resulting in:

(18)

o= KMoO My + A O M,

19
P, (19)
Substituting thisy* in (9) and (13), and after some mathematical manipulatisrgspbtain the following forP; and P;:
VN SNRD
Pr=Q (20)
\/(a — 1)SNR™D) + 1/2 4 ,/1/2
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VN SNR™D)
\/(a —1)SNR™® 1 1/2 + /1/2

P;=1-Q (21)

IV. OPTIMAL SU STRATEGY
In this section, we present an optimal strategy for opegadéin FD-capable SU link.

A. Problem Formulation

To optimize the selection of the operational mode at an SU fameulate the problem as a partially observable decision
process. LetS = {0, 1} be the state space, which defines the actual state (idle gj bithe channel currently being observed
by the SU. The action space at an SU is givendy= {TR TS SO CS}. While observing the PU channel, the SU has to
choose an action from the sdt The outcome/observation space for the SU depends on tlom daken. Since the TR action
consists of two simultaneous processes (transmission eception), there exist two outcomes for each of these pseses
Specifically, for the reception part, the SU will observe theécome{D}, which means that the SU was able to decode the
received message, or the outcofié}, which stands for undecoded message. For the transmisaibofithe TR mode, the SU
may get ACK or a NACK from the peer SU, which are denoted{bl} and { N}, respectively. Similarly, a TS action consists
of two simultaneous processes (transmission and sensiihg).SU will also observe two outcomes for the sensing process
({F'} for free or{ B} for busy). The outcomes of the transmission part of the TS mode ardasittai that of the TR action.
Finally, the observed outcomes for the SO/CS actiong &tpor { B}. Altogether, these various actions result in an obsematio
spaceO = {D,U, A, N, F, B}. Later on, we present a reward function, which maps the stadeaction space to a reward value.

Our objective is to let the SU choose actions sequentiallynie so as to maximize the expected reward over some randorn
finite horizon. This can be done using stochastic dynamignamming. It is known that the sufficient statistics for chiog
the optimal action at each timeis the belief [25], which is defined as the a posteriori prdlitsbp, € [0,1] that the PU is
idle at timet given the observation history. We consider a similar sewng15] for the partially observable decision process



part, where the time index is defined as the time elapsed since the PU has switched fromioGIN-F. Hencet = 0 is the
start of the PU idle period (with some negligible error conggiato the actual start of the PU idle period), which is assime
to be known to the SU, and therefopg = 1 — P;.! Starting from¢ = 0, the SU keeps tracking of time, and applying the
optimal mode selection policy until switching to a new chalnfCS action). At this time, the SU resets the algorithm aeelps
sensing/switching between different channels until datgithe start of the PU idle period. Once the beginning of & jmkriod

is detected, the SU sets its timer#e= 0, and then starts applying the optimal policy. While derivimgr optimal policy, we
assume that both communicating SUs always have data tortitalkdowever, at the end of this section, we will discuss tharen
general case that accounts for the traffic flow between diffeSUs.

Figure 3 shows a simplified example to illustrate how the SU adaptively choose its optimal actions and update itsefeli
according to the resulting outcomes. In this example, weehtexw channels fj and f>) occupied with PUs, and an SU link,
where two SUs are trying to opportunistically communicateame of these channels. Assume that the SU starts monitoring
channel f;, which is happened to be busy. After getting multiple busycomes, it decides to switch to another chanfigl
which is sensed free after multiple busy outcomes. At thimtpthe SU starts its timer (i.et, = 0). In that case, the belief
happens to be larger than a certain threshold (say, thiksd)plthen the SU starts with the TR mode. The outcomes of the
first TR action are ACK and decoded. Hence, as shown in theefighe SU’s belief increases and recommends the TR mode
again. However, it happened that the SU receives a NACK ani@ceoded for the third TR action (may be for a deep fading
at this time instance). The SU then updates its belief, wiiebreases below threshold 2, which implies that the SU ghoul
sense the spectrum (i.e., SO mode). The SU keeps sensihghentielief goes over threshold 2. In that case, the SU sestch
to the TS mode and updates its belief according to the outsdhmet it gets. The SU continues switching between different
operation modes and updates its belief accordingly as shhowigure 3 until its belief goes below threshold 1. In thasedhe
SU switches to another channel, and so on. Note that the Pehased to channef,, while the SU is operating on the same
channel. However, it happened that the SU is in the TS mod&hwhakes the SU detect the PU activity while transmitting.
In that case the SU stops its transmission quickly to preeshision with the PU (see Figure 3 above).

