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Abstract—In this paper, we study the problem of federated
learning over a wireless channel with user sampling, modeled by
a fading multiple access channel, subject to central and local
differential privacy (DP/LDP) constraints. It has been shown
that the superposition nature of the wireless channel provides
a dual benefit of bandwidth efficient gradient aggregation, in
conjunction with strong DP guarantees for the users. Specifically,
the central DP privacy leakage has been shown to scale as
O(1/K1/2), where K is the number of users. It has also been
shown that user sampling coupled with orthogonal transmission
can enhance the central DP privacy leakage with the same scaling
behavior. In this work, we show that, by jointly incorporating
both wireless aggregation and user sampling, one can obtain
even stronger privacy guarantees. We propose a private wireless
gradient aggregation scheme, which relies on independently
randomized participation decisions by each user. The central DP
leakage of our proposed scheme scales as O(1/K3/4). In addition,
we show that LDP is also boosted by user sampling. We also
present analysis for the convergence rate of the proposed scheme
and study the tradeoffs between wireless resources, convergence,
and privacy theoretically and empirically for two scenarios when
the number of sampled participants are (a) known, or (b)
unknown at the parameter server.

Index Terms: Federated learning, Wireless aggregation,
Differential privacy, User sampling.

I. INTRODUCTION

Federated learning (FL) [1] is a framework that enables
multiple users to jointly train a machine learning (ML) model
with the help of a parameter server (PS), typically, in an
iterative manner. In this paper, we focus on a variation of
FL termed federated stochastic gradient descent (FedSGD),
where users compute gradients for the ML model on their local
datasets, and subsequently exchange the gradients for model
updates at the PS. There are several motivating factors behind
the surging popularity of FL: (a) centralized approaches can
be inefficient in terms of storage/computation, whereas FL
provides natural parallelization for training, and (b) local data
at each user is never shared, but only the local gradients
are collected. However, even exchanging gradients in a raw
form can leak information, as demonstrated in recent works
[2]–[8]. In addition, exchanging gradients incurs significant
communication overhead. Therefore, it is crucial to design
training protocols that are both communication efficient and
private.
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Since the training of FedSGD involves gradient aggregation
from multiple users, the superposition property of wireless
channels can naturally support this operation. Several recent
works [9]–[20] have focused on exploiting the wireless chan-
nel to alleviate the communication overhead of FL. Depending
on the transmission strategy, wireless FL can be broadly
categorized into digital or analog schemes. In digital schemes,
gradients from each user are compressed and transmitted to
the PS using a multi-access scheme. Digital schemes were
proposed in [9]–[11], where in [9] the gradient vectors are
first sparsified and quantized locally at the users by setting
the desired number of top elements in magnitude to one
value before transmissions. In [10], the authors modify the
digital scheme in [9] to allow only the user with the best
channel condition to transmit. In [11], the authors tailor the
quantization scheme to the capacity region of the underlying
MAC, which allows the gradient vectors to be quantized
according to both informativeness of the gradients and the
channel conditions. However, digital schemes require the PS
to decode individual gradients and then aggregate them.

For analog schemes, on the other hand, gradients are
rescaled at each user to satisfy the power constraint and to
mitigate the effect of channel noise. All users then transmit the
rescaled gradients via wireless channel simultaneously. Non-
orthogonal over the air aggregation makes analog schemes
more bandwidth efficient compared to digital ones. There have
been several recent works focusing on the design of analog
schemes for wireless FL. In [12], [13], wireless aggregation is
done by aligning the gradients through power control or beam-
forming. The communication efficiency is further enhanced by
incorporating user scheduling. In addition to power control,
[9], [10], [14] project the gradients to lower dimension prior
to transmissions to improve communication efficiency, where
[14] also utilizes user scheduling and only allows users with
good channel conditions to transmit. In [15], the authors focus
on minimizing the energy consumption of users in wireless FL
by formulating and solving an optimization problem subject to
latency constraints. In [16], the authors proposed a gradient-
based multiple access algorithm that let users transmit analog
functions using common shape waveforms to mitigate the
impact of fading. In [17], the authors provide convergence
analysis for wireless FL with non-i.i.d. data. Based on the
bound on the convergence rate, the authors of [17] optimize
the frequency of global aggregation based on the data, model,
and system dynamics.

There is a large body of recent work focusing on the design
of differentially private FL. Differential privacy (DP) [21]
has been adopted a de facto standard notion for private data
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Transmission scheme Without sampling With sampling

Orthogonal O(1) [31] O(1/
√
K) [25]

Wireless Aggregation O(1/
√
K) [27] O(1/K3/4) (Lemma 1)

TABLE I: Comparison for central privacy under: (1) orthogonal and
(2) wireless aggregation transmissions.

analysis and aggregation. Within the context of FL, the notion
of local differential privacy (LDP) is more suitable in which a
user can locally perturb and disclose the data to an untrusted
data curator/aggregator [22]. In the literature, there have been
several research efforts to design FL algorithms satisfying LDP
[23], [24], which require significant amount of perturbation
noise to ensure privacy guarantees. However, the amount of
noise can be further reduced when employing user sampling
[25], where users are sampled by the PS to participate in
the training in each iteration. However, sampling schemes
can be challenging in practice since they require coordination
between the PS and users, and may not be feasible if the PS is
untrustworthy. Hence, decentralized sampling schemes that do
not depend on the PS for coordination are desirable. To reduce
the dependency on the PS, Balle et.al. [26] recently proposed
a Random Check-in protocol. More specifically, users have the
choice to decide whether or not to participate in the training
process, and when to participate during the training process.
It is worth noting that the above works focus on orthogonal
transmission and do not take the impact of the communication
channels into account while performing privacy analysis.

In addition to saving bandwidth and computation, it has
been shown in [27]–[29] that wireless FL also naturally
provides strong differential privacy (DP) [30] guarantees.
Specifically, in [27], it was shown that the superposition
nature of the wireless channel provides a stronger privacy
guarantee as well as faster convergence in comparison to
orthogonal transmission. The privacy level is shown to scale
as O(1/

√
K), where K is the number of users in the wireless

FL system. On the other hand, it was shown in [25] that
one can obtain a similar scaling of O(1/

√
K) for privacy

leakage through user sampling. The scheme of [25], however,
considers orthogonal transmission from the sampled users.

One natural question to ask is whether one could pro-
vide even stronger privacy guarantees by incorporating user
sampling to the private wireless FedSGD scheme. If it does
provide stronger guarantee, how much additional gain can be
obtained? How can we optimally utilize the wireless resources,
and what are the tradeoffs between convergence of FedSGD
training, wireless resources and privacy?

Main Contributions: In this paper, we consider the problem
of FedSGD training over fading multiple access channels
(MACs), subject to LDP and DP constraints. We propose a
wireless FedSGD scheme with user sampling, where users
are sampled uniformly or based on their channel conditions.
We then study analog aggregation schemes coupled with the
proposed sampling schemes, in which each user transmits
a linear combination of (a) local gradient and (b) artificial
Gaussian noise. The local gradients are processed as a function
of the channel gains to align the resulting gradients at the

Fig. 1: Illustration of the private wireless FedSGD framework: Users
collaborate with the PS to jointly train a machine learning model over
a fading MAC.

PS, whereas the artificial noise parameters are selected to
satisfy the privacy constraints. The existing privacy analysis in
[25], [26] for FL with user sampling cannot be applied to our
problem. The key challenge is that in each training iteration,
the effective noise seen at the signal received by the PS over
the wireless channel is a function of a random number of
sampled users, making the DP/LDP analysis non-trivial. Using
concentration inequalities, we prove that the central privacy
leakage scales as O(1/K3/4) with wireless aggregation and
user sampling. We also provide convergence analysis of the
proposed scheme for different sampling schemes. To the best
of our knowledge, this is one of the first results on wireless
FedSGD with LDP and DP constraints with user sampling (see
Table I for comparison).

We would also like to mention a recent concurrent work
[32], in which the authors studied the impact of user sampling
on central DP for wireless FL. Moreover, they have proposed
a wireless transmission scheme that is also robust against
CSI attacks from the PS. It is assumed in that the identities
of sampled users are shared between participating devices
through a side channel, and never shared with the PS. While
the problem is similar in spirit, the main differences of work
compared to their are: 1) In our system, we do not require the
users to share information about participation in any round.
2) We study both local and central DP guarantees and the
associated tradeoffs (including scaling laws) as a function of
users. 3) We also present convergence rates analysis for the
proposed learning algorithm.

