
Error Correction Capability of

Column-Weight-Three LDPC Codes

Shashi Kiran Chilappagari,Student Member, IEEE,and Bane Vasic,Senior Member, IEEE

Abstract

In this paper, we investigate the error correction capability of column-weight-three LDPC codes when decoded

using the Gallager A algorithm. We prove that the necessary condition for a code to correctk ≥ 5 errors is to avoid

cycles of length up to2k in its Tanner graph. As a consequence of this result, we show that given anyα > 0,∃N

such that∀n > N , no code in the ensemble of column-weight-three codes can correct all αn or fewer errors. We

extend these results to the bit flipping algorithm.

Index Terms

Low-density parity-check codes, Gallager A algorithm, trapping sets, error correction capability

I. I NTRODUCTION

Gallager in [1] showed that forγ ≥ 3 andρ > γ, there exist(n, γ, ρ) regular low-density parity-check

(LDPC) codes for which the bit error probability tends to zeroasymptotically whenever we operate below

the threshold. Richardson and Urbanke in [2] derived the capacity of LDPC codes for various message

passing algorithms and described density evolution, a deterministic algorithm to compute thresholds.

Zyablov and Pinsker [3] analyzed LDPC codes under a simpler decoding algorithm known as the bit

Manuscript received October 17, 2007. This work is funded by NSF under Grant CCF-0634969, ITR-0325979 and INSIC-EHDR program.

S. K. Chilappagari and B. Vasic are with the Department of Electrical andComputer Engineering, University of Arizona, Tucson, AZ,

85721 USA (e-mails: shashic@ece.arizona.edu, vasic@ece.arizona.edu).

flipping algorithm and showed that almost all the codes in theregular ensemble withγ ≥ 5 can correct

a constant fraction of worst case errors. Sipser and Spielman in [4] used expander graph arguments to

analyze bit flipping algorithm. Burshtein and Miller in [5] applied expander based arguments to show

that message passing algorithms can also correct a fixed fraction of worst case errors when the degree

of each variable node is at least five. Feldmanet al. [6] showed that linear programming decoder [7]

is also capable of correcting a fraction of errors. Recently,Burshtein in [8] showed that regular codes

with variable nodes of degree four are capable of correctinga linear number of errors under bit flipping

algorithm. He also showed tremendous improvement in the fraction of correctable errors when the variable

node degree is at least five.

In this paper, we consider the error correction capability of the ensembleCn(3, ρ > 3) of (3, ρ) regular

LDPC codes as defined in [2] when decoded using the Gallager A algorithm. We analyze decoding failures

using the notion of trapping sets and prove that a code with girth g ≥ 10 cannot correct allg/2 or fewer

errors. Using this result, we prove that for anyα > 0, for sufficiently large block lengthn, no code in

the Cn(3, ρ) ensemble can correctα fraction of errors. This result settles the problem of errorcorrection

capability of column-weight-three codes. The rest of the paper is organized as follows. In Section II we

establish the notation and describe the Gallager A algorithm. We then characterize the failures of the

Gallager A decoder with the help of fixed points. We also introduce the notions of trapping sets, failure

sets and critical number. In Section III we investigate the relation between error correction capacity and

girth of the code. We extend the results to bit flipping algorithm in Section IV and conclude in Section

V.

II. D ECODING ALGORITHMS AND TRAPPINGSETS

A. Graphical Representations of LDPC Codes

LDPC codes [1] are a class of linear block codes which can be defined by sparse bipartite graphs

[9]. Let G be a bipartite graph with two sets of nodes:n variable nodes andm check nodes. The check

nodes (variable nodes) connected to a variable node (check node) are referred to as its neighbors. The

degree of a node is the number of its neighbors. This graph defines a linear block codeC of lengthn and

dimension at leastn−m in the following way: Then variable nodes are associated to then coordinates

of codewords. A vectorv = (v1, v2, . . . , vn) is a codeword if and only if for each check node, the sum of

its neighbors is zero. Such a graphical representation of anLDPC code is called the Tanner graph [10] of

the code. The adjacency matrix ofG givesH, a parity check matrix ofC. An (n, γ, ρ) regular LDPC code

has a Tanner graph withn variable nodes each of degreeγ (column weight) andnγ/ρ check nodes each

of degreeρ (row weight). This code has lengthn and rater ≥ 1 − γ/ρ [9]. In the rest of the paper we

consider codes in the(3, ρ), ρ > 3, regular LDPC code ensemble. Note that the column weight androw

weight are also referred to as left degree and right degree inliterature. It should also be noted that the