Following any given actiom € A and depending on the observatiore O, the SU updates its beligf, and will also gain
a certain reward. Letr be the policy that maps the SU’s beligf to the action space € A at each timef. Define the value
function U(p:, t) as the maximum expected total reward at timeshen the current belief i®,. This function specifies the
performance of the optimal policy*, starting from beliefp,. Based on Bellman equation, we have the following:

U(pe,t) = max {Utr(p¢, t), Urs(ps, t), Uso(pe, t), Ucs(pe, t) } (22)

whereUrr(pe, t), Urs(pe, t), Uso(pe, ), andUcs(pe, t) are the expected total rewards if the SU decides to operdteeiiiR, TS,
SO, and CS modes, respectively, at timand then follows the optimal policy*

Lemma 1: U(p,t) is a convex function op for a givent.
Proof: We use a similar argument as in [15], [26] to prove this lemiet 0 < A < 1 and0 < py,ps < 1. Assume that the
initial statep is determined according to the outcome of flipping a biassd-with a probability\ that a head appears. We set
p = p; if a head appears, ang= p, if a tail appears. The best reward that we can get if we knowotiteome of the coin
flipping is AU (p1,t) + (1 —\)U(p2, t). However, if we do not know the outcome of the coin flippinge thest achieved reward is
U(Ap1+(1—XN)po, t). Since, the best reward with no information will not be higtien that achieved with information available.
Therefore U (Ap1 +(1—A)pa, t) < AU (p1,t)+(1—=X)U(pa2, ). [ |

B. Reward Function

In this section, we formulate the SU utility for various acts. Define the immediate and expected future reward thabthe
gains from taking actiori as REM) (M for myopic) anngL) (L for long-term), respectively. The probability that ti SU

observes outcome is denoted bw;ff). The updated belief probability for outconaeat node: is denoted b)&(,i). Defineqt(T)

as the probability that the PU will remain idle during thensenission period’, given that the PU is idle at time Similarly,

definqus) (i) as the probability that the PU will remain idle durifig;, = 1,2,...,m, given that the PU is idle at the start
of this sensing duration. These two quantities can be egpdeas follows:

(T) _ 1 —Fx(t+T)
& 1— Fy(t)

1—Fx (t + 23;11 Tsj)

where F'x (t) is the CDF of random variabl& evaluated at point.
Next, we derive the reward function for various SU modes.

(23)

(24)

1As an example, the SU may keep sensing a busy channel in an HDrfasfttil it gets a free outcome. In that case the initial Hetig = 1 — Pf.



1) TR mode:The myopic reward for the SU link, consisting of nodesind b, under the TR mode can be formulated as
follows: , _
R = 3" wiTlog (1+ SNRR). (25)
i€{a,b}

wherewD is the probab|I|ty that théth SU has successfully decoded the received messagesmﬁ@ is the SNR in the TR
mode at node, which is given by:

P; |hil*
o2 + 2P |h”|

In (26), h;; is the gain of the self-interfering channel at nade

Since the two communicating SUs may experience differeanihl conditions, the ability to receive data differ fromeon
node to another. Although, we assume that the PU signaltaffemth SUs equally, the interference level may differ frone o
node to another because of other interference sourceseHarsuccessful decoding process at one node does not ingplhth
other node will be able to decode its packet. Also, the SU btijgh an ACK although the PU is ON, due to deep channel fading
between the primary transmitter and the secondary recéileof these features are captured in the following two @oiities,
which may differ from one SU to another [15]:
5[({): probability that theith secondary transmitter receives a NACK although the PU is. OFF
61”: probability that theith secondary transmitter receives a NACK given that the PU is ON

When the ACK/NACK reflects only whether a collision occurstwihe PU or not, we havé(f) =0 and 6@ = 1.
The probability that theth SU, i = a, b successfully decode the received message is as follows:

wh =pai” (1-8) + (1-pa™) (1-01). (27)

where: denotes the peer node of SU nadg.e., for link (a,b), if i = a, theni = b and vice versa).
Using Bayes’ rule, the probability that the PU is idle affelgiven that theith SU successfully decode the received message
(i.e., the belief update) is:

SNRY = (26)

&y = [mat” (1= )] ). (28)

Similarly, the probability that théth SU failed to decode the received message and the beliefeijpd that case can be written,
respectively, as follows:

w? = pigt" s} + ( ptquT)) 8 (29)

P = {ptqt(T)%} Jwy). (30)

Since we assume that transmission errors in ACK/NACK ardigibte, the probability of receiving an ACK/NACK at node
is the same as the probability that its peer node succele'dlli;becodmg the message. This is also applled to the befidate for
the corresponding cases. HenaéA ,EA , N , andé’ will be formulated similarly aauD),SJ(J ,wU , and SU , respectively.
There are four possible outcomes for the TR mode An SU magivean ACK for correct transmission and be able to
successfully decode the received message, or the SU mayn el and an undecoded message. The other two outcomes o
the TR mode is to either get a NACK and a decoded message, orGKN#d an undecoded message. Hence, the expectel
future reward for an SU link obtained at thn SU can be formulated as follows:

= > wfluM U (g0t +7) (31)
k={A,N}
I={D,U}
where the summation over the two indiqds/) can be calculated by considering the four possible comibimsif A, D), (A, U),
(N,D),(N,U).
Finally,

Utk (pe, t) = RYy) +n RLR (32)

wheren € [0, 1] is the discount factor, which determines how far you takeftitvere reward into consideration while formulating
the secondary ut|I|t|es At; = 0, the SU only cares for the immediate reward. The final beliefr will be the multiplication
of the two updates§ )5(1 , whereO; € {A, N}, andO; € {D,U}.

2) TS mode:The myoplc reward of the TS mode is different from that of te Mmode because the SU is monitoring the
spectrum while transmission. Hence, the SU could aborstméssion if a busy outcome is observed after &gy, j = 1,2,...,m.

