Error Correction Capabillity of

Column-Weight-Three LDPC Codes

Shashi Kiran Chilappagargtudent Member, IEEEBNd Bane VasicSenior Member, IEEE

Abstract

In this paper, we investigate the error correction capghil column-weight-three LDPC codes when decoded
using the Gallager A algorithm. We prove that the necessamgition for a code to corred > 5 errors is to avoid
cycles of length up t@k in its Tanner graph. As a consequence of this result, we shatvgiven anyn > 0, 3N
such thatvn > N, no code in the ensemble of column-weight-three codes caratall an or fewer errors. We

extend these results to the bit flipping algorithm.

Index Terms

Low-density parity-check codes, Gallager A algorithmpfrimg sets, error correction capability

I. INTRODUCTION

Gallager in [1] showed that foy > 3 andp > ~, there exist(n, v, p) regular low-density parity-check
(LDPC) codes for which the bit error probability tends to zasymptotically whenever we operate below
the threshold. Richardson and Urbanke in [2] derived the cgpaf LDPC codes for various message
passing algorithms and described density evolution, armigtestic algorithm to compute thresholds.

Zyablov and Pinsker [3] analyzed LDPC codes under a simpdeoding algorithm known as the bit

Manuscript received October 17, 2007. This work is funded by N&feuGrant CCF-0634969, ITR-0325979 and INSIC-EHDR pnogra
S. K. Chilappagari and B. Vasic are with the Department of Electrical @mahputer Engineering, University of Arizona, Tucson, AZ,

85721 USA (e-mails: shashic@ece.arizona.edu, vasic@ece aezor).

flipping algorithm and showed that almost all the codes inrdgular ensemble with > 5 can correct

a constant fraction of worst case errors. Sipser and Spreimg4] used expander graph arguments to
analyze bit flipping algorithm. Burshtein and Miller in [5] piped expander based arguments to show
that message passing algorithms can also correct a fixetiofraaf worst case errors when the degree
of each variable node is at least five. Feldnmetnal. [6] showed that linear programming decoder [7]
is also capable of correcting a fraction of errors. Recemly;shtein in [8] showed that regular codes
with variable nodes of degree four are capable of corredifigear number of errors under bit flipping
algorithm. He also showed tremendous improvement in thatifna of correctable errors when the variable
node degree is at least five.

In this paper, we consider the error correction capabilftthe ensembl&€™ (3, p > 3) of (3, p) regular
LDPC codes as defined in [2] when decoded using the Gallagéydkitnm. We analyze decoding failures
using the notion of trapping sets and prove that a code with gi> 10 cannot correct aly/2 or fewer
errors. Using this result, we prove that for any> 0, for sufficiently large block lengtm, no code in
the C"(3, p) ensemble can correet fraction of errors. This result settles the problem of egorrection
capability of column-weight-three codes. The rest of thpgods organized as follows. In Section Il we
establish the notation and describe the Gallager A algarittWe then characterize the failures of the
Gallager A decoder with the help of fixed points. We also idtroe the notions of trapping sets, failure
sets and critical number. In Section Il we investigate tekatron between error correction capacity and
girth of the code. We extend the results to bit flipping altioni in Section IV and conclude in Section

V.

[I. DECODING ALGORITHMS AND TRAPPING SETS
A. Graphical Representations of LDPC Codes

LDPC codes [1] are a class of linear block codes which can bimetk by sparse bipartite graphs

[9]. Let G be a bipartite graph with two sets of nodesvariable nodes and: check nodes. The check

nodes (variable nodes) connected to a variable node (ched&)rare referred to as its neighbors. The
degree of a node is the number of its neighbors. This grapheted linear block codé of lengthn and
dimension at least — m in the following way: Then variable nodes are associated to theoordinates
of codewords. A vectov = (v, vs,...,v,) is a codeword if and only if for each check node, the sum of
its neighbors is zero. Such a graphical representation &HC code is called the Tanner graph [10] of
the code. The adjacency matrix @fgives H, a parity check matrix of. An (n,~, p) regular LDPC code
has a Tanner graph with variable nodes each of degregcolumn weight) andwy/p check nodes each
of degreep (row weight). This code has length and rater > 1 — ~/p [9]. In the rest of the paper we
consider codes in thé, p), p > 3, regular LDPC code ensemble. Note that the column weightrawd
weight are also referred to as left degree and right degreienature. It should also be noted that the
Tanner graph is not uniquely defined by the code and when wehgayanner graph of an LDPC code,
we only mean one possible graphical representation. Thile giis the length of the shortest cycle ¢h

