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Abstract—The relation between the girth and the error correc-
tion capability of column-weight-three LDPC codes under the Gal-
lager A algorithm is investigated. It is shown that a column-weight-
three LDPC code with Tanner graph of girth � � �� can correct all
error patterns with up to ������� errors in at most ��� iterations
of the Gallager A algorithm. For codes with Tanner graphs of girth
� � �, it is shown that girth alone cannot guarantee correction of
all error patterns with up to ���� � �� errors under the Gallager
A algorithm. Sufficient conditions to correct ���� � �� errors are
then established by studying trapping sets.

Index Terms—Error floor, Gallager A algorithm, girth, low-den-
sity parity-check (LDPC) codes, trapping sets.

I. INTRODUCTION

I TERATIVE message passing algorithms for decoding low-
density parity-check (LDPC) codes [1] operate by passing

messages along the edges of a graphical representation of the
code known as the Tanner graph [2]. These algorithms are op-
timal when the underlying graph is a tree (see [3] and [4] for
general theory of LDPC codes), but in the presence of cycles,
the decoding becomes sub-optimal and there exist low-weight
patterns known as near codewords [5] or trapping sets [6] uncor-
rectable by the decoder. It is now well established that the trap-
ping sets lead to error floor in the high signal-to-noise (SNR)
region (see [7] for a list of references). While it is generally
known that high girth codes have better performance in the error
floor region, the exact relation between the girth and the slope
of the frame error rate (FER) curve in the error floor region is
unknown. In this paper, we consider the error correction capa-
bility of column-weight-three LDPC codes under the Gallager
A decoding algorithm as a function of the girth of the under-
lying Tanner graph of the code.
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Gallager [1] showed that the minimum distance of ensembles
of -regular LDPC codes with , grows lin-
early with the code length. While this implies that there exist
codes in these ensembles capable of correcting a linear number
of errors in the code length under maximum-likelihood (ML)
decoding, it does not necessarily imply the same for sub-op-
timal decoding algorithms. Zyablov and Pinsker [8] initiated the
study of guaranteed error correction capability of LDPC codes.
They showed that almost all the codes in the regular code en-
sembles with are capable of correcting a linear number
of errors in the code length under the parallel bit flipping algo-
rithm. Sipser and Spielman [9] established similar results using
expander graph based arguments. Burshtein and Miller [10] ap-
plied expansion arguments to irregular code ensembles to show
that message passing algorithms are also capable of correcting
a linear number of errors in the code length when the degree
of each variable node is at least six. Recently, Burshtein [11]
showed that regular code ensembles with are also ca-
pable of correcting a linear number of errors in code length
under a variant of the parallel bit flipping algorithm. Expansion
arguments have also been successfully applied in the case of
linear programming (LP) decoding [12]. The LP decoding al-
gorithm first proposed by Feldman et al. [12] is another sub-op-
timal decoding algorithm which has higher complexity com-
pared to the message passing algorithms, but is attractive from
an analysis standpoint. Feldman et al. [13] established that the
LP decoding algorithm can correct a linear number of errors in
the code length when the underlying Tanner graph is a good
expander. The arguments in [13] are applicable to codes with

. The results of [13] were refined in [14], in which the
authors also initiated the probabilistic analysis of LP decoding.

Another approach to the study of error correction capability
of LDPC codes is based on the girth of the underlying Tanner
graph. Tanner in [2] studied codes based on bipartite graphs
and derived lower bounds on the minimum distance of graph
based codes as a function of the left degree and girth of the
Tanner graph. For , the minimum distance was shown
to increase exponentially with the girth, which implies that for
ML decoding, the error correction capability increases exponen-
tially with the girth. The minimum pseudo-codeword weight
on the binary symmetric channel (BSC) for LP decoding was
also shown to increase exponentially with the girth for ,
thereby guaranteeing that the error correction capability grows
exponentially with the girth of the Tanner graph. In [15], it was
shown that the size of variable node sets that have the expan-
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sion required by the expansion based arguments also increases
exponentially with girth for , leading to the result that
the error correction capability under the bit flipping algorithms
grows exponentially with the girth. It is worth noting here that
the minimum stopping set [16] size also grows exponentially
with the girth for [17].

One observes that the above discussion does not address the
error correction capability of LDPC codes with (hence-
forth referred to as column-weight-three LDPC codes) under the
Gallager A algorithm as well as the bit flipping algorithms. This
is due to the fact that the Tanner graphs of column-weight-three
LDPC codes cannot achieve the expansion required by the ex-
pansion based arguments. Also, girth based arguments have not
been investigated in sufficient detail for this case.

Burshtein [11] was the first to observe that it cannot be proved
that almost all the codes in the ensemble of column-weight-three
LDPC codes can correct a linear number of errors as a non-
negligible fraction of codes have parallel edges in their Tanner
graphs and such codes cannot correct a single worst case error.
A stronger statement was proved in [18], where it was shown
that at sufficiently large code length, no code in the ensemble of
column-weight-three codes can correct a linear number of errors
in the code length. The result was extended to the bit flipping
algorithms also. The result was established by showing that a
necessary condition for a column-weight-three code to correct
all error patterns with up to errors under the Gallager A
algorithm is to avoid cycles of length up to in its Tanner graph.
Since the girth of the Tanner graph grows only logarithmically
with the code length, it follows that correction of a linear number
of errors is not possible.