)
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Therefore, the myopic reward in the TS mode, assuming that BUransmitting to SU; will be formulated as follows:
= [T w710 (1+SNRE) (33)
=1

where the SNR in the TS mode at noglés given by:

P; |h;|?
SNRY = - (34)
J

I, w? ) wfj) is the probability of successful transmission in the TS maedech has two conditions. First, SUgets a free
outcome after each and every sensing period ofrtheensing durations. This probability is denoted [4y" , w;f)(l). Second,

SU i receives an ACK from Sy at the end ofl’, which is denoted by probab|llty;A) DefineP; = [Py, Pt2 ... Pr.] and
Py = [Pa1 Pag2 ... Pam] asm-dimensional vectors that represent the false-alarm atettien probabilities, respectively, for
them FD sensing periods in the TS mode.

The probability of getting ACK/NACK from the transmissiomgeess and the belief update in the corresponding cases ar
the same as that of the TR mode. The sensing process has alsmtvomes, either free or busy. We assume that if the PU is
sensed free/busy at timeat one end of the SU link, then the other SU will experienceshmme situation. Also, if the PU is
sensed busy at any sensing period, this yields a failure agrimation and the SU should abort the TS mode.

Hence, the probability that thegh SU,7 = a, b gets a free outcome aftéis; can be expressed as follows.

wi (1) = pa® (1) (1 = Pra) + (1= g™ (1)) (1= Pay). (35)

Similarly, the probability that theth SU gets a free outcome afték;,j = 2,3,...,m given that it got a free outcome at
Ts(j—1) is as follows:

W () =0 () (1= Pry) + (1= () (1 = Pay). (36)
The belief update aftef's; andTys;,j = 2,3,...,m in the case of a free outcome can be written, respectivelfplmsvs:
& (1) = [pat” (1) (0 = Pr)| fuf () (37)
7 . S), . i)/ -
& () = |0 () (1 = Pry)| /w2 (). (38)
Similarly, the probability that théth SU, i = a,b gets a busy outcome aftéis; is:
w§ (1) = pat” ()P + (1 - pat™ (1)) Pas. (39)

Generally, the probability of getting a busy outcome affey,j = 2,3,...,m given that it got a free outcome @ ;_,) is as
follows:

wi () = 4 ) Prs + (1= V() Pas: (40)
The belief update aftef's; andTy;,j = 2,3,...,m in the case of a busy outcome can be written, respectivelfolmsvs:
& (1) = [paf® () Pra] iy (1) (41)
i) /. S)/ . i)/ -
&8 () = [ ) Pra] 10 (). (42)

TS mode is different from other modes as the SU may not coattiluthe end of the transmission duration. This happens
if the SU gets a busy outcome at the end of any sensing dur@tan = 1,2...,m. However, if the SU gets a free outcome
after every sensing periofis;,i = 1,2...,m, there are two possible outcomes. The SU may get a Free andféCe&brrect
reception or Free and NACK for incorrect reception. Puttaligtogether, the expected future reward in the TS mode can be
formulated as follows:

RY= Z 20 ]:[ ()U(g“)( JHf:‘” t+ZTsz>

=1

+ 3w T[ePou (5,5,“ [Tes @ ,t+T>
=1

(43)



11

Finally,
Urs(pe,t) = R 4 RY). (44)

3) SO mode:The immediate reward%(sjg) in the SO mode will be zero as no transmission takes place.olitmome of the
sensing process is either free or busy. The probability tfrgea free/busy outcome and the belief update in each casde
formulated similarly as the sensing part of the TS mode takito consideration that the SO mode consists of a singlsirsgn
periodTs. Hence, the expected future reward in the SO mode, assuma@t): is sensing the spectrum, can be expressed as
follows:

R = 3 wf'U (60,14 1T5) (45)
k={F,B}

where w<;> and wg) are the probabilities of getting a free and busy outcomespedtively, afterls. 51(,” and 81(3” are the
corresponding belief updates. Note that while formulatihgse quantities, we should include the false-alarm anectien
probabilities in the HD case (i.eR; and P;). Also, the probability that the PU will remain idle duringet sensing period’s,
given that the PU is idle at timewill be expressed as follows:

(8) _ 1—Fx(t+1Ts)

46
Hence we can write the maximum expected utility that the Sldggiom sensing the spectrum as:
Uso(pe t) =1 RS- (47)

4) CS mode:The SU might choose to switch to another frequency channkki@ no information about the PU state is
available) and carry out spectrum sensing, if the proltghiliat the PU returns is very high. The analysis for this afien
mode is the same as that of SO mode, except for the beglibEcause the belief in the new chanpelwill be the probability
that the PU is idle at time given that no previous information is available, which canviritten generally as follows:

p=X/(X+Y). (48)
The maximum expected utility for the CS mode is as follows:
Ucs (pe,t) = n Res (49)
where , »
R = > afu (&0, 1+1y) (50)
k={F,B}

wherewg),wg),ép and Sg) are formulated similarly aw%),wg),gg’) and 5,(3”, respectively, after replacing; by p;.
In the Appendix, we discuss the convexity and other propertif the SU’s utilitiesUrr (pt, t) , Urs(pt, t) , Uso(pe, t) , @and
Ucs (P, t) with respect to the belief. We also discuss hbp,, t) varies withp for a givent.