In this papere represents a variable nodég, represents an even degree check nodemmdpresents an

odd degree check node.

B. Hard Decision Decoding Algorithms

Gallager in [1] proposed two simple binary message pasdowyithms for decoding over the binary
symmetric channel (BSC); Gallager A and Gallager B. See [9] fdetailed description of Gallager B
algorithm. For column-weight-three codes, which are thénnf@cus of this paper, these two algorithms
are the same. Every round of message passing (iteratiotg gtigh sending messages from variable nodes
(first half of the iteration) and ends by sending messages frieeck nodes to variable nodes (second half
of the iteration). Let, a binaryn-tuple be the input to the decoder. Lef(v, ¢) denote the message passed
by a variable node to its neighboring check nodein ;" iteration andw;(c,v) denote the message
passed by a check nodeto its neighboring variable node Additionally, letw;(v, :) denote the set of
all messages from, w;(v, : \c) denote the set of all messages frenexcept toc, w;(: ,c) denote the

set of all messages t© w;(: \v,¢),w,(c, :), w,(c, : \v),w;(:,v) andw,;(: \c,v) are defined similarly.

The Gallager A algorithm can be defined as follows.

wi(v,c) = r(v)

L, if wj_1(:\cv) =1

wi(v,c) = ¢ 0, if m_(:\e,v)=0

r(v), otherwise

wi(c,v) = (ij(:\v,c)) mod 2

At the end of each iteration, an estimate of each variable mdade based on the incoming messages
and possibly the received value. The decoded word at thefefiti iberation is denoted as?). The decoder
is run until a valid codeword is found or a maximum number efations)M is reached, whichever is
earlier. The output of the decoder is either a codeword(Hr.

A Note on the Decision Rul®ifferent rules to estimate a variable node after eachtitarare possible
and it is likely that changing the rule after certain itevag may be beneficial. However, the analysis of
various scenarios is beyond the scope of this paper. Fomrplueight-three codes only two rules are
possible.

« Decision Rule A: if all incoming messages to a variable nodenfneighboring checks are equal,

set the variable node to that value; else set it to receivageva

. Decision Rule B: set the value of a variable node to the majoiityre incoming messages; majority

always exists since the column-weight is three

We adopt Decision Rule A throughout this paper.

C. Trapping Sets of Gallager A Algorithm

We now characterize failures of the Gallager A decoder us$ixed points and trapping sets [11].
Consider an LDPC code of lengthand letx be the binary vector which is the input to the Gallager A
decoder. LetS(x) be the support ok. The support ofx is defined as the set of all positionsvhere

x(i) # 0. Without loss of generality, we assume that the all zero wode is sent over BSC and that

the input to the decoder is the error vector. Hence, througtios paper a message ofis alternatively
referred to as an incorrect message, a received valueiofeferred to as an initial error.

Definition 1: [11] A decoder failure is said to have occurred if the outputhe decoder is not equal
to the transmitted codeword.

Definition 2: x is called afixed pointif

w;(v,¢) =x(v), Vj>0

That is, the message passed from variable nodes to check atmey the edges are the same in every
iteration. Since the outgoing messages from variable nagdesame in every iteration, it follows that
the incoming messages from check nodes to variable nodesalsoesame in every iteration and so is
the estimate of a variable after each iteration. In fact,gb@mate after each iteration coincides with the
received value. It is clear from above definition that if theut to the decoder is a fixed point, then the
output of the decoder is the same fixed point.