Notations: Boldface uppercase letters denote matrices (e.g.,
A), boldface lowercase letters are used for vectors (e.g., a),
we denote scalars by non-boldface lowercase letters (e.g.,
x), and sets by capital calligraphic letters (e.g., X ). [K] ,
[1, 2, · · · ,K] represents the set of all integers from 1 to K.
The set of natural numbers, integer numbers, real numbers and
complex numbers are denoted by N, Z, R and C, respectively.

II. SYSTEM MODEL

Wireless Channel Model: We consider a single-antenna
wireless FL system with K users and a central PS. Users are
connected to the PS through a fading MAC as shown in Fig.
1. Let Kt denote the random set of users who participate in
iteration t. The input-output relationship at the t-th block is

yt =
∑
k∈Kt

hk,txk,t + mt, (1)
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where xk,t ∈ Rd is the signal transmitted by user k at the t-th
block, and yt is the received signal at the PS. Here, hk,t ≥ 0
is the channel coefficient between the k-th user and the PS
at iteration t. We assume a block flat-fading channel, where
the channel coefficient remains constant within the duration
of a communication block. Each user is assumed to know its
local channel gain, whereas we assume that the PS has global
channel state information. Each user can transmit subject to
average power constraint i.e., E

[
‖xk,t‖22

]
≤ Pk. mt ∈ Rd

is the channel noise whose elements are independent and
identically distributed (i.i.d.) according to Gaussian distribu-
tion N (0, N0). The set of participants Kt can be obtained
through various strategies. In this paper, we focus on user
sampling, where user k participates in the training at time
t according to probability pk,t, for k = 1, . . . ,K. When
Kt = [K], we recover the conventional FedSGD where every
user participates in the training.

For this work, we consider (a) time-invariant uniform
sampling, where the sampling probability remains the same
across users and iterations; (b) time-varying uniform sampling,
where the sampling probability remains the same across users
but varies across iterations; and (c) channel aware sampling,
where sampling probabilities for each user can depend on the
local channel gain between the user and the PS. We note that
sampling strategies based on gradients or losses can potentially
leak information about local datasets, hence, require analysis
for privacy. Thus, we leave gradient-based sampling strategies
to future work.

Federated Learning Problem: Each user k has a private
local dataset Dk with Dk data points, denoted as Dk =

{(u(k)
i , v

(k)
i )}Dki=1, where u

(k)
i is the i-th data point and v

(k)
i

is the corresponding label at user k. The local loss function
at user k is given by

fk(w) =
1

Dk

Dk∑
i=1

f(w;u
(k)
i , v

(k)
i ) + ΩR(w),

where w ∈ Rd is the parameter vector to be optimized, R(w)
is a regularization function and Ω ≥ 0 is a regularization
hyperparameter. Users communicate with the PS through the
fading MAC described above in order to train a model by
minimizing the loss function F (w), i.e.,

w∗ = arg min
w

F (w) ,
1∑K

k=1Dk

K∑
k=1

Dkfk(w).

The minimization of F (w) is carried out iteratively through a
distributed stochastic gradient descent (SGD) algorithm. More
specifically, in the t-th training iteration, the PS broadcasts the
global parameter vector wt to all users. Each user k computes
his local gradient using stochastic mini batch Bk ⊆ Dk, with
size bk (i.e., |Bk| = bk), i.e.,

gk(wt) =
1

bk

∑
i∈Bk
∇fk(wt; (u

(k)
i , v

(k)
i )) + Ω∇R(wt), (2)

where gk(wt) is the stochastic gradient estimate of user k. The
participants, i.e., k ∈ Kt, next pre-process their gk(wt) and
obtains xk,t, as explained below. Then, the participants send

their xk,t’s to the PS, where the PS receives yt as defined in
(1). Upon receiving yt, the PS performs post-processing on
yt to obtain ĝt, the estimate of the true gradient gt which is
defined as,

gt =
1∑K

k=1Dk

K∑
k=1

Dkgk(wt). (3)

The global parameter wt is updated using the estimated
gradient ĝt according to wt+1 = wt − ηtĝt, where ηt is the
learning rate of the distributed GD algorithm at iteration t.
The iteration process continues until convergence.

Typically, in the wireless setting, the post-processing done
at the PS involves removing channel effects, averaging the
aggregated local gradients, and/or multiplying a constant to
maintain the unbiasedness. These post-processing steps depend
on the PS’s knowledge of the channel condition, number of
participants, and knowing how users are selected to participate.
As mentioned above, the PS has global CSI. In addition,
we assume that the PS knows the sampling probabilities
pk,t, ∀k, t. However, the number of participants may or may
not be known at the PS. Thus, in this work, we study both
cases, where (a) |Kt| is known, and (b) |Kt| is unknown, at
the PS.

Wireless FL with User Sampling: The training continues
for a total of T iterations, where the users are synchronized
with the PS. Here, we describe the per-iteration operation of
the algorithm. At the beginning of each iteration t, the PS
transmits the model wt to the users, and each user computes
the local gradient using its local dataset according to (2). Each
user k participates in the training with probability pk,t. Users
then transmit their local gradients with d channel uses of the
wireless channel described in (1) in the pre-determined time
slot. The transmitted signal of user k at iteration t is given as:

xk,t =

{
αk,t (gk(wt) + nk,t) , w.p. pk,t
0, otherwise

(4)

where nk,t ∼ N (0, σ2
k,tId) is the artificial noise term to

ensure privacy, and αk,t is the scaling factor satisfying power
constraint at each user. If a user is not participating, it does
not transmit anything. We assume that the gradient vectors
have a bounded norm, i.e., ‖gk(wt)‖2 ≤ L,∀k, and normalize
the gradient vector by L. The parameters αk,ts and σk,ts are
designed such that the power constraints are satisfied, i.e.,
E
[
‖xk,t‖22

]
= α2

k,t

[
‖gk(wt)‖2 + dσ2

k,t

]
≤ Pk. From (1) and

(4), the received signal at the PS can be written as:

yt =
∑
k∈Kt

hk,tαk,tgk(wt) +
∑
k∈Kt

hk,tαk,tnk,t + mt︸ ︷︷ ︸
zt

, (5)

where zt ∼ N (0, σ2
ztId) is the effective noise, and σ2

zt =∑
k∈Kt h

2
k,tα

2
k,tσ

2
k,t+N0. In order to carry out the summation

of the local gradients over-the-air, all users pick the coeffi-
cients αk,ts in order to align their transmitted local gradient
estimates. Specifically, user k picks αk,t so that

hk,tαk,t = γt,∀k ∈ Kt, (6)
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where γt is the alignment constant picked for ensuring that
the power constraints are satisfied. For the alignment scheme
described above, the received signal at the PS at iteration t
in (10) simplifies to yt =

∑
k∈Kt γtgk(wt) + zt. The PS

can perform two different post-processing operations to get
unbiased gradient estimate ĝt, i.e., E [ĝt] = gt (see Appendix
E), based on the knowledge it has: (a) when |Kt| is known at
the PS; (b) when |Kt| is unknown at the PS.
Case (a): When |Kt| is known at the PS, it performs an
update when |Kt| 6= 0. It obtains the gradient estimate ĝt
by dividing the received signal by the alignment constant, ζt
and the number of participants. When |Kt| = 0, ĝt is set to
0, and an update is skipped. Hence, the gradient estimate is
given as,

ĝt =

{
1

γtζt|Kt|yt, if |Kt| 6= 0,

0, if |Kt| = 0,
(7)

where

yt
γtζt|Kt|

=
1

ζt|Kt|
∑
k∈Kt

gk(wt) +
1

ζt|Kt|

[∑
k∈Kt

nk,t +
mt

γt

]

and ζt = 1−
∏K
k=1(1−pk,t) is chosen to ensure unbiasedness

of the estimated aggregated gradient.
Case (b): When |Kt| is unknown at the PS, it obtains
the unbiased gradient estimate ĝt by dividing the received
signal by the alignment constant and the expected number of
participants as follows,

ĝt =
1

γtµ|Kt|
yt

=
1

µ|Kt|

∑
k∈Kt

gk(wt) +
1

µ|Kt|

[∑
k∈Kt

nk,t +
mt

γt

]
, (8)

where µ|Kt| = E [|Kt|] =
∑K
k=1 pk,t is the expected number

of participants in iteration t. The PS then update the models
and repeats this process for T iterations. We summarize our
transmission scheme in Algorithm 1.