C. Optimal Policy

After formulating the SU utilities in the four possible amis and adding a constraint on the collision probabilityhvite PU,
our problem can be formulated as follows:

maximize U (p:,t)
subject to P; < Pf i {TRTS

whereP;,i € {TR TS} is the PU collision probability in the TR and TS modes, resipely and P;* is the threshold PU collision
probability. Prgr and Prs can formulated as follows:

(51)

Pre=(1=p)+p (1-a") =1 pg” (52)
m i—1 s
Prs=py_ 3 [T (1= Pr) (1=aG)) ¢ + (=m0, (53)
i=1 | j=1

For certain probability distributions for the PU idle peatias Gaussian distribution, uniform distribution, and Rayh distribution
(as an example)qt(T) will approach zero at large values tf This means that the probability that the PU returns toagtithe
channel increases with which is very intuitive for this type of distributions. Taelable to derive our optimal threshold-based
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policy, we define a technical condition similar to the appfo#ollowed in [15]. This technical condition states that &bl ¢ > ¢*,
the SU should not transmit any data (i.e. should not operatgther TR, or TS modes) as the collision probability caaistr
will not be satisfied and hence, zero reward will be gainecheatep; = 1. This threshold time&* is defined as the minimum
time where the PU collision constraint is not satisfied. Helg(1,¢) = 0, V¢ > ¢*.

t* = min {t : q,ET) <1- PT*R} . (54)
Theorem 1: The optimal policy for the SU can be written as follows:
CS Pt < Be
* SQ Bc S Y43 < ﬁs
T = 55
) =115 By < pr < By (55)
TR Dt > B

Proof: SinceUcs(p,t) is constant withp,, and Uso(p;,t) is @ convex increasing function @f (lemma 6 in the Appendix).
Therefore, There exist at most one intersection betweenvtbefunctions becausé&cs(p,t) > Uso(0,t). This intersection
occurs wherp, = p, which is denoted bys... This intersection exists wheh< 3, (i.e., under two conditions: strict PU collision
constraint and highly loaded PU networks). Although the ficndition is guaranteed, the second one is not. In that ttes80
region might disappear, and hengg= j3;. SinceUcs(p,t) > Uso(p:,t) for p; < . andUcs(p,t) < Uso(p:,t) for p; > S,
the first two lines of the policy shown in (55) are optimal givéhat the aforementioned condition is satisfied.

Urr(pt, t) andUrs(pe, t) are proved to be convex increasing functiongpft a givent (Lemmas (2), (3), (4), and (5) in the
Appendix). Sincd/Tr(1,t) > Urs(1,t) and since3; > [, (Generally, the amount of interference induced by the StherPU in
the TR mode is higher than that of the TS mode), therefore fumtttions intersects together @t. SinceUrs(py, t) > Urr(pe, t)
for p, < B: (asUrr(p:,t) goes to zero for violating the PU collision constraint) dg (p:, t) < Urr(p:, t) for p, > 5;, the last
two lines of the policy shown in (55) are optimal. Note that (p;, t) goes to zer&p; < 35 due to the violation of the PU collision
constraint. [ ]

The above theorem states that the SU should utilize the apptyr of having a high belief that the PU is idle and operate
in the TR mode ifp, > B;, where 3, is the transmission-reception threshold. In that case thendl dramatically increase
the throughput by transmitting and receiving data simaltarsly over the same channel. If the belief decreases asdrahe
following rangess < py < B¢, the SU should monitor the spectrum while transmitting. (iaperate in the TS mode) as the
probability that the SU returns is now relatively high, is called the sensing threshold. In that case, the SU stifingesome
throughput (lower than TR mode), however a lower collisiosol@ability is achieved. The SU should stop transmitting] aarry
out HD sensing (i.e., SO mode)jf is relatively low (i.e.,5. < p; < Bs) because in that case the probability that the PU returns
to the channel is too high and the PU collision constraint mok be satisfied. Hence, a better sensing quality and a tearijyo
channel vacation is required, is called the channel switching threshold. At very low bielialuesp; < 5., where the PU is
most likely to return to use the channel, the SU should takeG@B action. This happens when the probability that the PU is
idle in a new channel (where no information is available)ighbkr than the current belief.

To solve our problem, we have to find the threshold tihevhere our condition is satisfied and then apply backwardatidn
to find the threshold$., 5s, 5; and the maximum utility for the SW (p, t) for different values ofp andt.