The results derived in this paper are a continuation of the
results presented in [18] and complete the investigation of error
correction capability of column-weight-three codes under the
Gallager A algorithm. We show that a column-weight-three
LDPC code with Tanner graph of girth can correct
all error patterns with up to errors in at most
iterations of the Gallager A algorithm. For codes with Tanner
graphs of girth or , we show that avoiding code-
words of weight is sufficient to guarantee correction
of all error patterns with up to errors under the
Gallager A algorithm. For codes with Tanner graph of girth

, we show that there exist certain trapping sets which
should be avoided to guarantee correction of all error patterns
with up to three errors (these results first appeared in [19]).
From the results presented in this paper, it follows that the error
correction capability of column-weight-three codes under the
Gallager A algorithm grows linearly with the girth of the Tanner
graph and consequently logarithmically with the code length.
Apart from the obvious theoretical significance of this problem,
guaranteed error correction capability of column-weight-three
codes is interesting from a practical point of view. Applications
that demand high speed decoders (with transmission rates in
the range of 40–80 Gbps) need to employ low-complexity
decoding algorithms such as the Gallager A algorithm and in
this respect column-weight-three codes are superior to higher
column weight codes.

The rest of the paper is organized as follows. In Section II, we
establish the notation and provide some background material.

A detailed analysis of the Gallager A algorithm is presented in
Section III. In Section IV, we consider the case of codes with
Tanner graphs of girth . We investigate codes with Tanner
graphs of girth in Section V and conclude in Section VI
with a few remarks.

II. PRELIMINARIES

A. Notation

The Tanner graph of an LDPC code of length consists
of two sets of nodes: the set of variable nodes with
and the set of check nodes . The check nodes (variable nodes)
connected to a variable node (check node) are referred to as its
neighbors. The degree of a node is the number of its neighbors.
A regular LDPC code has a Tanner graph in which the
degree of each variable node (column weight) is and the de-
gree of each check node (row weight) is . Note that in the lit-
erature, the column weight and the row weight are also referred
to as left degree and right degree respectively. An edge is an
unordered pair of a variable node and a check node
and is said to be incident on and . A directed edge is an or-
dered pair or corresponding to the edge .
With a moderate abuse of notation, we denote directed edges by
simple letters (without arrows) but specify the direction. Hence,

denotes an undirected edge while or denotes
a directed edge. The girth is the length of the shortest cycle
in . For a given node , the neighborhood of depth , denoted
by , is the induced subgraph consisting of all nodes reached
and edges traversed by paths of length at most starting from

(including ). The directed neighborhood of depth of a di-
rected edge denoted by , is defined as the induced
subgraph containing all edges and nodes on all paths
starting from such that (see [3] for definitions and no-
tation). In a Tanner graph with girth , we note that is a tree
when . Also, if and , then

for . Let denote the number of
iterations for which the incoming messages to the nodes are sta-
tistically independent, as defined by Gallager in [1]. In a Tanner
graph of girth , the number of independent iterations satisfies
the relation .

We consider binary LDPC codes and binary message passing
decoding algorithms. The original value of a variable node is
its value in the transmitted codeword. We say a variable node is
good if its received value is equal to its original value and bad
otherwise. A message is said to be correct if it is equal to the
original value of the corresponding variable node and incorrect
otherwise. In this paper, denotes a good variable node, de-
notes a bad variable node and denotes a check node. When
the channel and the decoder satisfy certain symmetry conditions
(see [3] for details), we can assume, without loss of generality,
that the all zero codeword is transmitted. We make this assump-
tion throughout the paper. Hence, a bad variable node has re-
ceived value 1 and an incorrect message has a value of 1. A
configuration of bad variable nodes is a subgraph in which the
location of bad variable nodes relative to each other is specified.
A valid configuration is a configuration of at most
bad variable nodes free of cycles of length less than . The set of
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bad variable nodes in is denoted by and is
denoted by . The number of bad variable nodes at depth

in is denoted by .

B. Binary Message Passing Algorithms

Gallager in [1] proposed two simple binary message passing
algorithms for decoding over the BSC; Gallager A and Gallager
B. See [20] for a detailed description of the Gallager B algo-
rithm. For column-weight-three codes, which are the focus of
this paper, these two algorithms are the same. Every round of
message passing (iteration) starts with sending messages from
variable nodes to check nodes (first half of the iteration) and
ends by sending messages from check nodes to variable nodes
(second half of the iteration). Let , an -tuple
be the input to the decoder. Let denote the message
passed by a variable node to its neighboring check node in
the th iteration and denote the message passed by a
check node to its neighboring variable node . Additionally, let

denote the set of all messages from denote
the set of messages from to all its neighbors except to and

denote the set of all messages to . Let
denote the number of incoming messages to which are equal to

. Further, if all the messages in the set
are equal to , we say . The
terms and
are defined similarly. The Gallager A algorithm can then be de-
fined as follows:

if
if
otherwise

At the end of each iteration, an estimate of each variable node
is made based on the incoming messages and possibly the re-
ceived value. The decoded word at the end of the th iteration
is denoted as . The decoder is run until a valid codeword
is found or a maximum number of iterations is reached,
whichever is earlier. The output of the decoder is either a code-
word or . We say that the Gallager A algorithm is successful
on a configuration of bad variable nodes in iterations if the de-
coded word at the end of the th iteration is equal to the trans-
mitted codeword. Otherwise, we say that the Gallager A algo-
rithm is not successful on the configuration.

Different rules to estimate a variable node after each iteration
are possible and it is likely that changing the rule after certain
number of iterations may be beneficial. However, the analysis of
various scenarios is beyond the scope of this paper. For column-
weight-three codes, only two rules are possible.