Remark 1. One can divide the local gradient estimate gk(wt)
by pk,t to obtain unbiased local estimate for the full gradient
gt, i.e.,

xk,t =

{
αk,t ×

(
gk(wt)
pk,t

+ nk,t

)
, w.p. pk,t

0, otherwise.
(9)

The received signal at the PS at iteration t is

yt = γt
∑
k∈Kt

gk(wt)

pk,t
+
∑
k∈Kt

hk,tαk,t × nk,t + mt︸ ︷︷ ︸
zt

, (10)

It can be readily shown that the PS gets a sum of unbiased
local gradient estimates. However, this approach requires more
pre-processing at the user which further limits the transmit
power scaling, i.e.,

α2
k,t ≤

Pk
1/p2

k,t × ‖gk(wt)‖2 + dσ2
k,t

. (11)

Algorithm 1 Differentially Private Wireless FedSGD Scheme
with User Sampling

1: Initialize w1 at the PS;
2: for iteration t = 1, ..., T do
3: PS broadcasts the global model wt to all users;
4: for each user in parallel do
5: Compute gk(wt) according to (4);
6: Transmit xk,t = αk,t

(
gk(wt) + nk,t

)
with proba-

bility pk,t and xk,t = 0 otherwise to the PS;
7: end for
8: PS receives yt and recovers ĝt according to (9) for

known |Kt| case and (10) for unknown |Kt| case;
9: PS updates global model wt+1 = wt − ηtĝt;

10: end for
11: PS returns wt+1;

In contrast, our scheme requires only the full gradient to be
unbiased and in this case the power constraint is more relaxed,
i.e.,

α2
k,t ≤

Pk
‖gk(wt)‖2 + dσ2

k,t

. (12)

Privacy Definitions: We assume that the PS is honest but
curious. It is honest in the sense that it follows the FL proce-
dure faithfully, but it might be interested in learning sensitive
information about users. Therefore, the SGD algorithm for
wireless FL should satisfy LDP constraints for each user.
At the end of the training process, the PS may release the
trained model to a third party. Thus, the training algorithm
should provide central DP guarantees against any further post-
processing or inference. The local and central DP are formally
defined as follows:

Definition 1. ((ε(k)
` , δ`)-LDP [33]) Let Xk be a set of all

possible data points at user k. For user k, a randomized
mechanism Mk : Xk → Rd is (ε

(k)
` , δ`)-LDP if for any

x, x′ ∈ Xk, and any measurable subset Ok ⊆ Range(Mk),
we have

Pr(Mk(x) ∈ Ok) ≤ exp (ε
(k)
` ) Pr(Mk(x′) ∈ Ok) + δ`.

The setting when δ` = 0 is referred as pure ε(k)
` -LDP.

Definition 2. ((εc, δc)-DP [33]) Let D , X1×X2×· · ·×XK
be the collection of all possible datasets of all K users. A
randomized mechanismM : D → Rd is (εc, δc)-DP if for any
two neighboring datasets D,D′ and any measurable subset
O ⊆ Range(M), we have

Pr(M(D) ∈ O) ≤ exp (εc) Pr(M(D′) ∈ O) + δc. (13)

We refer to a pair of datasets D,D′ ∈ D if D′ can be obtained
from D by removing the whole dataset of a user k. The setting
when δc = 0 is referred as pure εc-DP.

III. MAIN RESULTS & DISCUSSIONS

A. Privacy Analysis for wireless FedSGD with User Sampling

In this section, we first derive the central DP leakage
for wireless FedSGD with user sampling. Specifically, we
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consider two sampling strategies: (a) non-uniform sampling;
and (b) both time-varying and none time-varying uniform sam-
pling. For non-uniform sampling, each user can be sampled
according to a probability that depends on the channel con-
ditions. We then study a special case, i.e., uniform sampling,
to understand the asymptotic behavior of the central privacy
as a function of the total number of users. In addition, we
show that user sampling is also beneficial for the local privacy
level. We also quantify the gain for the local privacy level
achieved by user sampling and wireless aggregation where
Gaussian mechanism is used at each sampled user. The privacy
guarantee of the proposed wireless FedSGD with non-uniform
sampling is stated in the following Theorem.

Theorem 1. (Non-uniform sampling) Suppose each user k
participates in the training process at iteration t according to
probability pk,t, and utilizes local mechanism that satisfies
(ε

(k)
`,t , δ̃`)-LDP if they decided to participate. The central

privacy level of the wireless FedSGD with user sampling at
iteration t is given as

εc,t ≤ log

[
1 +

maxk pk,t
1− δ′

(
emaxk,t ε

(k)
`,t − 1

)]
(a)
= log

[
1 +

maxk pk,t
1− δ′

(
e

c√
µ|Kt|−βK − 1

)]
,

δc,t = δ′ +
maxk pk,tδ`

1− δ′
, (14)

for any δ′ ∈ (2e−2µ2
|Kt|

/K , 1) and β = 1√
K

√
0.5 log (2/δ′),

where µ|Kt| =
∑K
k=1 pk,t denotes the expected num-

ber of users participating in iteration t, and c =
2L
σmin

√
2 log(1.25/δ`), where σmin = mink,t σk,t and L is

the Lipschitz constant for the loss function. In (14), ε(k)
`,t is

the effective local privacy level of user k due to sampling
and wireless aggregation. Step (a) follows from the Gaussian
mechanism which will become clearer in the sequel.

The proof of the Theorem can be found in Appendix
B. The privacy parameters in (14) indicates that the central
privacy leakage depends on the user with the highest sampling
probability. Intuitively, a user with high sampling probability
participates in the training process more often than other
users with lower probabilities, thereby having most impact
on the central privacy leakage. For the case with uniform
sampling probability, the privacy parameters can be simplified
to the following (the proof of Corollary follows directly from
Theorem 1):

Corollary 1. (Uniform sampling) Suppose each user decides
to participate with probability pk,t = pt, and the local
mechanism satisfies (ε

(k)
`,t , δ̃`)-LDP for each user k. The central

privacy level of the wireless FedSGD with user sampling is
given as

εc,t ≤ log

[
1 +

pt
1− δ′

(
e

c√
K(pt−β) − 1

)]
, δc,t = δ′ +

ptδ`
1− δ′

,

(15)

for any δ′ ∈ (2e−2p2K , 1) and β = 1√
K

√
0.5 log (2/δ′),

where c = 2L
σmin

√
2 log(1.25/δ`).

We note that both (14) (respectively, (15)) is a convex
function of {pk,t}Kk=1 (respectively, pt) when ε(k)

`,t ≤ 1. If the
primary goal is to have strong privacy guarantee and does
not need fast convergence, one can solve for the optimal
sampling probabilities using the expressions in (14) and (15).
However, it is difficult to obtain a closed form solution of the
optimal sampling probability for the non-uniform case. Due
to convexity, one can still solve it numerically using convex
solvers. In contrast to the non-uniform case, one can solve for
the optimal sampling probability for the uniform case as stated
in the following Lemma.

Lemma 1. For any pt > β, β = 1√
K

√
0.5 log (2/δ′), the

optimal sampling probability that minimizes the upper bound
on εc in (14) is given by

p∗t = min

[
1,

2√
K

√
1

2
log
( 2

δ′
)]

(16)

for sufficiently large K. By plugging p∗t back into (15), one
can obtain the following upper bound on the central DP,

εc = log

2
√

1
2 log

(
2
δ′

)
√
K(1− δ′)

(
e

c

4
√
K 1

2
log( 2

δ′ ) − 1
)

+ 1


= O

(
1

K3/4

)
.

The proof of Lemma 1 is presented in Appendix C. From
Lemma 1, we observe that the central privacy level behaves
as O(1/K3/4) as opposed to the O(1/

√
K) for wireless FL

without sampling [27] and O(1/
√
K) for FL with orthogonal

transmission and user sampling [26] (see Table I). Clearly,
when both wireless aggregation and user sampling are em-
ployed, we can obtain additional benefit in terms of central
privacy. We also plot the central privacy level of the proposed
scheme against other variations (see Fig. 2a).

We next analyze the local privacy level achieved by the
FedSGD transmission scheme.

Lemma 2. For each user k, the proposed transmission scheme
achieves (ε

(k)
`,t , pk,t(δ` + δ′))-LDP per iteration, where

ε
(k)
`,t ≤

1√
1 + κt

× 2L

σmin,t

√
2 log

1.25

δ`
,

where σmin,t , mink σk,t, κt ,
∑K
i=1,i6=k pi,t − βK, where

β and δ′ are defined in Theorem 1.

The proof is presented in Appendix D.

Remark 2. From Lemma 2, we can observe the privacy
benefits of wireless gradient aggregation. Asymptotically, the
local privacy level behaves like O(1/

√
1 + κt). In contrast,

the local privacy achieved by orthogonal transmission scales
as a constant, and does not decay with K [27].