Tanner graph is not uniquely defined by the code and when we saythe Tanner graph of an LDPC code,

we only mean one possible graphical representation. The girth g is the length of the shortest cycle inG.

In this paper,• represents a variable node,� represents an even degree check node and� represents an

odd degree check node.

B. Hard Decision Decoding Algorithms

Gallager in [1] proposed two simple binary message passing algorithms for decoding over the binary

symmetric channel (BSC); Gallager A and Gallager B. See [9] for adetailed description of Gallager B

algorithm. For column-weight-three codes, which are the main focus of this paper, these two algorithms

are the same. Every round of message passing (iteration) starts with sending messages from variable nodes

(first half of the iteration) and ends by sending messages from check nodes to variable nodes (second half

of the iteration). Letr, a binaryn-tuple be the input to the decoder. Letωj(v, c) denote the message passed

by a variable nodev to its neighboring check nodec in jth iteration and̟j(c, v) denote the message

passed by a check nodec to its neighboring variable nodev. Additionally, let ωj(v, :) denote the set of

all messages fromv, ωj(v, : \c) denote the set of all messages fromv except toc, ωj(: , c) denote the

set of all messages toc. ωj(: \v, c), ̟j(c, :), ̟j(c, : \v), ̟j(: , v) and̟j(: \c, v) are defined similarly.

The Gallager A algorithm can be defined as follows.

ω1(v, c) = r(v)

ωj(v, c) =



























1, if ̟j−1(: \c, v) = 1

0, if ̟j−1(: \c, v) = 0

r(v), otherwise

̟j(c, v) =
(

∑

ωj(: \v, c)
)

mod 2

At the end of each iteration, an estimate of each variable node is made based on the incoming messages

and possibly the received value. The decoded word at the end of jth iteration is denoted asr(j). The decoder

is run until a valid codeword is found or a maximum number of iterationsM is reached, whichever is

earlier. The output of the decoder is either a codeword orr
(M).

A Note on the Decision Rule:Different rules to estimate a variable node after each iteration are possible

and it is likely that changing the rule after certain iterations may be beneficial. However, the analysis of

various scenarios is beyond the scope of this paper. For column-weight-three codes only two rules are

possible.

• Decision Rule A: if all incoming messages to a variable node from neighboring checks are equal,

set the variable node to that value; else set it to received value

• Decision Rule B: set the value of a variable node to the majorityof the incoming messages; majority

always exists since the column-weight is three

We adopt Decision Rule A throughout this paper.

C. Trapping Sets of Gallager A Algorithm

We now characterize failures of the Gallager A decoder usingfixed points and trapping sets [11].

Consider an LDPC code of lengthn and letx be the binary vector which is the input to the Gallager A

decoder. LetS(x) be the support ofx. The support ofx is defined as the set of all positionsi where

x(i) 6= 0. Without loss of generality, we assume that the all zero codeword is sent over BSC and that

the input to the decoder is the error vector. Hence, throughout this paper a message of1 is alternatively

referred to as an incorrect message, a received value of1 is referred to as an initial error.

Definition 1: [11] A decoder failure is said to have occurred if the output of the decoder is not equal

to the transmitted codeword.

Definition 2: x is called afixed pointif

ωj(v, c) = x(v), ∀j > 0

That is, the message passed from variable nodes to check nodes along the edges are the same in every

iteration. Since the outgoing messages from variable nodesare same in every iteration, it follows that

the incoming messages from check nodes to variable nodes arealso same in every iteration and so is

the estimate of a variable after each iteration. In fact, theestimate after each iteration coincides with the

received value. It is clear from above definition that if the input to the decoder is a fixed point, then the

output of the decoder is the same fixed point.