D. Discussion of the optimal policy

In this section, we will highlight some important featuresonir optimal policy that should be considered in our FD DSA
network. Until this point of discussion, we assumed that Zlligays have data to transmit. That is, if the optimal policy
recommends the TR mode, then SUs will carry out simultané@msmission and reception over the same frequency. Bt wh
if one of the nodes does not have data to its peer at this if?sTdns motivates the refinement of our adaptive strategyetouant
for SU’s traffic flow. Before doing that, let us first discussanhwe define master/slave nodes, and data/control phase® in th
following two items:

e Master and slave nodes: A master node is a designation givenyt SU device that executes the optimal adaptive decision
strategy. The master node is the one that takes a final deciout the operation mode, whether receiving data while
transmitting, sensing the spectrum while transmittingit@ving to another channel, or solely sensing the spectitime.
slave node is the SU device that is receiving orders from thsten node with regard to starting, continuing, or stopping
transmission. This is done through control packets. In ttesgnt design, the node that initiates the communicatidieis
master node, and the other one is the slave node. Howeveg thkes may change over time, depending on which node
has traffic to send (i.e., the traffic directionality).

e Data and Control Phases: This concept is related to the iaiggnprotocol used between SUs, equipped with SIS/FD
capabilities, to communicate with each other. Once a cHastleought to be idle by the initiating SU, the time framelwil
be divided into two alternating phases: data phase andaiguitase. SUs will start communicating together in the data
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Fig. 4. False-alarm probability vs. sensing time for FD segsit different values of.

phase where data packets only are exchanged. Also, spestmsing is executed in the data phases as well. After that, &
control phase is established between the two nodes, whighwwagoals. First, this control phase is used to confirm the
correct reception of packets transmitted in the previoua ghase in both directions, if applicable. Second, therobnt
phase is used by the master node to trigger the slave nodartp&intinue, or stop transmission while receiving. If the
two nodes switch to another channel, the data and contraeshwill be terminated (until finding a free channel) and the
sensing durations can be optimized separately, withoutl#fte and control phases restrictions.

The four possible modes (TR, TS, SO, and CS) represent a&ssidjs perspective. However, the link’s operation is deteeth
by the mode of operation at the two communicating nodes. eledhese modes of operation should be written as followsTRR-
TS-R (or R-TS), SO, and CS. For instance, if an SU is tranBmgitind receiving data simultaneously, the other SU wilb dde
transmitting and receiving data, which is indicated by thR TR mode. However, if an SU is transmitting and sensingpésr
will be only in the reception mode, which defines the TS-R maedeere{R} stands for reception. The threshold-based structure
discussed so far has to be adjusted with the SUs traffic loadinStance, assume that the optimal strategy recommerds th
master SU to operate in the TR mode, while the slave node dateBave data to transmit. In this case, the master SU node
can operate in the TS mode while the slave SU can only receitee do implement this, the header of the transmitted packet
should be modified to include a bit (hame it the “more pack@@P) bit) that tells whether the transmitter has more packet
its queue or not. The two communicating SUs can utilize the tRo determine the final decision.

Another crucial point in FD DSA networks to be considered ur design is the FCC requirements. Consider the scenario
where SUs are operating in the idle PU period using the TR miodihe case of good channel conditions, both nodes will keep
ACKing their packets, updating their beliefs, and will netitth to any other mode unless they collide with the PU (int tha
case they will get NACKSs), or whet> ¢*. To avoid this blind communication without monitoring th& Bhannel, SUs should
periodically switch to any of the sensing modes (TS or SO}hdy violate the FCC requirements discussed next. The FCC
imposes rules for operating opportunistic wireless neltaoOne of these rules is the periodic sensing interval, Wwiheans
that any channel used by an SU has to be sensed &vefyseconds to check for the PU activity. The SU has to vacate the
channel quickly if a PU activity is detected. Hence, thistpdrthe decision strategy states that each SU link has totainia
maximum duration off’.., seconds between sensing periods, whether it was operatithg2 iSO or TS modes.

V. NUMERICAL RESULTS

We use the following parameters unless otherwise is mesdiomhe sampling frequency and the SU signal powerfgre-
6MHz ando? = 5, respectively andNR'® = —20dB. For evaluatingPy and Py, we consider a complex Gaussian primary
signal witha = 2. The PU idle period is uniformly distributed in the ran{fe1000]. We also sefs = 1, m = 30, T' = 30,

09 = 0.01, andd; = 0.99.

A. Performance Metrics

1) False-Alarm And Detection Probabilitiesthe impact of the residual self-interference signal/gnand P, for waveform-
based sensing is shown in Figures 4 and 5, respectivelyy Axreases the performance of the waveform-based senstag ge
worse (i.e.,Py increases and; decreases) due to the increment in the residual self-erte. We also notice th&t and Py
converges to HD sensing at perfect SIS. In imperfect sersthgmes, increasing the sensing duration improves therpehce
of the sensing technique. At low SNR regions, the SU needsndr@0% increment in the sensing duration to achieve the
sameP; and P; (achieved for HD sensing) fat0% residual self-interference from the original SU signal aeeds abous0%
increment inTs for x = 0.4 (i.e., for a residual self-interference signal thati¥s of the original transmitted signal).
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2) PU Collision Probability: The advantage of the TS mode over the TR mode is the lowersiouiliprobability. Figure 6
shows the variation of the PU collision probability for th& TTS, and TO mode with. As ¢ increases, the collision probability
increase as the PU is more likely to return to utilize the cleghnAs shown in Figure 6, the SU can achieve a lower collision
probability in the TS mode than that of the TR mode. This imprent may reach in certain scenarios up@t reduction in
the collision probability.