Remark 3. In our privacy analysis we assume that the
sampling probability is strictly greater than zero, i.e., pt > 0.
We also assume that pt > β, so that the exponent term
is non-negative. These additional assumptions (lower bounds
on sampling probability) can also be interpreted as indirect
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Fig. 2: (a) Comparison for central privacy, where wireless aggregation with sampling is shown to outperform other variants; (b) Total privacy
leakage as a function of K, number of users for different values of T , the number of training iterations, where L = 1, σk,t = N0 = 3, γt = 1,
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Fig. 3: (a) Contour plot of central DP leakage as a function of σmin and p. It can be seen that there are many operating points to achieve a
specific central DP, and there exists a tradeoff between σmin and p for a fixed εc; (b) Contour plot of LDP leakage as a function σmin and
p, where the local leakage is a monotonically decreasing function of p, where L = 1, δl = δ′ = 10−4 and K = 200 for both figures.

constraints over utility (e.g., predictive accuracy of the trained
model).

In this paper, we have considered both (stronger) LDP and
(weaker) central DP privacy. If one only considers the stronger
LDP, then it is clear as shown in Fig. 3b, that to achieve a
certain local privacy budget ε`, the amount of noise each user
adds is a decreasing function of the sampling probability. The
intuition behind this is that as sampling probability increases,
the wireless channel also allows the artificial noises of the
sampled users to aggregate, thus providing a boost in LDP.
On the other hand, let us now consider the (weaker) central
DP. For a central privacy leakage budget of εc, as shown in
Fig. 3a, the amount of noise added by each user is interestingly
a non-monotonic function of the sampling probability.

With the utility constraints (lower bounds on sampling
probability) in place, depending on other parameters (e.g.,
Lipschitz constant, δ`, δ′, K), the optimal probability that

provides the strongest central DP guarantee might not be
the minimum possible probability (i.e., pt = β) anymore. For
example, for L = 1, δl = δ′ = 10−4 and K = 200, we can
see in Fig. 3a that there are many ways to achieve certain
εc. One can then tune σmin and pt for a specific scenario.
As an example, in a power-constrained setting, one would
like to keep σmin as small as possible, then one would pick
the p∗ as shown in 3a. This would however, result in higher
LDP leakage. Alternatively, one can consider increasing pt to
achieve better LDP at the expense of adding more noise.

While Theorem 1 shows the per-iteration leakage, we can
use advanced composition results for DP using the Gaussian
mechanism to obtain the total privacy leakage when the
wireless FL algorithm is used for T iterations. When the
sampling probability is time-varying, using existing results
in [34], it can be readily shown that the total leakage over
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T iterations of the proposed scheme is (ε
(T )
c , δ

(T )
c )-DP for

δ̃ ∈ (0, 1] where ε(T )
c and δ(T )

c can be found as follows,

ε(T )
c =

∑
t∈[T ]

(eεc,t − 1)εc,t
(eεc,t + 1)

+

√√√√2 log(
1

δ̃
)
∑
t∈[T ]

ε2c,t, (17)

(a)

≤
(
e

c√
min
t
µ|Kt|−βK − 1

)2

×

∑
t∈[T ]

(max
k

pk,t)
2

2(1− δ′)2

+

√
2 log(

1

δ̃
)

(
e

c√
min
t
µ|Kt|−βK − 1

) √ ∑
t∈[T ]

(max
k

pk,t)2

1− δ′
,

(18)

where step (a) follows from the fact that ex + 1 ≥ 2, where
x ≥ 0 and log(1 + x) ≤ x. Also,

δ(T )
c = 1− (1− δ̃)

T∏
t=1

(1− δc,t)

= 1− (1− δ̃)
T∏
t=1

(
1−

(
δ′ +

max
k

pk,tδ`

1− δ′
))

By examining the expression in (18), we can see that, for a
given T , mint µ|Kt|−βK grows as K increases. Therefore, the
exponential term approaches 1 as K increases, and (18) goes
to 0 as the number of users increases. For the case when the
sampling probability is time-invariant, using existing results
in [35], it can be readily shown that the total leakage over
T iterations of the proposed scheme is (ε

(T )
c , T δc + δ̃)-DP

for δ̃ ∈ (0, 1] where ε(T )
c =

√
2T log(1/δ̃)εc + Tεc(e

εc − 1).
We can expect the same behavior to hold true for the time-
invariant case since the result in [34] is more general than the
result in [35]. We illustrate the total central privacy leakage
for the uniform sampling time-invariant case as a function of
K in Fig. 2b for various values of T . As is clearly evident, the
leakage provided by wireless FedSGD goes asymptotically to
0 as K →∞. It is worth noting that total privacy leakage over
T iterations can be further tightened using existing techniques
such as Rényi DP composition [36] (see Fig. 2b). More
specifically, after T iterations, the leakage in this case will
be

ε(T )
c =

Tεc + log(1/δc)

α− 1
, δ(T )

c = δc,

where α is a hyper-parameter that typically ranges 1 to 64
[37].

B. Convergence rate of private FL

In this section, we analyze the performance of private
wireless FedSGD under the assumption that the global loss
function F (w) is smooth and strongly convex1 , and the data
across users is i.i.d. Specifically, we consider two scenarios
when (a) |Kt| is unknown and (b) |Kt| is known to the PS.

1 By assuming smooth and strongly convex global loss function, we are
able to show convergence to the optimal point. One can also show convergence
for non-convex loss functions to a stationary point by following similar steps
in [38] and showing that the expectation of the gradient norm, E

[
‖gt‖22

]
,

diminishes as the number of iterations goes to infinity.

We take both privacy and wireless aggregation into account
while deriving the bounds. Interestingly, we show that the
unknown |Kt| case always outperforms the known |Kt| case.
Therefore, it is not necessary for the PS to know |Kt|. We
confirm this observation in the experiment section as well. Due
to privacy requirements and noisy nature of wireless channel,
the convergence rate is penalized as shown in the following
Theorem.

Theorem 2. (Unknown |Kt| with non-uniform sampling) Sup-
pose the loss function F is λ-strongly convex and µ-smooth
with respect to w∗. Then, for a learning rate ηt = 1/λt and
a number of iterations T , the convergence rate of the private
wireless FedSGD algorithm is

E [F (wT )]− F (w∗) ≤ 2µ

λ2T 2

T∑
t=1

[
L2
(
µ2
|Kt| + σ2

|Kt|
)

γ2
t µ

2
|Kt|

+
d

γ2
t µ

2
|Kt|

[
max
k

σ2
k,t × µ|Kt| +N0

] ]
, (19)

where µ|Kt| =
∑K
k=1 pk,t and σ2

|Kt| =
∑K
k=1 pk,t(1− pk,t).

Theorem 2 is proved in Appendix E. From the above result,
we observe that the convergence rate depends on: (a) the total
number of users K, (b) the number of model parameters d, (c)
worst amount of perturbation noise across user per iteration,
and (d) the sampling probabilities pk,ts. When the p∗t from
(16) is used, the convergence rate becomes the following.

Corollary 2. (Convergence under optimal p∗t from (16)) Under
the same assumptions as Theorem 2, the convergence rate for
the case when the optimal sampling probability p∗t from (16)
is

E [F (wT )]− F (w∗) ≤ 2µ

λ2T 2

T∑
t=1

[
L2(2

√
K − α)

γ2
t αK

+
d

γ2
t α

2K

[
α
√
K max

k
σ2
k,t +N0

] ]
, (20)

where α = 2
√

1
2 log 2

δ′ .

It can be seen that the constant in front of both bounds
scale as O(1/T ). However, the second parts of the expressions
depends on the sampling probabilities. We can see from (20)
that the first term in the bracket is constant and that the second
term scales as O(1/

√
K). Since p∗t is obtained when privacy

is prioritized, (20) is potentially the worst bound of the two.
One can potentially select sampling probabilities for (19) to
obtain even better scaling than O(1/

√
K). We next present

the convergence results for the case when Kt is known at the
PS.

Theorem 3. (Known Kt with non-uniform sampling) Suppose
the loss function F is λ-strongly convex and µ-smooth with
respect to w∗. Then, for a learning rate ηt = 1/λt and a
number of iterations T , the convergence rate of the private
wireless FedSGD algorithm is given as

E [F (wT )]− F (w∗) ≤ 2µ

λ2T 2

T∑
t=1

[
L2

γ2
t ζt
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Fig. 4: Comparisons of convergence bounds and training accuracy with uniform sampling for both cases: (1) unknown |Kt| or (2) known
|Kt|, where K = 20, L = 2, T = 4000, λ = 0.2, µ = 0.9, d = 30, N0 = 1, σ2

k,t = 0.1, γt = 1 and δ` = δ′ = 10−5. Each user has
transmit SNRk = 10 dB and (b) is trained on MNIST dataset.