Definition 3: [12] Let x be a fixed point. ThenS(x) is known as a trapping set. A(V,C) trapping set

T is a set ofV variable nodes whose induced subgraph hasC odd degree checks.

Theorem 1:Let C be a code in the ensemble of(3, ρ) regular LDPC codes. LetT be a set consisting

of V variable nodes with induced subgraphI. Let the checks inI be partitioned into two disjoint subsets;

O consisting of checks with odd degree andE consisting of checks with even degree. Let|O| = C and

|E| = S. T is a trapping set iff : (a) Every variable node inI is connected to at least two checks inE

and (b) No two checks ofO are connected to a variable node outsideI.

Proof: See Appendix I

We note that Theorem 1 is a consequence of Fact 3 in [11]. We also remark that Theorem 1 can be

extended to higher column weight codes but in this paper we restrict our attention to column-weight-three

codes.

If the variable nodes corresponding to a trapping set are in error, then a decoder failure occurs. However,

not all variable nodes corresponding to trapping set need tobe in error for a decoder failure to occur.

Definition 4: [12] The minimal number of variable nodes that have to be initially in error for the

decoder to end up in the trapping setT will be referred to ascritical numberfor that trapping set.

Definition 5: A set of variable nodes which if in error lead to a decoding failure is known as afailure

set.

Remarks

1) To “end up” in a trapping setT means that, after a possible finite number of iterations, thedecoder

will be in error, on at least one variable node fromT , at every iteration [11].

2) The notion of a failure set is more fundamental than a trapping set. However, from the definition,

we cannot derive necessary and sufficient conditions for a set of variable nodes to form a failure

set.

3) A trapping set is a failure set. Subsets of trapping sets can be failure sets. More specifically, for a

trapping set of sizeV , there exists at least one subset of size equal to the critical number which is

a failure set.

4) The critical number of a trapping set is not fixed. It depends on the outside connections of checks

in E . However, the maximum value of critical number of a(V,C) trapping set isV .

Example 1:Fig.1(a) shows a subgraph induced by a set of three variable nodes{v1, v2, v3} . If no

two odd degree check nodes from{c4, c5, c6} are connected to a variable outside the subgraph, then by

Theorem 1, Fig.1(a) is a(3, 3) trapping set. On the other hand, if two odd degree checks, sayc5 and

c6, are connected to another variable node, sayv4, the subgraph resembles Fig. 1(b). Assuming no other

connections, Fig.1(b) is a(4, 2) trapping set. We make the following observations:

1) The three variable nodes in a(3, 3) trapping set form a six cycle. However, not all six cycles are

(3, 3) trapping sets. Apart from the subgraph induced by variable nodes, the outside connections

should be known to determine whether a given subgraph is a trapping set or not. The(4, 2) trapping

set in Fig.1(b) illustrates this point.

2) The critical number of a(3, 3) trapping set is three. There exist(4, 2) trapping sets with critical

number three and it is highly unlikely that a(4, 2) trapping set does not contain a failure set of size

three. However, we can show by a counterexample that this is indeed possible.

3) A (V,C) trapping set is not unique i.e., two trapping sets with sameV and C can have different

underlying topological structures (induced subgraphs). So, when we talk of a trapping set, we refer

to a specific topological structure. In this paper, the induced subgraph is assumed to be known from

the context.

4) To avoid a trapping set in a code, it is sufficient to avoid topological structures isomorphic to the

subgraph induced by the trapping set. For example to avoid(3, 3) trapping sets of Fig.1(a), it is

sufficient to avoid six cycles. It is possible that a code has six cycles but no(3, 3) trapping sets. In

this case all six cycles are part of(4, 2) or other trapping sets.

v1

v2

c1

2c

c3

c4

c5c6

v3

(a)

v3

c1 c2

c3

c4

c6

c7

v4v2 c5

v1

(b)

Fig. 1. Examples of trapping sets (a) a(3, 3) trapping set (b) a(4, 2) trapping set