3) SU Throughput:Figure 7 shows a comparison between the achievable SU'sighput in the TS mode (assuming long
enoughTs) and the TR mode at different values pf The SU’s throughput in the TR mode decreaseg ascreases due to
residual self-interference. Hence, working in a FD fashi®omnot always optimal especially at highvalues. According to our
simulation setup, the threshold SIS factor where the SU ldhswitch to the TS mode ig;;, = 0.38. Also, ast increases the
SU’s throughput decreases due to the increment in the pildpabat PU returns.

B. Transmission-Sensing-Reception Strategy

We use backward induction to find the optimal thresholds dednhaximum SU utility. We sef = 0.3, Pjg = 0.2, P{g =
0.4, Py = 0.01, Py = 0.99, SNR'P) = 204B, andY = 2000.

The variation ofg;, 5, and 3. with t is shown in Figure 8, which shows the mechanism of our optoaéity. The SU should
operate in TR mode as long as > f;, switch to TS mode wher, < p; < 3, switch to SO mode whep,. < p; < §,, and
finally switch to a new channel whem < .. The SU should also switch to a new channel if ¢* as the PU is more likely
to return to utilize the channel, which justifies the conesrice of3;, 5, and 5. to 1 for ¢ > t*. Note thatg. is constant (for
t < t*) because it depends on the channel availability, when rarnmdtion is known. Hencej. = 500/2500 = 0.2 according
to our setup.

Figure 9 shows the variation of the maximum SU utilities foe TR, TS, SO, and CS modes wijth The final SU utility is
the maximum of these four utilities. Note that the utilitytire CS mode is constant withbecause it is independent of the SU
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belief in the currently used channel. The abrupt reductmmtifie SU utilities in the TR and TS modes is due to the viotatio
of the PU collision probability constraints.

VI. CONCLUSIONS

We consider a novel application of FD communications in DS#works, where we analyzed the performance metrics of
the TR and TS modes, namely the throughput and collisionglitity. We determined the optimal switching policy of SUs,
equipped with SIS/FD capabilities, that maximizes the Sutity subject to a constraint on the PU collision probébil To
enable the TS mode, we analyzed the waveform-based semsithg icase of imperfect SIS, and derived the false-alarm and
detection probabilities. Using our adaptive strategy, e can achieve aboui0% reduction in the collision probability and
double the throughput comparing to the HD case. Finally, gim@l threshold-based strategy is obtained, which dependhe
SU’s belief regarding the idleness of the PU. Our resultécateé that the SU should operate in the TR mode if it has a high
belief that the PU is idle. As this belief decreases, the Stukhadaptively switch to the TS mode to monitor any change in
the PU activity while transmitting. At very low belief valsgwhere the PU is more likely to be active, the SU should $wiitc
another channel.

One possible direction of future work is to address how SUkneigotiate in the control phase to determine the final actio
given that both nodes may have different traffic flows. Anotieection for future work could be to optimize the parabelnsing
durations of the TS mode taking into account the tradeofivbeh sensing efficiency and the timeliness in detecting Riitgc
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APPENDIX
A. Proofs for Waveform-based Sensing
Proof of Proposition 1: The mean ofM, can be expressed as follows:
N

par, = Re | > B (xs(n)1*(n) + w(n)I*(n))| =0. (56)

n=1

Sinces(n),l(n), andw(n) are independent, the above result holds. The SU signal (amthdy for other signals) can be
written as a function of the real and imaginary componentlews: s(n) = s.(n) + js;(n). Hence, the variance d¥/, is:

=

s = Y Var (Re[(xs(n) 1" (n) + w(n) " (n))])

= ]\;[X2 {Var (s,(n)l.(n)) + Var (s;(n)l;(n))} + Var (w,(n)l.(n)) + Var (w; (n)ll(n))]
=N [X*{E (s7(n) E (1F(n)) +E (si(n) E (I(n) }+E (wi(n)) E (I}(n))+E (wi(n) E (f(n))]

N
= 5 [CE s E )P +E [wm)]*E im)]?] - O
Proof of Proposition 2: Due to independence, the mean/df, is expressed as follows:
N N
par, = ) B l(n)]* + Re | Y E (xs(n)I*(n) +w<n)1*(n>>] = NE [I(n)” (57)
n=1 n=1

The variance ofA/; can be shown to be:

> [Var (|i(n)[*) + Var (Re [ s(n) I*(n) + w(n) ()|

n=1

=N {Var <|l(n)|2)—|—x2 {Var (s,(n)l,(n))+Var (s;(n)l;(n))}+Var (w,(n)l,(n))+Var (wi(n)li(n))}
= N[E i)' = B2 |i(n)
+ 2 {E () E (20) +E (£) E (200)} + B (02() E (120) + E (u3() B (2(0)) ]

= N[B i) ~ B2 i) + 5 (B s B i) + B w(m)*E i(n)]?)

B. Proofs for SU utilities
Lemma 2: Urr(p:,t) increases irp for a givent.
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Proof: To prove this lemma we have to show that the first order devivadf Urw (p:,t) with regard top is non-negative. We
will start first with the myopic reward and then the long tereavard of (32).