+
d

γ2
t ζ

2
t

[
max
k

σ2
k,t × E

[
1

|Kt|

]
+ E

[
1

|Kt|2

]
N0

]]
, (21)

where ζt = 1−
∏K
k=1(1− pk,t).

Theorem 3 depends on E
[

1
|Kt|

]
and E

[
1
|Kt|2

]
. Note that

Kt is a binomial random variable. It is difficult to obtain
closed form expressions for E

[
1
|Kt|

]
and E

[
1
|Kt|2

]
. However,

it is possible to approximate them using Taylor series approx-
imation, specifically, we approximate E

[
1
|Kt|

]
using Taylor’s

series around E [|Kt|] for upto second degree as follows:

E

[
1

|Kt|

]
≈ E

[
1

E [|Kt|]
− 1

E2 [|Kt|]
(
|Kt| − E [|Kt|]

)
+

1

E3 [|Kt|]
(|Kt| − E [|Kt|])2

]
=

1

µ|Kt|
+
σ2
|Kt|
µ3
|Kt|

. (22)

Similarly for E
[

1
|Kt|2

]
, we approximate it around E [|Kt|] as

follows:

E

[
1

|Kt|2

]
≈ 1

µ2
|Kt|

+
3σ2
|Kt|

µ4
|Kt|

. (23)

By plugging (22) and (23) back to Theorem 3 for the
uniform sampling case, and setting pk,t = p, ∀k, t, µ|Kt| = Kp
and σ2

|Kt| = Kp(1− p),∀t, we obtain,

E [F (wT )]− F (w∗) ≤ 2µ

λ2T 2

T∑
t=1

[
L2

γ2
t ζ

+
d

Kpγ2
t ζ

2

[
σ2

max,t(1 + (1− p)2) + (1 + 3(1− p)2)
N0

Kp

] ]
,

where ζ = 1− (1− p)K and σ2
max,t = maxk σ

2
k,t.

We note that this bound behaves similarly to the bound
in Theorem 2 with pk,t = p,∀k, t when either T or K

is large. Therefore, the proposed scheme performs similarly
when |Kt| is known or unknown. This can be seen in Fig.
4 where the curves are obtained for K = 200 users, and
T = 4000 iterations. We also show this empirically in Fig. 4
using MNIST dataset. It can be seen that for the same sampling
probability p, schemes with unknown |Kt| are always better
than schemes with known |Kt|. The difference between two
approaches is only at the scaling of the aggregated gradient.
This observation indicates that as long as the direction of
the aggregated gradient is preserved and the scaling is not
drastically different, the performance of the SGD algorithm
will not deviate much [39]. This is due to the fact that the
magnitude of the gradient at a particular iteration is always
corrected in the following iterations as long as the direction
is correct.

IV. EXPERIMENTS

In this section, we conduct experiments to assess the
performance of the wireless FedSGD with user sampling
on MNIST dataset for image classification. We model the
instances of fading channels hk,t’s via an autoregressive (AR)
Rician model [40], where the Rician parameter Γ = 5 and
the temporal correlation coefficient ρ = 0.1. The channel
noise variance (receiver noise) is set as N0 = 1. The user’s
transmit signal-to-noise ratio is defined as SNRk = Pk

dN0
. We

use σ2
k,t = 0.1 as the perturbation noise. Prior to sending the

local gradient to the PS, each user clips the local gradient using
the Lipschitz constant chosen empirically with test runs. We
use δ` = 10−5 and δ′ = 2e−2µ2

|Kt|
/K + 10−5 to satisfy the

constraint on δ′ and to avoid it from going to 0. We consider
two different sampling schemes described as follows,

Uniform Sampling: Let pk,t = p, ∀k, t for any p.
Channel Aware Sampling: Each user computes pk,t =

hk,t/hth, where the threshold hth is a hyperparameter which
is optimized via cross-validation.

We train two models: (a) a single-layer neural network
(NN) (with no hidden layer) and (b) a two-layer NN (with
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(b) L = 0.1, T = 2500.

Fig. 5: The impact of the sampling probability on the training accuracy for single-layer neural network trained on MNIST dataset with
σ2
k,t = 0.1.

Channel Aware Uniform
hth = 2 p = 0.3 p = 0.9

ε`,max 3.675 5.124 2.46
εc,max 4.535 5.61 3.132

Avg. |K| 96 60 180
Testing Acc. 85.27% 83.98% 86.42%

(a) L = 1, T = 400.

Channel Aware Uniform
hth = 2 p = 0.3 p = 0.9

ε`,max 0.3677 0.5124 0.2460
εc,max 0.3642 0.2258 0.2317

Avg. |K| 96 60 180
Testing Acc. 84.33% 81.76% 86.25%

(b) L = 0.1, T = 2500.

TABLE II: Comparison of privacy leakage per iteration for single-layer neural network with σ2
k,t = 0.1. ε`,max and εc,max denote the

maximum local and central leakages across iterations, respectively.

one hidden layer), using MNIST dataset, which consists of
60, 000 training and 10, 000 testing samples. The loss function
we used is cross-entropy, and ADAM optimizer for training
with a learning rate of η = 0.001. The training samples are
evenly and randomly distributed across K = 200 users. Users
are split into three groups where the first group consists of
68 users with SNRk = 2 dB; the second and third group
consist of 66 users in each group with SNRk = 10 and 30
dB, respectively. We use hth = 2 as the threshold for the
channel aware sampling scheme. For the experiments, we set
the alignment constant γt = 1. Thus, empirically, the scaling
factor is computed as follows,

αk,t = min

 1

hk,t
,

√
Pk√

‖gk(wt)‖2 + dσ2
k,t

 . (24)

In Fig. 5 and 6, we show the impact of sampling probability
on the training accuracy. First, we observe that a higher p leads
to a higher accuracy for the model. Next, in Table II(a), we
observe that, for the uniform case with L = 1, the central DP
leakage decreases as p increases, which contradicts with the
intuition that higher p leads to higher leakage. However, let
pk,t = p,∀k, t in (14), i.e.,

εc,t ≤ log

[
1 +

p

1− δ′
(
e

c√
K(p−β) − 1

)]
, (25)

we can see that the behavior of εc,t depends on two terms:
p/(1 − δ′) and exp(c/

√
K(p− β)). As p increases, the first

term increases and the second term decreases. For a certain

range of c, the second term dominates, therefore, εc,t, as a
whole, decreases. This is due to the fact that, since perturbation
noises get aggregated over the wireless channel, the privacy is
enhanced. Hence, users are encouraged to participate more
when c belongs to this range. In general, c depends on
σk,t, L, δ`, and c for Fig. 5a and Table II(a) falls in the range
that allows the second term to dominate as p increases. We
also demonstrate the case when the first term dominates, i.e.,
L = 0.1 for this set of parameters. We can see that the central
DP leakage increases as p increases from Table II(b). When
c is in this range, the amplification of privacy is not enough
to outweigh the disadvantage of participating more. Thus, the
intuition that higher p leads to higher leakage holds. This can
also be seen in Fig. 7 that the first term dominates when c = 2
and the second term dominates when c = 4, 6, 8. Similar trends
can be found in Table III.

From Table II, we can also see that channel aware sampling
achieves 85.27% and 84.33% testing accuracy, which is lower
than those of uniform sampling with p = 0.9. This is due to the
choice of hth. By reducing hth, we can improve the accuracy of
the channel aware sampling. Another interesting observation is
that, while channel aware sampling suffers slightly from higher
central DP leakages, it does achieve relatively high testing
accuracy and low LDP leakage with significant less average
number of participants compare to uniform sampling with p =
0.9.
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Fig. 6: The impact of the sampling probability on the training accuracy for two-layer neural network trained on MNIST dataset with
σ2
k,t = 0.8.

Channel Aware Uniform
hth = 2 p = 0.3 p = 0.9

ε`,max 1.390 2.084 0.8953
εc,max 1.991 1.653 1.487

Avg. |K| 96 60 180
Testing Acc. 88.72% 87.10% 90.28%

(a) L = 1.

Channel Aware Uniform
hth = 2 p = 0.3 p = 0.9

ε`,max 0.2795 0.4169 0.1791
εc,max 0.2620 0.1505 0.1633

Avg. |K| 96 60 180
Testing Acc. 75.89% 66.33% 83.68%

(b) L = 0.2.

TABLE III: Comparison of privacy leakage per iteration for two-layer neural network with σ2
k,t = 0.8.
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Fig. 7: Central DPs as a function of p for different values of c
with K = 20.
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Fig. 8: The impact of the perturbation noise on training accuracy
for two-layer NN.