• Decision rule A: if all incoming messages to a variable
node from its neighboring check nodes are equal, set the
variable node to that value; else set it to received value.

• Decision rule B: set the value of a variable node to the
majority of the incoming messages; majority always exists
since the column weight is three.

In this paper, we assume Decision rule B for codes with Tanner
graphs of girth and Decision rule A for codes with
Tanner graphs of girth . A detailed discussion of this is
provided in Section V.

C. Trapping Sets and Inducing Sets

We now provide a brief overview of the characterization of
failures of the Gallager A algorithm. We adopt the definitions
of the terms eventually correct variable nodes, trapping sets and
failure sets from [6] and the definition of inducing set from [18].
We also adopt the definition of critical number of a trapping set
from [21]. The support of a vector , denoted
by is defined as the set of all variable nodes for which

. Since the transmitted codeword is assumed to be the
all-zero-codeword, the support of the input to the decoder is
simply the set of variable nodes flipped by the channel (or, in
other words, the set of variable nodes initially in error).

Let denote the input to the Gallager A decoder. A variable
node is said to be eventually correct if there exists a positive
integer such that for all with . For
an input , the failure set is defined as the set of variable
nodes that are not eventually correct. The decoding on the input

is successful if and only if . If , then we say
that is a trapping set and is an inducing set. The
size of an inducing set is its cardinality. Since the failure sets
of two different input vectors can be the same trapping set, we
denote a trapping set simply by . A trapping set is said to be
an trapping set if it has variable nodes and odd-degree
check nodes in the sub-graph induced by . Note that in order
to show that a given set of variable nodes is a trapping set, we
should exhibit a vector for which .

Definition 1 ([21]): (Critical number for Gallager A algo-
rithm) Let be a trapping set for the Gallager A algorithm and
let . Let . The critical
number of trapping set for the Gallager A algorithm is
the minimum number of variable nodes that have to be initially
in error for the decoder to end up in the trapping set , i.e.,

From the above discussion, it follows that it is necessary to avoid
all trapping sets with critical number to guarantee correction
of all error patterns with up to errors.

III. FIRST ITERATIONS

In this section, we outline a method to find, for different
values of , all the possible configurations of at most
bad variable nodes in the neighborhood of a variable node such
that the variable node sends an incorrect message in the th
iteration. We begin with the following lemma.

Lemma 1: The messages passed by a variable node and
a check node in the Gallager A algorithm operating on
a column-weight-three LDPC code can be described in the
following manner.

i) If is a bad variable node, then we have
and:
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Fig. 1. Illustration of neighborhood up to depth 1 of a good variable node.

• if , i.e., sends
incorrect messages to all its neighbors if it receives two
or more incorrect messages from its neighboring check
nodes in the previous iteration;

• and if
and , i.e., sends one correct mes-

sage and two incorrect messages if it receives one in-
correct message from its neighboring check nodes in
the previous iteration; the correct message is sent along
the edge on which the incorrect message is received;

• if , i.e., sends all
correct messages if it receives all correct messages
from its neighboring check nodes in the previous
iteration.

ii) If is a good variable node, then we have
and:
• if , i.e., sends

all correct messages if it receives two or more correct
messages from its neighboring check nodes in the pre-
vious iteration;

• and if
and , i.e., sends one incorrect

message and two correct messages if it receives two
incorrect messages from its neighboring check nodes
in the previous iteration; the incorrect message is
sent along the edge on which the correct message is
received;

• , if , i.e., sends
all incorrect messages if it receives all incorrect mes-
sages from its neighboring check nodes in the previous
iteration.

iii) For a check node , we have:
• , if is odd, i.e.,

sends incorrect messages along the edges on which it
received correct messages and correct messages along
the edges on which it received incorrect messages, if
the total number of incoming incorrect messages from
its neighboring variable nodes is odd;

• , if is even, i.e.,
sends incorrect messages along the edges on which

it received incorrect messages and correct messages
along the edges on which it received correct messages,
if the total number of incoming incorrect messages
from its neighboring variable nodes is even.

iv) A variable node is estimated incorrectly at the end of an
iteration if it receives at least two incorrect messages.

Proof: Follows from the description of the Gallager A
algorithm.

Let be a variable node which sends an incorrect message
along the edge in the th iteration for some .
Let the other two neighboring check nodes of be denoted by

and . Additionally let and denote
the directed edges from and , respectively, to (see Fig. 1
for an illustration when is a good variable node). From Lemma
1, we see that only the following three cases are possible.

1) is a good variable node and and contain an odd
number of variable nodes which send an incorrect message
in the th iteration to and .

2) is a bad variable node and and contain an odd
number of variable nodes which send an incorrect message
in the th iteration to and .

3) is a bad variable node and one of and contains
an odd number of variable nodes while the other contains
an even number of variable nodes which send an incorrect
message in the th iteration to and .

Now, consider a variable node which sends an incorrect
message along the edge in the th iteration. The
message along depends only on the variable nodes and check
nodes in . Since is a tree, all the variable nodes and
check nodes in are guaranteed to be distinct. This fact cou-
pled with the above observations provides a recursive method to
determine all the possible configurations of at most bad
variable nodes in .

For a variable node to send an incorrect message along
in the th iteration, must contain variable node/nodes
which sends/send an incorrect message in the th iteration. Let

be the generic label used to denote a variable node that sends
an incorrect message along edge (note that or

) in the th iteration. The total number of bad vari-
able nodes in is the sum (over all possible ) of all bad
variable nodes in . It is easy to see that if we derive a
configuration of bad variable nodes in from the configura-
tion of bad variable nodes in by applying observations
(1)–(3), the number of bad variable nodes increases by at least
one. Hence, all the configurations of at most bad vari-
able nodes in can be constructed from the configurations
of at most bad variable nodes in by applying obser-
vations (1)–(3). We illustrate this with two examples.