R =S o (5“) 5(i))Tlog (1+SN 2) (58)
i€{a,b}

Which is non-negative aﬁﬁi) > 56“. The long term reward consists of four terms as shown in (8d).the ACK/Decoded term,
we have the following:

Rig= (wwl)) U (€965t +T) + wulv" (€95, 1+ 1) (e9€]))
+(wg>wg>):y(gg>gg>,t+zv)+w§;> DU (eDe 1) (ggpg;p): o
+ (@) U (ePel) b+ 1) + wfuiU (Pe) e+ 1) (05
+ (0} U (PP 1+ 1) 4wl U (00 14 T) (ee))
Rie = [af (o - o ) )+ af (o1 5<“>) Ou (5<b)g<“>t+T)+w iU (ee) 1+ T) (gg’)gg”)/
+ ol (67 = o) wl) = of (687 - 8§”) w | U (65,4 +T) + wi U (Dl 1+ T) (6De”)
R ACE 5“’) 5l (517 = o) wd U (e b+ T) + w U (Pl L4 T) (PE)
+ [=af (68 = ) wi? — o (51 = 8§) wP | U (P68 1+ T) + wPwlU" (P 0+ T) (el
(60)

Rig=af (60" -o0") [wfy’ (U(s(%g”, t4T)-U(ePe5) 1+ 7)) 4wl (U(eD el 1+ 1) -v (el el 1+ 1))]
+af (810 =0{") [wi) (U(eDel e+ T) U(eyel t+ 7)) +ul) (U (el t+7) U (el t+ 7))
+wPwlU" (el 14+ ) (51()”)5,(3”) +up U (el 14+ T) (5}5”55“))/

Pl w0 (Ve 04 7) (609 4wl a0 (Ve 0+ T) (e0e)
(61)

Assume, for the time being, thé/t (pt, ) |s an increasing function qf (we will justify this assumption while proving lemma
(7) by backward induction). Smcé > 5 for i = a,b. Therefore, the following inequalities hold:

U(eDe t+T) > U (el t+7)
(e t+T) > U (Pl t+T)
U(ees) 1+ T) > U (el t+T)
U(ePes) t+T) > U (Pl t+7)

Therefore, the first four terms of (61) are non-negativealt also be proved th w,g’)gg)) ; (gg’)gg”) ; (5[(}’)51(3“)) ,and

58”55,“) are non-negative. Hence, the last four terms of (61) areradsenegative, which completes the proof. |

Lemma 3: Urr(p:,t) is a convex function op for a givent.
Proof: To simplify the analysis of this lemma, we consider the oabereéé“) = 5((f’) and 5§“) = 6@. From (58), the second
order derivative of the myopic rewarﬂ%” = 0. Next, we find the second order derivative of the long termarel



19

Rig=qf (5" = o) [ (&)t +7) —U (e, +7T)]

af (1-007) (1=01) U (e 0+ T)  oF a0 (et +T) (62)
* Q) i @
D U

R%é iS non-negative a§g‘) > EI(J“) and U (p,t) is an increasing function gf. The second order derivative étk; can be
expressed as follows.

Fi-o) (1-o) U (et +T)  aF ool U (57,4 T)

Ry =l (57 - )

5] e
. af (1-0") (1-01) 570" (e, +T) wly) - of (i —o) (1-0) U (&) 1+ T) gf (51 = 58")
o)
AR (£ ) ) P50 (e84 ) (5 - 387)
T
(63)
P T )y W ) R
1 ]
SinceU (pq, t) is a convex function op. ThereforeR%F'{ > 0 and hencd/tr (¢, t) is convex. [ |
Lemma 4: Urs(p:,t) increases irp for a givent.
Proof: o
R = (w0 (wd)) Twf” @7 10g (1+ SNRY) (65)
=2
R = (80) (Pas = Pra) ) + 0@ (0T (50 = 60)) [T o 0T o (1+ SN2 (66)
=2

GenerallyP; > Py andd; > do. HenceRTI‘g > 0. Next we will find the first order derivative for the long tereward in the TS

m

mode. To do that, we will split the long term reward shown i8)(#to two parts to beRfg = Z; + Z». Let Cy =[], wF ( ).

Zy = (v w1 )) U (5“’ IS0 t—i—T) +wiwi (U <€S’)ﬁ5}“)( t+T> G ) H‘S(a)
=1

=1

+@@@<U@UG9H%WH+ﬂ+£%@UQUG9H$Wm%ﬁ@@ )HW
=1 =1

(67)
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Zy = {qf (5§b> _ 5(<)b>) W@ (1) + w4 (1) (Puy — Pra } ) oo (5@ HS (@ ( HT)
=1

+a]le’ov (6%” [ IURE T) el (1-00) (1= Pra) + el () (1-687) (0 = Pay)|
=2 =1

. (68)

+ [=af (68 = ) wi (1) + waf (1) (Pay = Pra)| C1U («5‘5}’) [[&7 0.t + T)

=1

+a]e’ov (55}’) [T .t + T) [P (1= Pra) + 6l 7 (18 (1 = Pay)|
=2 =1

SinceU (p¢, t) is an increasing function agf (To be justified in lemma (7)). Simﬁg’) > Sl(]b). Therefore, the first and third
terms of Z, are non-negative. Hencé, > 0