V. CONCLUSION & FUTURE DIRECTIONS

In this work, we showed the privacy benefits of user
sampling and wireless aggregation for federated learning.
More specifically, we showed that for certain settings (when c
is relatively small), the benefit of user sampling outweighs
the advantage of wireless aggregation, therefore, creating
tension between central DP, local DP and convergence rate.
To minimize central DP, user sampling is essential, and we
can tradeoff local DP and convergence rate for central DP by
sampling less. However, for other settings (when c is relatively
large), the privacy amplification from wireless aggregation out-

weighs the disadvantage of additional leakage from sampling
more, making the tension between central DP, local DP and
convergence rate disappear. Hence, user sampling is, in fact,
discouraged to minimize central DP. The resulting leakage for
central DP was shown to scale as O(1/K3/4), improving upon
prior results on this topic. We also showed that knowing only
the statistics of the number of participants at each iteration is
at least as good as knowing the exact number of participants
and hence eliminating the need for coordination between the
PS and users.

There are several interesting future directions which we
briefly discuss next. An immediate direction would be to
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study other variations of FL such as FedAvg, where each
user performs multiple local model updates followed by model
exchange with the PS. We believe that recent results (without
privacy) such as [1], [41], [42], together with the techniques
developed in this paper would be useful in such a gener-
alization. Another interesting direction would be to design
data and channel dependent sampling mechanisms, where the
sampling probabilities at each user can depend on both the
local gradients/losses as well as the local channel quality of
each user.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics (AISTATS), 2017, pp. 1273–
1282.

[2] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (S&P), May 2017, pp. 3–18.

[3] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “LOGAN:
Membership inference attacks against generative models,” Proceedings
on Privacy Enhancing Technologies (PoPETs), vol. 2019, no. 1, pp.
133–152, 2019.

[4] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
Symposium on Security and Privacy (S&P), May 2019, pp. 691–706.

[5] A. Triastcyn and B. Faltings, “Federated learning with bayesian differen-
tial privacy,” in IEEE International Conference on Big Data (Big Data),
2019, pp. 2587–2596.

[6] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMa-
han, “cpSGD: Communication-efficient and differentially-private dis-
tributed SGD,” in Advances in Neural Information Processing Systems
(NeurIPS), 2018, pp. 7564–7575.

[7] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” arXiv preprint
arXiv:1812.06127, 2018.

[8] J. Chen and R. Luss, “Stochastic gradient descent with biased but
consistent gradient estimators,” arXiv preprint arXiv:1807.11880, 2018.

[9] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Transactions
on Signal Processing, vol. 68, pp. 2155–2169, March 2020.

[10] ——, “Federated learning over wireless fading channels,” IEEE Trans-
actions on Wireless Communications, vol. 19, no. 5, pp. 3546–3557,
February 2020.

[11] W. T. Chang and R. Tandon, “MAC aware quantization for dis-
tributed gradient descent,” in IEEE Global Communications Conference
(GLOBECOM), December 2020, pp. 1–6.

[12] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 491–506, October 2019.

[13] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 2022–2035, 2020.

[14] M. M. Amiri and D. Gündüz, “Over-the-air machine learning at the
wireless edge,” in 2019 IEEE 20th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), July 2019,
pp. 1–5.

[15] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio
resource allocation for federated edge learning,” in IEEE International
Conference on Communications Workshops (ICC Workshops), July 2020,
pp. 1–6.

[16] T. Sery and K. Cohen, “On analog gradient descent learning over mul-
tiple access fading channels,” IEEE Transactions on Signal Processing,
vol. 68, pp. 2897–2911, April 2020.

[17] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, March 2019.

[18] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hierarchical
federated learning across heterogeneous cellular networks,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2020, pp. 8866–8870.

[19] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen,
and C. S. Hong, “Federated learning for edge networks: Resource opti-
mization and incentive mechanism,” IEEE Communications Magazine,
vol. 58, no. 10, pp. 88–93, November 2020.

[20] G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggre-
gation for communication-efficient federated edge learning: Design and
convergence analysis,” IEEE Transactions on Wireless Communications,
vol. 20, no. 3, pp. 2120–2135, November 2020.

[21] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[22] M. Joseph, A. Roth, J. Ullman, and B. Waggoner, “Local differential pri-
vacy for evolving data,” in Advances in Neural Information Processing
Systems (NeurIPS), 2018, pp. 2375–2384.

[23] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[24] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park,
G. Hsu, and A. Das, “Differential privacy-enabled federated learning
for sensitive health data,” arXiv preprint arXiv:1910.02578, 2019.

[25] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by sub-
sampling: Tight analyses via couplings and divergences,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 31, pp. 6277–
6287, 2018.

[26] B. Balle, P. Kairouz, B. McMahan, O. D. Thakkar, and A. Thakurta,
“Privacy amplification via random check-ins,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, 2020.

[27] M. Seif, R. Tandon, and M. Li, “Wireless federated learning with local
differential privacy,” in IEEE International Symposium on Information
Theory (ISIT), August 2020, pp. 2604–2609.

[28] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
via uncoded transmission with adaptive power control,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 1, pp. 170–185,
November 2020.

[29] A. Sonee and S. Rini, “Efficient federated learning over multiple
access channel with differential privacy constraints,” arXiv preprint
arXiv:2005.07776, 2020.

[30] C. Dwork, “Differential privacy,” in Automata, Languages and
Programming: 33rd International Colloquium, ICALP 2006, Part II,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds., 2006, pp.
1–12. [Online]. Available: https://doi.org/10.1007/11787006_1

[31] A. Smith, A. Thakurta, and J. Upadhyay, “Is interaction necessary
for distributed private learning?” in IEEE Symposium on Security and
Privacy (S&P), June 2017, pp. 58–77.
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APPENDIX A: GAUSSIAN MECHANISM FOR LDP

In this paper, we assume that each user’s local perturbation
noise is drawn from Gaussian distribution. This well-known
technique is known as Gaussian mechanism and can provide
rigorous privacy guarantees for LDP.

Definition 3. (Gaussian Mechanism [21]) Suppose a user
wants to release a function f(X) of an input X subject to
(ε`, δ`)-LDP. The Gaussian release mechanism is defined as
M(X) , f(X) +N (0, σ2I). If the sensitivity of the function
is bounded by ∆f , i.e., ‖f(x) − f(x′)‖2 ≤ ∆f , ∀x, then for
any δ` ∈ (0, 1], Gaussian mechanism satisfies (ε`, δ`)-LDP,

where ε` =
∆f

σ

√
2 log

(
1.25
δ`

)
.

APPENDIX B: PROOF OF THEOREM 1

In this section, we prove the privacy amplification due
to non-uniform sampling of the users. For the per-iteration
analysis, we drop the iteration index t for brevity. Let Y
denote the output seen at the PS through MAC and Y−k
denote the output when user k does not participate. Recall
that DP guarantees that any post-processing done on the
received signal does not leak more information about the input.
Therefore, it is sufficient to show the following,

Pr(Y ∈ S) ≤ eεc Pr(Y−k ∈ S) + δc, ∀k, (26)

and obtain εc. The challenge of this proof is the random par-
ticipation of users and that the local noises get aggregated over
the wireless channel. In this case, let K denote the random set
of users that participate in an iteration, and let R = |K| denote
the random variable representing the number of participants.
One can readily check that R is a summation of K Bernoulli
random variables and has mean µR =

∑K
k=1 pk, where pk is

the sampling probability of user k. The number of participants
R = |K| determines the amplification of local DP via wireless
aggregation, and in turn, determines the central DP. To take
all possible K into account for the analysis, we condition the
lefthand side of (26) with the event that K deviates from the
mean, i.e., |R−µR| ≥ βK for any β > 0, and bound it using
Hoeffding’s inequality and local DP guarantee. To apply local
DP guarantee, we need additional conditioning on the event Ek
that denotes the event where user k participates in the training,
i.e., k ∈ K. Note that pk = Pr(Ek),∀k and the conditional
probabilities p̄k = Pr(Ek||R− µR| < βK),∀k can be readily
bounded by pk’s using total probability theorem and Hoeffd-
ing’s inequality, i.e., one can show that p̄k ≤ pk/(1− δ′). For
any k ∈ [K], we have the following inequalities:

Pr(Y ∈ S)

= Pr(|R− µR| ≥ βK) Pr(Y ∈ S||R− µR| ≥ βK)

+ Pr(|R− µR| < βK) Pr(Y ∈ S||R− µR| < βK)

≤ δ′ · 1 + Pr(|R− µR| < βK) Pr(Y ∈ S||R− µR| < βK),
(27)

where the inequality follows from the fact that any probability
is upper bounded by 1 and from the Lemma below:

Lemma 3. (Hoeffding’s Inequality for Binomial Random
Variable) For a binomial random variable X with K trials
and mean µX , the probability that X deviates from the mean
by more than βK can be bounded as,

Pr(|X − µX | ≥ βK) ≤ 2e−2β2K , δ′, (28)

for any β > 0, and any δ′ ∈ [0, 1).