Example 1: Let us begin by considering the case in
which we require configurations of at most three bad variable
nodes in for a variable node to send an incorrect message
along in the second iteration. The only variable nodes
that send incorrect messages in the first iteration are the bad vari-
able nodes. It can be seen that there are only three configurations
of at most three bad variable nodes which are described below.

1) is a bad variable node and contains another bad vari-
able node.

2) is a bad variable node and and each contain one
bad variable node.

3) is a good variable node and and each contain
one bad variable node.

The three cases are illustrated in Fig. 2(a). It can be seen that
if and each contain one bad variable node, sends
an incorrect message irrespective of whether it is good or bad.
Hence, to avoid drawing too many figures, we illustrate cases (2)
and (3) in one figure in which the variable node is represented
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Fig. 2. (a) All configurations of at most three bad variable nodes in � in
which � sends an incorrect message to � in the second iteration. (b) Configura-
tions illustrated using neutral variable node.

Fig. 3. (a) All configurations of at most four bad variable nodes in� in which
� sends an incorrect message to � in the second iteration. (b) All configurations
of at most five bad variable nodes in� in which � sends an incorrect message
to � in the third iteration.

by the gray circle and refer to the variable node as a neutral
variable node. This is illustrated in Fig. 2(b).

Example 2: For , we require configurations of at most
five bad variable nodes in for a variable node to send an
incorrect message along in the third iteration. We
first determine all the configurations of at most four bad vari-
able nodes in for a variable node to send an incorrect
message along in the second iteration. The con-
figurations are shown in Fig. 3(a). Then, applying observations
(1)–(3), we derive all possible configurations for . Fig. 3(b)
illustrates the configurations for from which all the pos-
sible configurations can be derived in the following way. For
each configuration illustrated in Fig. 3(b) that contains neutral
variable nodes, convert some of the neutral variable nodes to bad
variable nodes such that the total number of bad variable nodes
does not exceed five. Carrying this out in all the possible ways
generates all the possible configurations.

Proceeding along similar lines, we can obtain all possible
configurations with at most seven bad variable nodes such that

sends an incorrect message along edge in the fourth iteration
under the assumption that is a tree. Fig. 4 illustrates the con-
figurations for from which all the possible configurations
can be derived.

We now prove bounds on in the following lemma.

Lemma 2: Let be a variable node that sends an incorrect
message along the edge in the th iteration and
assume that is a tree.

i) If is a bad variable node, then . If
, i.e., for ,

then . If , then
.

ii) If is a good variable node, then . If
, then . If ,

then . If ,
then .

Proof: The proof is by induction on . It is easy to verify
the bounds for . Let the bounds be true for some ,
and let be a bad variable node sending an incorrect message
on in the th iteration. Further, assume that

is a tree. Then, has at least one check node which
sends an incorrect message along the edge in the

th iteration. This implies that has at least one variable
node sending an incorrect message in the th iteration
along the edge . Since a path of length 2 exists
between and .

If is a bad variable node, then and conse-
quently . If is a good variable node, then

and consequently .
If for , then is a good variable node

such that which implies that by
the induction hypothesis. Hence, .

If then either (a) is a bad variable node with
for which implies that

by the induction hypothesis. Hence,
, or (b) is a good variable node with

which implies that by the
induction hypothesis. Hence,

.
By the principle of mathematical induction, the bounds are

true for all when is a bad variable node. The proofs are
similar for the case when is a good variable node.

IV. MAIN THEOREM

In this section, we prove that a column-weight-three code
with Tanner graph of girth can correct all error patterns
with up to errors in at most iterations of the Gal-
lager A algorithm. The proof proceeds by finding, for a partic-
ular choice of , all configurations of or less bad vari-
able nodes on which the Gallager A algorithm is not successful
in iterations and then prove that the Gallager A algorithm
is successful on these configurations in subsequent iterations.
When is even, we use (or )
and when is odd, we use (or ).
We deal with these cases separately.

A. Is Even

Let be a variable node which receives two incorrect mes-
sages along the edges and at
the end of the th iteration ( can be either good or
bad). This implies that and each has a variable node,

and respectively, that sends an incorrect message in the
th iteration to check nodes and , respectively. Let
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Fig. 4. All configurations of at most seven bad variable nodes in � in which � sends an incorrect message to � in the fourth iteration.

and
[see Fig. 5(a) for an illustration]. All possible configurations of
bad variable nodes in and can be determined using
the method outlined in Section III. Since there exists a path
of length 3 between and , we have . Also,

for . Therefore,
for . This implies that

and can have a common node only at depth . The total
number of bad variable nodes in , in
any configuration is, therefore, lower bounded by

or equivalently
. Hence, we have

(1)

We are interested only in the valid configurations, i.e., at most
bad variable nodes, free from cycles of length less

than . We divide the discussion into three parts: 1) we find all
the possible valid configurations for the case when ; 2)
we then proceed iteratively for ; 3) we consider the case

separately as the arguments for do not hold for
this case.