Zr = w U (£57(1), ¢+ Tst) +wf) wy) U (687 (1)EF (2),t + Tor + T )
wi (N @ B)U (£ (1) ()5 (3),¢ + Ts1 + Toa + Tos) +

To simplify the proof, the first term of (69) can be safely regéd. The reason is that the probability of getting a busgaime
after Ts; (very small period) is almost negligible, given that is sufficiently large (to satisfy the PU collision probatyili
constraint) andn is large enough. Note also that the probability that the PWswmiitch its state duringl’'s; is very small given
that the PU’s ON and OFF periods are much longer than

(69)

Zy =g (1) <Pd,1—Pf,1>w$><2>U<sé“>< 1EY (2 H—ZTSI>‘HU( (i (2)U (8“ t+ZTsz) (1)EY (2)
=1
S - (a) (a) (a) (a) (a)
+ (1) (Pyy — Pra)w (20wl 3)U <5F (HEW (2)EY t+ZTSl>
+wi (Dwl (2)w) (3)U (82‘”( 1)EW (2 t+ZTSl> (EWM(2)E(3) +
>0 ||

Lemma 5: Urs(pe,t) is a convex function op for a givent.
Proof: First for the Myopic reward:

RiY" = 20T g7 ()] (Pas = Pra) (31" — 65" ) log (1+ SNRY) > 0 (70)

Next, we will find the second order derivative of the long teeward. LetCy = [];", 5}“)(0. We first start with findingZ,
and then proceed t4, .
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Z) = 2014745 (1) (55‘7) - 53“) (Pyy — Pp1) [U (5,(;’)5}“)(1)02,t n T) U (5$>5§“)(1)02,t+ T)]

+C10 [qF (60 = 60) wi) (1) + 0wl af (1) (Pay — Pr)] [V (5 W)Cat + T)]

+C1G3U" (el ()Gt +T) (51(;’)5;“)(1))/ [ meR) (1=6") (1= Pra) + &) (1= 6) (1 = Pay)

+ L0 (595;@(1)02,75 + T) [qfu)ggb) (1 - 5§b>) (1— Ppa)+ 4T (1) (1 - 55}7)) (1- pd,g}

+C1Cy [—th (5@ ) b’) w'® (1) + w5 (1) (Pas — Pf,l)} [U (5(@5;“)(1)02, t4 T)}

+oc2u” (595}?)(1)02, t4 T) (5“’)5(“)(1))/ [ S(1)EP 6 (1= Pry) +¢TED )0 (1 - PM)}

+CCU (5§b>5;“>(1)02,t+T) [ WEM S (1= Ppy) + T €LY 1)6 (1 _pdl)]

(71)

SinceU (p;,t) is an increasing function gf (to be justified) and sincé’g’) > 8[(}’). ThereforeU (SS)S}“)(l)CgﬂH— T) >

U El(]b)E}“)(l)Oz,t +T') and hence the first term cﬂ/’; is non-negative. Since convex functions have always areasing

slope and sincé/ (p;, t) is proved to be a convex function pf Therefore the second and fifth terms of (71) are non-negativ
HenceZ, is non-negative.

2} = w5 @)af (1) (1= Pra) (1 = Pan) 1) (1w (1)) U (5“‘) t+Z TSl)
+ w5 @ul 3R (3)aF (1) (1-Pr) 1-Pan) €47 (1) (1w (1)) U”(ef;“)( Ve Q)2 3). 1) Tsz)
Sincel (p,, t) is a convex function op. ThereforeZ, is non-negative, which completes the proof. [ |
Lemma 6: Uso(p:,t) is an increasing and convex function pffor a givent.
Proof:

R =qf (Pu—Pr) U (62,6 +T5) — U (6 + Ty)]
af (1= Pr) (1= B U (12,0 +T5) N GF PPl (€514 Ts) (72)

+
o @

Where
s _1-Fx(t+Ts)

RL( is non-negative ag\” > £ and U (p;,t) is an increasing function of. The second order derivative dt%, can be
expressed as follows.

i [th (1 —Pf) (1 —Pd)]QU” (5(“) t—|—Ts> [qfﬁfﬁ’drU” (8,(3“),254—T5)
SO —

+ (74)
[w(w]?’ {ww)r
F B
SinceU (pq, t) is a convex function op. ThereforeRég > 0 and hencdJso(py, t) is convex. |

Lemma 7: U(p,t) increases irp for a givent.
Proof: This lemma can be proved using backward inductiont da5]. SinceU (p;,t) = 0Vt > t* (@sU(p,t) is convex in
pandU(1,t) = 0,Vt > t*). Therefore,U(p,t) is an increasing function o, V¢t > t*. Assume that for > t* — k, U(p, t)
increases imp. Let us now check whethér (p,, t) increases irp or not for time instant = ¢* — k — 1. Using (22), and since we
proved thatUtr (pt, t) , Urs(pt, t) , Uso(pt, t) , and Ucs(py, t) are increasing functions of (Lemmas ((2), (4), (6)). Note that
U(ps, t* — k) increases irp by the induction hypothesis. Therefoi@(p;,t* — k — 1) also increases ip. [ |