To further upper bound (27), we use the following Lemma.

Lemma 4. Let p̄k = Pr(Ek||R − µR| < βK) and c be some
constant that depends on the privacy mechanism, specifically
for the Gaussian mechanism we have c , 2L

σmin

√
2 log 1.25

δ`
,

where L is the Lipschitz constant. The following inequality is
true when the local mechanism satisfies

(
c√

µR−βK , δ`
)

-LDP:

Pr(Y ∈ S||R− µR| < βK) ≤ p̄kδ`

+
[
p̄k

(
e

c√
µR−βK − 1

)
+ 1
]

Pr(Y−k ∈ S||R− µR| < βK)

Using Lemma 4, we can bound (27) as follows:

Pr(Y ∈ S)

≤ δ′ + Pr(|R− µR| < βK)
[
p̄kδ`

+
[
p̄k

(
e

c√
µR−βK − 1

)
+ 1
]

Pr(Y−k ∈ S||R− µR| < βK)
]

(a)

≤ δ′ + p̄kδ` + Pr(|R− µR| < βK)

×
[
p̄k

(
e

c√
µR−βK − 1

)
+ 1
] Pr(Y−k ∈ S)

Pr(|R− µR| < βK)
(b)

≤ δ′ +
pk

1− δ′
δ`

+

[
pk

1− δ′
(
e

c√
µR−βK − 1

)
+ 1

]
Pr(Y−k ∈ S) (29)

where (a) follows from total probability theorem and the fact
that Pr(|R− µR| < βK)p̄kδ` ≤ p̄kδ`; and (b) follows from
inequality p̄k ≤ pk/(1 − δ′) mentioned at the beginning of
the proof. We can obtain a bound for each user k in a similar
fashion. By selecting the bound that gives us the largest privacy
parameters, we recover the result of Theorem 1. We next prove
Lemma 4.

Proof of Lemma 4. With the Ek defined above, let Eck denote
its complementary event. Then, using total probability theo-
rem, we have

Pr(Y ∈ S||R− µR| < βK)

= p̄k Pr(Y ∈ S||R− µR| < βK, Ek)

+ (1− p̄k) Pr(Y ∈ S||R− µR| < βK, Eck)

(a)
= p̄k Pr(Y ∈ S||R− µR| < βK, Ek)

+ (1− p̄k) Pr(Y−k ∈ S||R− µR| < βK), (30)
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where we can show that (a) is true as follows,

Pr(Y ∈ S||R− µR| < βK, Eck)

=
∑

A−k⊆[K],
||A−k|−µR|<βK

[
Pr(K = A−k||R− µR| < βK, Eck)

× Pr(Y ∈ S||R− µR| < βK, Eck,K = A−k)
]

(a)
=

∑
A−k⊆[K],

||A−k|−µR|<βK

[
Pr(K = A−k||R− µR| < βK)

× Pr(Y ∈ S||R− µR| < βK, Eck,K = A−k)
]

(b)
=

∑
A−k⊆[K],

||A−k|−µR|<βK

[
Pr(K = A−k||R− µR| < βK)

× Pr(Y−k ∈ S||R− µR| < βK,K = A−k)
]

= Pr(Y−k ∈ S||R− µR| < βK) (31)

where (a) holds since user k is not in the set A−k, therefore,
conditioning on the event Eck does not change the probability;
and (b) follows due to similar argument. Next, we upper bound
Pr(Y ∈ S||R− µR| < βK, Ek) as follows:

Pr(Y ∈ S||R− µR| < βK, Ek)

=
∑

A⊆[K]:k∈A,
||A|−µR|<βK

[
Pr(K = A||R− µR| < βK, Ek)

× Pr(Y ∈ S||R− µR| < βK, Ek,K = A)
]
, (32)

Note that, in wireless setting, when each user k applies a
mechanism that satisfies (ε`, δ`)-LDP, it implies (c/

√
|A|, δ`)-

DP [27] (using quasi-convexity property of DP [43]), we have,

Pr(Y ∈ S||R− µR| < βK, Ek,K = A)

≤ e
c√
|A| Pr(Y ∈ S||R− µR| < βK, Eck,K = A−k) + δ`.

(33)

Plugging (33) into (32), we obtain the following:

Pr(Y ∈ S||R− µR| < βK, Ek)

≤
∑

A⊆[K]:k∈A,
||A|−µR|<βK

[
Pr(K = A||R− µR| < βK, Ek)

×
[
e

c√
|A| Pr(Y ∈ S||R− µR| < βK, Eck,K = A−k) + δ`

] ]
(a)
= δ` +

∑
A⊆[K]:k∈A,
||A|−µR|<βK

[
Pr(K = A−k||R− µR| < βK)e

c√
|A|

× Pr(Y ∈ S||R− µR| < βK, Eck,K = A−k)
]

(b)
= δ` +

∑
A⊆[K]:k∈A,
||A|−µR|<βK

[
Pr(K = A−k||R− µR| < βK)e

c√
|A|

× Pr(Y−k ∈ S||R− µR| < βK,K = A−k)
]

(c)

≤ e
c√

µR−βK
∑

A⊆[K]:k∈A,
||A|−µR|<βK

[
Pr(K = A−k||R− µR| < βK)

× Pr(Y−k ∈ S||R− µR| < βK,K = A−k)
]

+ δ`

= e
c√

µR−βK Pr(Y−k ∈ S||R− µR| < βK) + δ` (34)

where (a) and (b) follows the similar argument as the one used
in (31), distributive property of multiplication and the fact that
the probability multiplied with δ` sums up to one. From the
condition on the cardinality of the set R, we know that R =
|A| and µR − βK < |A| < µR + βK. Therefore, (c) follows
from using the lower bound on |A|. Then, by combining (30),
(31) and (34), we have

Pr(Y ∈ S||R− µR| < βK)

≤ p̄ke
c√

µR−βK Pr(Y−k ∈ S||R− µR| < βK) + p̄kδ`

+ (1− p̄k) Pr(Y−k ∈ S||R− µR| < βK). (35)

Rearranging the above inequality, we recover the result of
Lemma 4.

APPENDIX C: PROOF OF LEMMA 1
In this section, we find the optimal sampling probability p∗t

that minimizes the central privacy level εc,t for the wireless
FedSGD scheme. For the per-iteration analysis, we drop the
iteration index for brevity. We minimize εc as follows:

εc = log

[
p

1− δ′
(
e

c√
Kp−βK − 1

)
+ 1

]
≤ p

1− δ′
(
e

c√
Kp−βK − 1

)
. (36)

We assume that p takes the form of k̃/K, i.e., p = k̃
K , where

we assume that p > β, so that the exponent term is non
negative. Then,

εc ≤
k̃

K(1− δ′)

(
e

c√
k̃−βK − 1

)
(a)

≤ k̃

K(1− δ′)
× c√

k̃ − βK
, ε̃c, (37)

where in step (a) for large K, we assume that the exponent
is less than 1, and we use the fact that ex − 1 ≤ x,∀x ≤ 1.
Taking the derivative of the right-hand side w.r.t. k̃ and setting
it to zero yields the following:

∂ε̃c

∂k̃
=

c

K(1− δ′)

[
− k̃

2
(k̃ − βK)

−3
2 + (k̃ − βK)

−1
2

]
= 0

⇒ k̃ = 2βK.

We then check the second derivative of the right-hand side
and obtain,

∂2ε̃c

∂k̃2
∝ −1

2
×
[
−3

2
k̃(k̃ − βK)−5/2 + 2(k̃ − βK)−3/2

]
.

It can be readily shown that ∂
2ε̃c
∂k̃2
≤ 0 when k̃ ≥ 2βK. To this

end, the optimal sampling probability that minimize εc is p∗ =

2β. Using Lemma 3, we know that β = 1√
K

√
1
2 log

(
2
δ′

)
. By

plugging p∗ and β into (36), we get:

εc = log

2
√

1
2 log

(
2
δ′

)
√
K(1− δ′)

(
e

c

4
√
K
2

log( 2
δ′ ) − 1

)
+ 1

 = O
(

1

K
3
4

)
.