1) : Let be defined as above
with . Since and are variable nodes that send incor-
rect messages along and , respectively, in the fourth iter-
ation, the configuration of bad variable nodes in and
must resemble one of the configurations illustrated in Fig. 4. In
order to find all valid configurations on which the Gallager A
algorithm is not successful at the end of 4 iterations, we con-
sider each possibility in Fig. 4 for and . From (1) and

Fig. 5. Configurations of at most seven bad variable nodes, free of cycles of
length less than 16, on which the Gallager A algorithm is not successful in four
iterations.

the constraint , we see that there are only
three possible configurations which are shown in Fig. 5.

Remark: Since, all the configurations contain seven bad vari-
able nodes excluding the variable node , we note that for a
valid configuration, has to be a good variable node. Hence,
there do not arise cases where a bad variable node receives two
incorrect message at the end of fourth iteration.

2) : Let be a valid configuration in which there
exists a variable node which receives two incorrect messages
along the edges and at the end of
the th iteration. This implies that and each has
a variable node, and , respectively, that sends an incorrect
message in the th iteration. We have the following lemma.
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Lemma 3: and are bad variable nodes.
Proof: The proof is by contradiction. We know that the

lower bound on the total number of bad variable nodes in any
configuration is given by (1) and that . We have two cases.

a) and are both good variable nodes: We first note that
in any valid configuration, . Otherwise,
we have the following two possibilities.

i) . In this case, from Lemma 2, we see
that , since

.
ii) . In this case,

, since .
Both cases are a contradiction as we have at most
bad variable nodes. Hence, .
Now, , and, hence, we have

, which is a
contradiction.

b) is a bad variable node and is a good variable node.
The opposite case is identical.

First, we claim that in any valid configuration,
. Since is a bad variable node, . Assume

that . Then . Again,
implies that

(as ), which is a contradiction. Hence, .
Now, and imply that

which is a contradiction.
Hence, and are both bad variable nodes.

We now have the following theorem.

Theorem 1: If is a valid configuration on which the Gal-
lager A algorithm is not successful in iterations, then
there exists a valid configuration on which the Gallager A
algorithm is not successful in iterations.

Proof: In the configuration and are bad variable
nodes which send incorrect messages to check nodes and ,
respectively, in the th iteration. This implies that and

each has a check node, and , respectively, that sends
an incorrect message in the th iteration to and , respec-
tively. Now consider a configuration constructed from
by removing the nodes and the edges connecting
them to their neighbors and introducing the edges and

(see Fig. 6(a)). If has at most bad variable
nodes and no cycles of length less than , then has at most

bad variable nodes and no cycles of length less than
. In , variable node receives two incorrect messages

at the end of iterations, and, hence, is a valid configura-
tion on which the Gallager A algorithm is not successful in
iterations.

Theorem 1 gives a method to construct valid configurations
of bad variable nodes for girth from valid configurations for
girth . Also, if and are two distinct valid configura-
tions, then the configurations and constructed from

and , respectively, are distinct. Hence, the number of valid
configurations for girth is greater than or equal to the number
of valid configurations for girth . Note that the converse
of Theorem 1 is not true in general. However, for , we
will show in Theorem 2 that any configuration for girth can be
extended to a configuration for girth .

Fig. 6. (a) Construction of � from � . (b) Construction of � from � .

Fig. 7. Configurations of at most �� � � bad variable nodes free of cycles of
length less than ��� � on which the Gallager A algorithm is not successful in
�� � �� iterations.

Theorem 2: For even and , there are only three
valid configurations on which the Gallager A algorithm is not
successful in iterations.

Proof: For , we have and there are only
three valid configurations as given in Fig. 5. So, for
and even, there can be at most three valid configurations.
Each valid configuration for , can be extended to a con-
figuration for by the addition of two bad variable
nodes and in the following way. Remove the edges

and . Add bad variable nodes and
and check nodes and . Introduce the edges

and
(see Fig. 6(b) for an illustration). It can be seen that is a
valid configuration for girth . In general, the configura-
tions constructed using the above method from the valid config-
urations for are valid configurations for . Fig. 7
illustrates the three configurations for all .

Remark: In all valid configurations with , no bad
variable node receives two incorrect messages at the end of the

th iteration.

Theorem 3: The Gallager A algorithm is successful on all
valid configurations in iterations.

Proof: We prove the theorem for one configuration for
only. The proof is similar for other configurations. At the end

of fourth iteration, let receive two incorrect messages [see
Fig. 5(a)]. It can be seen that there cannot exist another variable
node (either good or bad) which receives two incorrect messages
without violating the constraint. Also, receives all
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Fig. 8. Configurations of at most five bad variable nodes free of cycles of length less than 12 on which the Gallager A algorithm is not successful in three iterations.

correct messages and receive one incorrect
message each from , respectively. In the fifth
iteration, we have

otherwise

In the sixth iteration, we have

otherwise

In the seventh iteration, we have

otherwise

Finally in the eighth iteration, we have

otherwise

At the end of eighth iteration, no variable node receives two
incorrect messages, and, hence, the decoder is successful.

3) : In this case, and the incoming messages
at the end of the second iteration are independent. We need to

prove that any code with Tanner graph with , can correct
all error patterns of weight less than six. Let be a variable node
which sends an incorrect message in the third iteration along
edge given that there are at most 5 bad variable nodes
and is a tree. Fig. 4 illustrates different configurations of bad
variable nodes in .

Fig. 8 shows all possible configurations of five or less bad
variable nodes on which the Gallager A algorithm is not suc-
cessful at the end of three iterations. However, the Gallager A
algorithm is successful on all the configurations in six iterations.
The proofs for configurations in Fig. 8(a)–(h) are similar to the
proof for configuration in Fig. 5(a) and are omitted. Since, con-
figuration (i) has only four bad variable nodes, a complete proof
for convergence requires considering all possible locations of
the fifth bad variable node, but other than that the structure of
the proof is identical to that of the proof for the configuration
in Fig. 5(a). It is worth noting that in this case, there exist con-
figurations in which a bad variable node receives two incorrect
messages at the end of the third iteration. However, the Gallager
A algorithm is successful on all the configurations eventually.