III. E RRORCORRECTIONCAPABILITY AND GIRTH OF THE CODE

Burshtein and Miller in [5] applied expander based argumentsto message passing algorithms. They

analyzed ensembles of irregular graphs and showed that if the degree of each variable node is at least

five, then message passing algorithms can correct a fractionof errors. Codes with column weight three

and four cannot achieve the expansion required for these arguments. Recently, Burshtein in [8] developed

a new technique to investigate the error correction capability of regular LDPC codes and showed that at

sufficiently large block lengths, almost all codes with column weight four are also capable of correcting a

fraction of errors under bit flipping algorithm. For column-weight-three codes he notes that such a result

cannot be proved. This is because a non negligible fraction of codes have parallel edges in their Tanner

graphs and such codes cannot correct a single worst case error.

In this paper we prove a stronger result by showing that for any givenα > 0, at sufficiently large block

lengthsn, no code in theCn(3, ρ) ensemble can correct allαn or fewer errors under Gallager A algorithm

and show that this holds for the bit flipping algorithm also.

Lemma 1: [8] A code whose Tanner graph has parallel edges cannot correct a single worst case error.

Proof: See [8]. The proof is for bit flipping algorithm, but also applies to Gallager A algorithm.

Lemma 2:Let C be an(n, 3, ρ) regular LDPC code with girthg = 4. ThenC has at least one failure

set of size two or three.

Proof: See Appendix II.

Lemma 3:Let C be an(n, 3, ρ) regular LDPC code with girthg = 6. ThenC has least one failure set

of size three or four.

Proof: Since g = 6, there is at least one six cycle. Without loss of generality,we assume that

{v1, v2, v3} together with the three even degree checks{c1, c2, c3} and the three odd degree checks

{c4, c5, c6} form a six cycle as in Fig.1(a). If no two checks from{c4, c5, c6} are connected to a variable

node, then{v1, v2, v3} is a (3, 3) trapping set and hence a failure set of size three. On the contrary, assume

that {v1, v2, v3} do not form a(3, 3) trapping set. Then there existsv4 which is connected to at least two

checks from{c4, c5, c6}. If v4 is connected to all the three checks,{v1, v2, v3, v4} is a codeword of weight

four and it is easy to see that{v1, v2, v3} is a failure set. Now assume thatv4 is connected to only two

checks from{c4, c5, c6}. Without loss of generality, let the two checks bec5 and c6. Let the third check

connected tov4 be c7 as shown in Fig.1(b). Ifc4 and c7 are not connected to a common variable node

then{v1, v2, v3, v4} is a (4, 2) trapping set and hence a failure set of size four. Ifc4 andc7 are connected

to sayv5, we have two possibilities: (a) The third check isc8 and (b) The third check ofv5 is c2 (the third

check cannot bec1 or c3 as this would introduce a four cycle). We claim that in both cases{v1, v2, v3, v4}

is a failure set. The two cases are discussed below.

Case (a): LetS(r) = {v1, v2, v3, v4}.

ω1(v, :) =















1, v ∈ {v1, v2, v3, v4}

0, otherwise

The messages in the second half of first iteration are,

̟1(c1, v) =















1, v ∈ {v1, v2}

0, otherwise

Similar equations hold forc2, c3, c5, c6. For c4 we have

̟1(c4, v) =















0, v = v1

1, otherwise

Similar equations hold forc7. At the end of first iteration, we note thatv2 and v3 receive all incorrect

messages,v1, v4 andv5 receive two incorrect messages and all other variable nodesreceive at most one

incorrect message. We therefore haver
(1) = r andS(r(1)) = {v1, v2, v3, v4}. The messages sent by variable

nodes in the second iteration are,

ω2(v, :) = 1, v ∈ {v1, v2, v3, v4}

ω2(v5, c8) = 1,

ω2(v5, {c4, c7}) = 0,

ω2(v, :) = 0, v ∈ {v1, . . . , vn} \ {v1, v2, v3, v4, v5}.

The messages passed in second half of second iteration are same as in second half of first iteration, except

that̟(c8, : \v5) = 1. At the end of second iteration, we note thatv2 andv3 receive all incorrect messages,

v1, v4 and v5 receive two incorrect messages and all other variable nodesreceive at most one incorrect

message. The situation is same as at the end of first iteration. The algorithm runs forM iterations and

the decoder outputsr(M) = r which implies that{v1, v2, v3, v4} is a failure set.