This completes the proof of Lemma 1.
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APPENDIX D: PROOF OF LEMMA 2

The final received signal at the PS from (10) can be
expressed as: yt =

∑
k∈Kt hk,tαk,tgk(wt) + zt and the

variance of the effective Gaussian noise zt is

σ2 = σ2
zt =

∑
k∈Kt

h2
k,tα

2
k,tσ

2
k,t +N0

(a)
= γ2

t

∑
k∈Kt

σ2
k,t +N0,

where step (a) follows from the alignment condition in (6).
In order to invoke the result of the Gaussian mechanism
(Appendix A), we next obtain a bound on the sensitivity for
user k. To bound the local sensitivity of user k, we fix the
gradients of the remaining Kt\k users. The local sensitivity
of user k can then be bounded as

∆k,t = max
Dk,D′k

||yt − y
′

t||2

= max
Dk,D′k

||hk,tαk,t(gk(wt)− g′k(wt))||2

≤ hk,tαk,t max
Dk,D′k

||gk(wt)||2 + ||g′k(wt)||2

(a)

≤ 2hk,tαk,tL
(b)
= 2γtL, (38)

where (a) follows from the fact that ‖gk(wt)‖2 ≤ L,∀k; and
(b) follows from the channel inversion transmission scheme.
We next show the guarantee on the local DP of user k when
user k is a participant. Following similar steps used for proving
(27), it can be shown that,

Pr(Y (k)
x ∈ S|Ek) ≤ δ′ + δ` + eε

(k)
`,t Pr(Y

(k)
x′ ∈ S|Ek)

(a)

≤ δ′ + δ` + e
c√

1+µR−βK Pr(Y
(k)
x′ ∈ S|Ek), (39)

where µR =
∑K
i=1,i6=k pi and ε(k)

`,t is the effective local privacy
level of user k due to sampling and wireless aggregation. Step
(a) follows from applying the Gaussian mechanism, i.e.,

ε
(k)
`,t ≤

2γtL√∑1+µR−βK
k=1 γ2

t σ
2
k,t +N0

√
2 log

1.25

δ`

≤ 2γtL√
(1 + µR − βK)× γ2

t mink,t σ2
k,t

√
2 log

1.25

δ`

=
1√

1 + µR − βK
× 2L

σmin

√
2 log

1.25

δ`
.

Note that (39) is conditioning on the event when user k
participates. We next use the total probability theorem and
obtain the following set of steps:

Pr(Y (k)
x ∈ S)

= pk Pr(Y (k)
x ∈ S|Ek) + (1− pk) Pr(Y (k)

x ∈ S|Eck)

(a)

≤ pke
ε` Pr(Y

(k)
x′ ∈ S|Ek) + pk(δ` + δ′)

+ (1− pk)eε` Pr(Y
(k)
x′ ∈ S|E

c
k)

= eε` Pr(Y
(k)
x′ ∈ S) + pk(δ` + δ′),

where step (a) follows from (39) and the fact that when user
k is not participating, we have

Pr(Y (k)
x ∈ S|Eck) = e0 Pr(Y

(k)
x′ ∈ S|E

c
k)

≤ eε` Pr(Y
(k)
x′ ∈ S|E

c
k),∀x, x′.

We arrive at the proof of Lemma 2.

APPENDIX E: PROOFS OF THEOREM 2 AND THEOREM 3
When the data is i.i.d., we can invoke a slightly modified

version of the result of [44] on convergence of SGD for µ-
smooth and λ-strongly convex loss, which states

E [F (wT )]− F (w∗) ≤ 2µ

λ2T

(
T∑
t=1

G2
t/T

)
, (40)

where G2
t is the upper bound on the second moment of the

gradient estimate, i.e., E
[
‖ĝt‖22

]
≤ G2

t .

A. |Kt| is Unknown at the PS

To prove the convergence rate of the proposed algorithm,
we recall that the gradient estimate at the PS in (8) needs
to satisfy: (a) Unbiasedness, i.e., E [ĝt] = gt, since the total
additive noise is zero mean; and (b) Bounded second moment,
E
[
‖ĝt‖22

]
≤ G2

t , which we prove as follows. Recall that the
estimated gradient at the PS is

ĝt =
1

µ|Kt|

∑
k∈Kt

gk(wt) +
1

γtµ|Kt|
zt

=
1

µ|Kt|

∑
k∈Kt

1

b

∑
i∈Bk
∇fk(wt; (u

(k)
i , v

(k)
i )) +

1

γtµ|Kt|
zt.

By taking the expectation over the randomness of SGD, user
sampling and noise, we have

E [ĝt] =
1

µ|Kt|b
E

[∑
k∈Kt

∑
i∈Bk
∇fk(wt; (u

(k)
i , v

(k)
i ))

]

=
1

µ|Kt|b
E [|Kt|] bgt = gt.

Therefore, the estimated gradient is unbiased. We next obtain
the bound on the second moment of the estimated gradient.
We have

E
[
‖ĝt‖22

]
= E

[
‖ 1

γtµ|Kt|

∑
k∈Kt

gk(wt) +
zt

γtµ|Kt|
‖22

]
(a)
=

1

γ2
t µ

2
|Kt|

(
E

[
‖
∑
k∈Kt

gk(wt)‖22

]
+ E

[
‖zt‖22

])

=
1

γ2
t µ

2
|Kt|

(
E
[
‖zt‖22

]
+ E

[∑
k∈Kt

‖gk(wt)‖22 +
∑
k∈Kt

∑
k′∈Kt

gk(wt)
Tgk′(wt)

])
(b)

≤ 1

γ2
t µ

2
|Kt|

(
E
[
‖zt‖22

]
+

E

[∑
k∈Kt

‖gk(wt)‖22 +
∑
k∈Kt

∑
k′∈Kt

‖gk(wt)‖2‖gk′(wt)‖2

])
(c)

≤ 1

γ2
t µ

2
|Kt|

E
[
|Kt|L2 + |Kt|(|Kt| − 1)L2

]
+
E
[
‖zt‖22

]
γ2
t µ

2
|Kt|
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=
L2E

[
|Kt|2

]
γ2
t µ

2
|Kt|

+
E
[
‖zt‖22

]
γ2
t µ

2
|Kt|

≤
L2(µ2

|Kt| + σ2
|Kt|)

γ2
t µ

2
|Kt|

+
d

γ2
t µ

2
|Kt|

[
max
k

σ2
k,tE [|Kt|] +N0

]
=
L2(µ2

|Kt| + σ2
|Kt|)

γ2
t µ

2
|Kt|

+
d

γ2
t µ

2
|Kt|

[
max
k

σ2
k,tµ|Kt| +N0

]
, G2

t ,

(41)

where (a) follows from the fact that E
[
gTt zt

]
= 0, (b) follows

from Cauchy-Schwarz inequality, and (c) from the assumption
that ‖gk(wt)‖2 ≤ L, i.e., the Lipschitz constant ∀k. Plugging
G2
t from (41) in (40), we arrive at the proof of Theorem 2.

B. |Kt| is Known at the PS

We then move to the case when |Kt| is known at the PS.
Recall that the estimated gradient at the PS for the known |Kt|
case is

ĝt =
1

ζt|Kt|
∑
k∈Kt

gk(wt) +
1

γtζt|Kt|
zt

=
1

ζt|Kt|
∑
k∈Kt

1

b

∑
i∈Bk
∇fk(wt; (u

(k)
i , v

(k)
i )) +

1

γtζt|Kt|
zt,

where ζt is used for maintaining unbiasedness of the estimated
gradient and will be specified later. By taking the expectation
over the randomness of SGD, user sampling and additive
noise, we have

E [ĝt]
(a)
= Pr(|Kt| = 0)E [ĝt| |Kt| = 0]

+

K∑
k′=1

Pr(|Kt| = k′)E [ĝt| |Kt| = k′]

(b)
= 0 +

K∑
k′=1

Pr(|Kt| = k′)

× E

[
1

ζt|Kt|
∑
k∈Kt

1

b

∑
i∈Bk
∇fk(wt; (u

(k)
i , v

(k)
i ))

∣∣∣|Kt| = k′
]

(c)
=

gt
ζt

K∑
k′=1

Pr(|Kt| = k′) =
gt
ζt

(
1−

K∏
k′=1

(1− pk′,t)
)
,

(42)

where (a) follows from total probability theorem; (b) follows
from the fact that when |Kt| = 0, ĝt = 0; and (c) follows
from the i.i.d. assumption so that the conditional expectation
is gt. In order get unbiased estimate for gt, ζt is chosen as
ζt = 1 −

∏K
k=1(1 − pk,t). To bound the second moment, the

proof follows similar steps as the unknown |Kt| case, and is
omitted due to space limitation.
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