B. Is Odd

In this case, we have and we need to prove
that the code is capable of correcting all error patterns of weight

or less. The methodology of the proof is similar
to the proof in the case when is even. In this case, we have

for . This implies that
and can have a common node at depth . There-
fore, in any configuration, is lower bounded
by . The
valid configurations in this case are the ones which satisfy

. We again deal with and
separately.
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Fig. 9. (a) Configuration of at most six bad variable nodes free of cycles of
length less than 14 on which the Gallager A algorithm is not successful in four
iterations. (b) Configuration of at most �� bad variable nodes free of cycles of
length less than ��� � on which the Gallager A algorithm is not successful in
� � � iterations.

1) :

Lemma 4: For , there is only one configuration of six
bad variable nodes on which the Gallager A algorithm is not
successful in four iterations.

Proof: Using arguments outlined above and the configu-
rations in Fig. 3(b) along with the constraint that , we
conclude that there is only one configuration which is not suc-
cessful in four iterations, which is shown in Fig. 9(a).

Lemma 5: If with is a valid configuration on which
the Gallager A algorithm is not successful in iterations,
then and are bad variable nodes.

Proof: Similar to the proof of Lemma 3.

Theorem 4: If is a valid configuration on which the Gal-
lager A algorithm is not successful in iterations, then there
exists a valid configuration on which the Gallager A is not
successful in iterations.

Proof: Similar to the proof of Theorem 1.

Theorem 5: For , there is only one valid configuration
on which the Gallager A algorithm is not successful in
iterations.

Proof: For , we have and there is only one
configuration. For , the number of valid configurations
cannot be more than one. The valid configuration for ,
can be extended to a configuration for (in the same
manner as in Theorem 2). In general, the valid configuration for
girth can be extended to a valid configuration for girth .
Fig. 9(b) shows for all .

Theorem 6: The Gallager A algorithm is successful on the
configuration in iterations.

Proof: Similar to the proof of Theorem 3.

2) : In this case, and there are three configura-
tions on which the Gallager A algorithm is not successful at the
end of the third iteration. Fig. 10 shows the three configurations.
It can be shown that the Gallager A algorithm is successful on
these configurations in five iterations.

V. CASE OF GIRTH

In Section IV, we established that the Gallager A algorithm
for a column-weight-three LDPC code with Tanner graph of

Fig. 10. Configurations of at most four variable nodes free of cycles of length
less than ten on which the Gallager A algorithm is not successful in three
iterations.

girth can correct errors in iterations. In
[18], it was shown that the Gallager A algorithm for a column-
weight-three code with cannot correct all error patterns
with up to errors. Hence, the bounds established in this
paper are tight for codes with Tanner graphs of girth
and cannot be improved. In this section, we discuss the case of
codes with Tanner graphs of girth and the conditions on
the Tanner graph to correct all error patterns with up to 1, 2, and
3 errors.

Before we proceed, we give an important remark about the
decision rule. As mentioned in Section II-B, we adopt Decision
rule A for codes with Tanner graphs of girth . This is
due to the fact that when the number of errors is small (as is
the case), adopting Decision rule A leads to faster convergence
to a codeword than adopting Decision rule B. In Decision rule
B, any variable node which receives two incorrect messages is
decoded wrongly. For Tanner graphs of girth , due to
the dense connectedness, it is possible that many good variable
nodes receive two incorrect messages thereby leading to non-
convergence. In Decision rule A, a good variable node is de-
coded wrongly only if it receives three incorrect messages and
if the number of errors is small, it is less likely for this scenario
to arise. While bad variable nodes need only one incorrect mes-
sage to be decoded wrongly, when the number of errors is small,
such variable nodes receive all correct messages as the iterations
progress. It is worth noting that the results established for codes
with Tanner graphs of girth hold for Decision rule A
also. But we adopted Decision rule B, as the proof in this case
is more elegant. In practice, however, it is beneficial to adopt
Decision rule A due to the following reasons. The bit error rate
(BER) performance when the number of errors introduced by
the channel is small is better for Decision rule A compared to
Decision rule B. Moreover, the Tanner graphs associated with
small to moderate length codes of high rates have low girth and
adopting Decision rule A would lead to faster convergence.

For a column-weight-three code with Tanner graph of girth
, it cannot be proved that the Gallager A algorithm can

correct all error patterns with up to errors. This is due
to the fact that such Tanner graphs can contain codewords of
weight less than or equal to and in such cases even
the maximum likelihood decoder is not guaranteed to correct

errors. Specifically, a code with Tanner graph of girth
four can contain a codeword of weight two, a code with Tanner
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Fig. 11. (a) Codeword of weight two in a Tanner graph of girth � � �.
(b) Codeword of weight four in a Tanner graph of girth � � �. (c) Codeword
of weight six in a Tanner graph of girth � � �.

graph of girth six can contain a codeword of weight four and a
code with Tanner graph of girth eight can contain a codeword
of weight six [see Fig. 11(a)–(c) for illustration1]. Hence, it is
necessary to avoid all codewords of weight less than or equal to

to guarantee correction of errors.
For codes with Tanner graphs of girth four, it is easy to show

that the Gallager A algorithm can correct a single error in one
iteration if there are no codewords of weight two. For codes with
Tanner graphs of girth six, we have the following theorem.