Case (b): The proof is along the same lines as for Case (a). The messages for first iteration are the

same. The messages in the first half of second iteration are,

ω2(v, :) = 1, v ∈ {v1, v2, v3, v4}

ω2(v5, c2) = 1,

ω2(v5, {c4, c7}) = 0,

ω2(v, :) = 0, v ∈ {v1, . . . , vn} \ {v1, v2, v3, v4, v5}.

The messages passed in second half of second iteration are same as in second half of first iteration, except

that̟(c2, : \{v2, v3, v5}) = 1 and̟(c2, {v2, v3, v5}) = 0 . At the end of second iteration,v1, v2, v3, v4 and

v5 receive two incorrect messages and all other variable nodesreceive at most one incorrect message and

hencer
(2) = r. The messages passed in first half of third iteration (and therefore subsequent iterations)

are same as the messages passed in first half of second iteration. The algorithm runs forM iterations and

the decoder outputsr(M) = r which implies that{v1, v2, v3, v4} is a failure set.

Lemma 4:Let C be an(n, 3, ρ) regular LDPC code with girthg = 8. ThenC has at least one failure

set of size four or five.

Proof: See Appendix II.

Remark:It might be possible that Lemmas 2–4 can be made stronger by further analysis, i.e., it might

be possible to show that a code with girth four has a failure set of size two, a code with girth six has

failure set of size three and a code with girth eight has a failure set of size four. However, these weaker

lemmas are sufficient to establish the main theorem.

Lemma 5:Let C be an(n, 3, ρ) regular LDPC code with girthg ≥ 10. Then the set of variable nodes

{v1, v2, . . . , vg/2} involved in the shortest cycle is a trapping set of sizeg/2.

Proof: SinceC has girthg, there is at least one cycle of lengthg. Without loss of generality, assume

that {v1, v2, . . . , vg/2} form a cycle of minimum length as shown in Fig.2. Let the even degree checks be

E = {c1, c2, . . . , cg/2} and the odd degree checks beO = {cg/2+1, cg/2+2, . . . , cg}. Note that each variable

node is connected to two checks fromE and one check fromO andcg/2+i is connected tovi. We claim

that no two checks fromO can be connected to a common variable node.

The proof is by contradiction. Assumeci and cj (g/2 + 1 ≤ i < j ≤ g) are connected to a variable

nodevij. Then{vi, . . . , vj, vij} form a cycle of length2(j − i + 2) and{vj, . . . vg/2, v1, . . . , vi, vij} form

a cycle of length2(g/2 − j + i + 2). Sinceg ≥ 10,

min(2(j − i + 2), 2(g/2 − j + i + 2)) < g.

This implies that there is a cycle of length less thang, which is a contradiction as the girth of the graph

is g.

By Theorem 1,{v1, v2, . . . , vg/2} is a trapping set.

v1 v2 v3 vg/2

c1 c2 c3 g/2−1c cg/2

cgg/2+2ccg/2+1 g/2+3c

Fig. 2. Illustration of a cycle of lengthg

Corollary 1: For a code to correct allk ≥ 5 or fewer errors, it is necessary to avoid all cycles up to

length2k.

We now state and prove the main theorem.

Theorem 2:Consider the standard(3, ρ) regular LDPC code ensemble. Letα > 0. Let N be the

smallest integer satisfying

αN > 2

(

log N

log (2(ρ − 1))
+ 1

)

αN ≥ 5.

Then, forn > N , no code in theCn(3, ρ) ensemble can correct allαn or fewer errors.

Proof: First observe that for anyn > N , we have

αn > 2

(

log n

log (2(ρ − 1))
+ 1

)

. (1)

From [Theorem C.1 [1]] and [Lemma C.1 [1]], we have the girthg of any code inCn(3, ρ) is bounded

by

g ≤ 4

(

log n

log (2(ρ − 1))
+ 1

)

(2)

For n > N , Equations (1) and (2) imply that for any code in theCn(3, ρ) ensemble, the girth is bounded

by

g < 2αn.