Theorem 7: A column-weight-three LDPC code with Tanner
graph of girth can correct all error patterns with up to
two errors in at most two iterations of the Gallager A algorithm
if does not contain any codewords of weight four.

A. Case of

Codes with Tanner graphs of girth require a separate
discussion. In this case, avoiding codewords up to weight six
alone cannot guarantee correction of all error patterns with up
to three errors under the Gallager A algorithm.

We first exhibit two trapping sets with induced subgraphs of
girth , which have critical number three under certain
conditions. We then show that avoiding these trapping sets in
a Tanner graph of girth is sufficient to guarantee the
correction of three errors under the Gallager A algorithm.

Lemma 6: The Tanner graph of a column-weight-three code
with girth can contain trapping sets with critical number
three. Specifically, there exist (5,3) and (8,0) trapping sets with
critical number three.

Proof: We prove the lemma for the case of the (5,3) trap-
ping set shown in Fig. 12(a). The proof for the (8,0) trapping set
shown in Fig. 12(b) is similar and is omitted.

Consider the (5, 3) trapping set shown in Fig. 13. Let
be the set of variable nodes which are initially in

error. Let and . Also,

1We note here that in Figs. 11, 12, and 15, � just indicates a variable node
with no value (good or bad) attached.

Fig. 12. Trapping sets with induced subgraphs of girth � � � and critical
number three. (a) A (5,3) trapping set. (b) An (8,0) trapping set.

assume that no variable node in , has two or more
neighbors in . In the first iteration, we have

if
otherwise

and
if
otherwise

All variable nodes in receive three incorrect messages and
are decoded incorrectly at the end of the first iteration. In the
second iteration

if
otherwise

and
if
otherwise

and all variable nodes in are decoded incorrectly. Continuing
in this fashion, and .
That is, the messages being passed in the Tanner graph repeat
after every two iterations. Hence, three variable nodes in error
initially can lead to a decoder failure, and, therefore, this (5, 3)
trapping set has critical number equal to three.

Theorem 8: If the Tanner graph of a column-weight-three
LDPC code has girth eight and does not contain a subgraph
isomorphic to a (5,3) trapping set of Fig. 12(a) or a subgraph
isomorphic to an (8,0) trapping set of Fig. 12(b), then the code
can correct all error patterns with up to three errors in at most
three iterations of the Gallager A algorithm.

Proof: Let be the set of three variable
nodes initially in error and be the set of the check nodes
connected to the variable nodes in . In a column-weight-three
code free of cycles up to length six, the variable nodes in
can induce only one of the four subgraphs given in Fig. 14. In
each case, if and is 0 otherwise. The
proof proceeds by examining these subgraphs one at a time and
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Fig. 13. Illustration of message passing for a (5,3) trapping set: (a) variable node to check node messages in the first iteration, (b) check node to variable node
messages in the first iteration, (c) variable node to check node messages in the second iteration, and (d) check node to variable node messages in the second iteration.
Arrow-heads indicate the messages with value 1.

Fig. 14. All the possible subgraphs that can be induced by three variable nodes
in a column-weight-three code with Tanner graph of girth � � �.

proving the correction of the three errors in each case. Below we
provide the complete proof for the case depicted in Fig. 14(b)
and relegate the proofs for other cases to Appendix A.

Subgraph 2: The variable nodes in induce the subgraph
shown in Fig. 14(b). At the end of the first iteration

if
if
otherwise

(2)

For no as this would introduce a four-
cycle or a six-cycle in the graph. For any
only if . This implies that must have two
check node neighbors in . Let be the set of such
variable nodes. We have the following lemma:

Lemma 7: There can be at most one variable node in .
Proof: Suppose . Specifically, assume

. The proof is similar for . First
note that for any cannot be connected to as it
would introduce a six-cycle. Next, let and

. Then, any cannot have both check
nodes in either or as this would introduce a four cycle.
Hence, any has one check node neighbor in and one
check node neighbor in . Assume without loss of generality
that is connected to and . Then, cannot be
connected to and as this would introduce a six-cycle. Also,

cannot be connected to and as this would introduce a
(5, 3) trapping set. Hence, .

Now, let be connected to and an additional
check . In the second iteration

if
if
if
otherwise

and
if
if
if
otherwise

We have the following lemma.

Lemma 8: There cannot exist any variable node
that receives two or more incorrect messages at the end of the
second iteration.

Proof: Suppose there exists a variable node that receives
two incorrect messages in the second iteration. Then, it would
be connected to two check nodes in the set . This is
not possible as it would introduce a four-cycle or a six-cycle or
a (5, 3) trapping set (e.g., if is connected to and , then

would form a (5, 3) trapping set).
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Fig. 15. Codeword of weight eight with critical number four.

Thus, in the third iteration

if
if
otherwise

and
if
if
otherwise

At the end of the third iteration, for all .
Also, we have the following lemma.

Lemma 9: There exists no such that .
Proof: Suppose there exists such that .

Then, is connected to three check nodes in the set
. This implies that . However,

from Lemma 8 it is evident that no such exists.

Hence, if a decision is made after the third iteration, a valid
codeword is found and the decoder is successful.

Remark: It is interesting to note that there is another (8,0)
trapping set which is shown in Fig. 15. But the critical number
of this (8,0) trapping set is four.