The result now follows from Corollary 1.

IV. EXTENSION TO THEBIT FLIPPING ALGORITHM

The bit flipping algorithm does not belong to the class of message passing algorithms. However, the

definitions from Section II and the results from Section III can be generalized to the parallel bit flipping

algorithm [4]. Without loss of generality we assume that theall zero codeword is sent. We begin with a

few definitions.

Definition 6: [4] A variable node is said to be corrupt if it is different from its original sent value. In

our case, a variable node is corrupt if it is1. A check node is said to be satisfied if it is connected to

even number of corrupt variables and unsatisfied otherwise.

Definition 7: Let r be the input to the parallel bit flipping decoder.S(r) is a trapping set for bit flipping

algorithm if the set of corrupt variables after every iteration is S(r).

Theorem 3:Let T be a set of variable nodes satisfying the conditions of Theorem 1. ThenT is a

trapping set for the bit flipping algorithm.

Proof: Let S(r) = T . ThenT is the set of corrupt variable nodes. Observe that a variableflips if it

is connected to at least two unsatisfied checks. Since no variable is connected to two unsatisfied checks,

the set of corrupt variable nodes is unchanged and by definition T is a trapping set.

We note that Theorem 3 is also a consequence of Fact 3 from [11].

Corollary 2: A trapping set for Gallager A is also a trapping set for bit flipping algorithm.

It can be shown that Lemmas 1–5 and Theorem 2 also hold for the bit flipping algorithm.

V. CONCLUSION

In this paper we have investigated the error correction capability of column-weight-three codes under

Gallager A and extended the results to bit flipping algorithm. Future work includes investigation of

sufficient conditions to correct a given number of errors forcolumn-weight-three as well as higher column

weight codes.

APPENDIX I

Proof of Theorem 1:Let r be the input to the decoder withS(r) = T . Then,

ω1(v, :) =















1, v ∈ T

0, otherwise

Let a check nodeco ∈ O. Then,

̟1(co, v) =















0, v ∈ T

1, otherwise

Let a check nodece ∈ E . Then,

̟1(ce, v) =















1, v ∈ T

0, otherwise

For any other check nodec, ̟1(c, v) = 0. By the conditions of the theorem, at the end of first iteration,

any v ∈ T receives at least two1’s and anyv /∈ T receives at most one1. So, we have

ω2(v, :) =















1, v ∈ T

0, otherwise

By definition,T is a trapping set.

To see that the conditions stated are necessary observe thatfor a variable node to send the same

messages as in the first iteration, it should receive at leasttwo messages which coincide with the received

value.

�

APPENDIX II

Proof of Lemma 2:Let {v1, v2} be the variable nodes that form a four cycle with even degree checks

{c1, c2} and odd degree checks{c3, c4}. If c3 and c4 are not connected to a common variable node,

then{v1, v2} is a (2, 2) trapping set and hence a failure set of size two. Now assume that c3 and c4 are

connected to a common variable nodev3. Then,{v1, v2, v3} is a (3, 1) trapping set and therefore a failure

set of size three. �

Proof of Lemma 4:Let T1 = {v1, v2, v3, v4} be the variable nodes that form an eight cycle (see Fig.3(a)).

If no two checks from{c5, c6, c7, c8} are connected to a common variable node, thenT1 is a(4, 4) trapping

set and hence a failure set of size four. On the other hand, ifT1 is not a trapping set, then there must

be at least one variable node which is connected to two checksfrom {c5, c6, c7, c8}. Assume thatc5 and

c7 are connected tov5 and the third check ofv5 is c9 (see Fig.3(b)). We claim thatT2 = T1 ∪ {v5} is a

failure set. LetE andO be as defined in Theorem 1.

v1 v2

v4 v3

c4

c3

c1

c2

c5 c6

c7c8

(a)

v3v4

v5
c2

c3

c4

v1 v2c1

c6

c5 c9

c8 c7

(b)

Fig. 3. Subgraphs isomorphic to (a) a(4, 4) trapping set (b) a(5, 3) trapping set

Case 1: No two checks fromO = {c6, c8, c9} are connected to a common variable node. ThenT2 is a

(5, 3) trapping set and hence a failure set of size five.

Case 2: All the three checks inO are connected to a common variable node, sayv6. ThenT2 ∪ {v6}

is a codeword of weight six and it is easy to see thatT2 is a failure set.

Case 3: There are variable nodes connected to two checks fromO. There can be at most two such

variable nodes (if there are three such variable nodes, theywill form a cycle of length less than or equal

to six violating the condition that the graph has girth eight). Note that ifS(r) = T2, the decoder has a

chance of correcting only if a check node inE receives an incorrect message from a variable node outside

T2 in somejth iteration. We now prove that this is not possible. Indeed in the first iteration

ω1(v, :) =















1, v ∈ T2

0, otherwise

By similar arguments as in the proof for Theorem 1, it can be seen that the only check nodes which send

incorrect messages to variable nodes outsideT2 arec6, c8 andc9. There are now two subcases.

Subcase 1: There is one variable node connected to two checks fromO. Let v6 be connected toc6

and c8. It can be seen that the third check connected tov6 cannot belong toE as this would violate the

girth condition. So, let the third check bec10. In the first half of second iteration, we have

ω2(v, c) =















1, v ∈ T2 or (v, c) = (v6, c10)

0, otherwise

The only check nodes which send incorrect messages to variable nodes outsideT2, arec6, c8, c9 andc10.

The variable nodev6 is connected toc6 and c8. If c9 and c10 are not connected to any common variable

node, we are done. On the other hand, letc9 and c10 be connected to a variable node, sayv7. The third

check ofv7 cannot be inE . Proceeding as in the case of proof for Lemma 3, we can prove that T2 is a

failure set by observing that there cannot be a variable nodeoutsideT2 which sends an incorrect message

to a check inE .

Subcase 2: There are two variable nodes connected to two checks fromO. Let c6 andc8 be connected

to v6 andc6 andc9 connected tov7. Proceeding as above, we can conclude thatT2 is a failure set.

ACKNOWLEDGMENT

This work is funded by NSF under Grant CCF-0634969, ITR-0325979and INSIC-EHDR program.

The authors would like to thank Anantharaman Krishnan for illustrations.

REFERENCES

[1] R. G. Gallager,Low Density Parity Check Codes. Cambridge, MA: M.I.T. Press, 1963.

[2] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,”IEEE Trans.

Inform. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[3] V. V. Zyablov and M. S. Pinsker, “Estimation of the error-correction complexity for Gallager low-density codes,”Problems of Information

Transmission, vol. 11, pp. 18–28, 1976.

[4] M. Sipser and D. Spielman, “Expander codes,”IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[5] D. Burshtein and G. Miller, “Expander graph arguments for message-passing algorithms,”IEEE Trans. Inform. Theory, vol. 47, no. 2,

pp. 782–790, Feb. 2001.

[6] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright, “LP decoding corrects a constant fraction of errors,”IEEE

Trans. Inform. Theory, vol. 53, no. 1, pp. 82–89, Jan. 2007.

[7] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear programming to decode binary linear codes,”IEEE Trans. Inform.

Theory, vol. 51, no. 3, pp. 954–972, March 2005.

[8] D. Burshtein, “On the error correction of regular LDPC codes using the flipping algorithm,” inInternational Symposium on Information

Theory, June 24-29 2007, pp. 226–230.

[9] A. Shokrollahi, “An introduction to low-density parity-check codes,”in Theoretical aspects of computer science: advanced lectures.

New York, NY, USA: Springer-Verlag New York, Inc., 2002, pp. 175–197.

[10] R. M. Tanner, “A recursive approach to low complexity codes,”IEEE Trans. Inform. Theory, vol. 27, pp. 533–547, Sept. 1981.

[11] T. J. Richardson, “Error floors of LDPC codes,” in41st Annual Allerton Conf. on Communications, Control and Computing, 2003, pp.

1426–1435.

[12] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of LDPC codes on the binary symmetric channel,” inInternational

Conference on Communications, vol. 3, June 11-15 2006, pp. 1089–1094.