VI. DISCUSSION

Gallager in [1] showed that the girth of the Tanner graph of
any code in the ensemble of regular codes is bounded
by

Additionally, an explicit construction of codes whose Tanner
graphs satisfy

was proposed. Codes with Tanner graphs of girth growing loga-
rithmically with the code length were also proposed by Margulis
[22] and further investigated by Rosenthal and Vontobel [23].

The results presented in this paper, combined with the results
of [18], establish that the guaranteed error correction capability
of column-weight-three LDPC codes under the Gallager A al-
gorithm grows logarithmically with the code length. This is an
interesting result due to the fact that while the minimum dis-
tance of codes in this ensemble increases linearly with the code
length, the guaranteed error correction capability increases only

Fig. 16. Illustration of a cycle of length 12.

logarithmically with the code length. This is in contrast to the
results obtained so far for higher column weight codes for which
correction of a linear number of errors in code length was estab-
lished. Considering error correction capability as a function of
girth also provides interesting results. The minimum distance in
this scenario increases exponentially with girth while the guar-
anteed error correction capability grows only linearly with the
girth. It is worth also noting that for LP decoding on the BSC,
the error correction capability for column-weight-three codes
grows exponentially with the girth.

The results derived in this paper do not apply to the parallel
bit flipping algorithm. It can be easily shown that when is
even, variable nodes in error can lead to oscillations in the
bit flipping algorithm. Fig. 16 shows a set of six variable nodes
that form a cycle of length 12. If the bad variable nodes are lo-
cated as shown in Fig. 16, it can be seen that the variable nodes
in error at the end of a decoding round in the parallel bit flip-
ping algorithm oscillate, thereby resulting in a decoding failure.
This observation leads to the conclusion that the Gallager A al-
gorithm can correct (approximately) twice the number of errors
compared to the parallel bit flipping algorithm.

We conclude with a few open problems and suggestions for
future work that are of considerable interest:

• Is there a decoding algorithm, perhaps one that employs
more bits in the message alphabet, under which column-
weight-three LDPC codes can correct a linear number of
errors in the code length?

• Can it be proved that column-weight-three LDPC codes
can correct a linear number of errors in the code length
under the LP decoder?

• It would be interesting to see if the method outlined in this
paper can be applied to higher column weight codes to
identify trapping sets as well as derive tighter bounds on
the guaranteed error correction capability.

• Algorithms that utilize soft information from the channel
and/or employ more bits in the message alphabet have the
potential to correct more errors. Future work includes the
extension of the results derived in this paper to quantized
belief propagation algorithms over the BSC as well as the
additive white Gaussian noise (AWGN) channel.

APPENDIX A
PROOF OF THEOREM 8

Subgraph 1: The variable nodes in induce the subgraph
shown in Fig. 14(a). At the end of the first iteration

if
otherwise
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There cannot exist a variable node which is connected
to two or more check nodes in the set without introducing
either a six-cycle or a subgraph isomorphic to (5,3) trapping
set. At the end of first iteration, for all

. Furthermore, there exists no for which
. Hence, if a decision is made after the first iteration, a valid

codeword is found and the decoder is successful.
Subgraph 3: The variable nodes in induce the subgraph

shown in Fig. 14(c). At the end of the first iteration

if
if
otherwise

For no . For any
only if . We have the following

lemma:

Lemma 10: Let be the set of all variable nodes in
that receive two incorrect messages at the end of the first iter-
ation. Then, (i) has at most four variable nodes and, (ii) no
two variable nodes in can share a check node in .

Proof: There exists no variable node which is connected
to two check nodes from the set as it would
introduce a four-cycle or a six-cycle. However, a variable node
can be connected to one check node from and to
one check node from . Note that a variable node con-
nected to does not receive an incorrect message at the end of
the first iteration. It is easy to see that there can be at most four
variable nodes which receive two incorrect messages without
introducing a four cycle or a six cycle. Also, these four variable
nodes cannot share check nodes outside the set without in-
troducing a four cycle or a six cycle.

Let these four variable nodes be labeled and
their third check node neighbors be , respectively.
Let . Hence, in the second iteration

if
if
otherwise

and
if
if
otherwise

At the end of the second iteration, for all .
Moreover, for no . So, if a decision is
made after the second iteration, a valid codeword is reached and
the decoder is successful.

Subgraph 4: The variable nodes in induce the subgraph
shown in Fig. 14(d). At the end of the first iteration

if
otherwise

If there exists no variable node such that
, a valid codeword is reached after the first iteration. Suppose

this is not the case. Then, we have the following lemma.

Lemma 11: Let be the set of variable nodes which receive
two or more incorrect messages at the end of the first iteration.

Then, (i) there exists at most one variable node such
that , and (ii) there exist at most three variable
nodes which receive two incorrect messages
at the end of the first iteration. Furthermore, no two variable
nodes in share a check node in .

Let the third check nodes connected to be
and , respectively, and let . In the second
iteration

if
if
otherwise

and
if
if
otherwise

It can be shown that there cannot exist a variable node which is
connected to one check node from and to one check node
from . It can also be shown that there cannot be a
variable node which is connected to all three check nodes in
the set as this would introduce a graph isomorphic to the
(8,0) trapping set. However, there can be at most two variable
nodes which receive two incorrect messages from the check
nodes in , say and . Let the third check nodes con-
nected to them be and , respectively. Let
and . At the end of the second iteration, variable
nodes and receive one incorrect message each. Vari-
ables in the set receive two incorrect messages each. There-
fore, in the third iteration, we have

if
if
otherwise

and
if
if

At the end of the third iteration, for all .
Furthermore, for no . So, if a decision is
made after the third iteration, a valid codeword is reached and
the decoder is successful.
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