Definition 3: [12] Let x be a fixed point. Theis(x) is known as a trapping set. &/, C') trapping set
7T is a set ofV variable nodes whose induced subgraph @lasdd degree checks.

Theorem 1:Let C be a code in the ensemble @, p) regular LDPC codes. LeI’ be a set consisting
of V variable nodes with induced subgraphLet the checks irf be partitioned into two disjoint subsets;
O consisting of checks with odd degree aficconsisting of checks with even degree. |& = C' and
|E| = S. T is a trapping set iff : (a) Every variable node Inis connected to at least two checksdn
and (b) No two checks of) are connected to a variable node outside

Proof: See Appendix | [|

We note that Theorem 1 is a consequence of Fact 3 in [11]. Weralsark that Theorem 1 can be
extended to higher column weight codes but in this paper wiiceour attention to column-weight-three
codes.

If the variable nodes corresponding to a trapping set arerar,ghen a decoder failure occurs. However,

not all variable nodes corresponding to trapping set nedsktm error for a decoder failure to occur.

Definition 4: [12] The minimal number of variable nodes that have to bealtyt in error for the
decoder to end up in the trapping sEtwill be referred to agritical numberfor that trapping set.

Definition 5: A set of variable nodes which if in error lead to a decodindufai is known as dailure
set

Remarks

1) To “end up” in a trapping seI’ means that, after a possible finite number of iterationsdtwder
will be in error, on at least one variable node fraém at every iteration [11].

2) The notion of a failure set is more fundamental than a trappet. However, from the definition,
we cannot derive necessary and sufficient conditions fort afseariable nodes to form a failure
set.

3) A trapping set is a failure set. Subsets of trapping setsbeafailure sets. More specifically, for a
trapping set of sizé/, there exists at least one subset of size equal to the tniticaber which is
a failure set.

4) The critical number of a trapping set is not fixed. It deend the outside connections of checks
in £. However, the maximum value of critical number ofd C') trapping set is/.

Example 1:Fig.1(a) shows a subgraph induced by a set of three variaddesy{v;, v2,v3} . If no

two odd degree check nodes frofn, c;5, cs} are connected to a variable outside the subgraph, then by
Theorem 1, Fig.1(a) is &3, 3) trapping set. On the other hand, if two odd degree checkscsaynd

cg, are connected to another variable node, sgythe subgraph resembles Fig. 1(b). Assuming no other
connections, Fig.1(b) is &, 2) trapping set. We make the following observations:

1) The three variable nodes in(8, 3) trapping set form a six cycle. However, not all six cycles are
(3,3) trapping sets. Apart from the subgraph induced by variabléen, the outside connections
should be known to determine whether a given subgraph iaitrg set or not. Thé4, 2) trapping
set in Fig.1(b) illustrates this point.

2) The critical number of d3,3) trapping set is three. There exigt,2) trapping sets with critical

number three and it is highly unlikely that(d, 2) trapping set does not contain a failure set of size
three. However, we can show by a counterexample that thisdsed possible.

3) A (V,C) trapping set is not unique i.e., two trapping sets with sdmand C' can have different
underlying topological structures (induced subgraphs).v@en we talk of a trapping set, we refer
to a specific topological structure. In this paper, the irdlsubgraph is assumed to be known from
the context.

4) To avoid a trapping set in a code, it is sufficient to avoidalogical structures isomorphic to the
subgraph induced by the trapping set. For example to ai®ig) trapping sets of Fig.1(a), it is
sufficient to avoid six cycles. It is possible that a code haggcles but no(3, 3) trapping sets. In

this case all six cycles are part 6f, 2) or other trapping sets.

(a) (b)

Fig. 1. Examples of trapping sets (a)& 3) trapping set (b) &4, 2) trapping set

[1l. ERRORCORRECTIONCAPABILITY AND GIRTH OF THE CODE

Burshtein and Miller in [5] applied expander based argumémtmessage passing algorithms. They
analyzed ensembles of irregular graphs and showed thae itlégree of each variable node is at least
five, then message passing algorithms can correct a fraofi@nrors. Codes with column weight three
and four cannot achieve the expansion required for theseremgts. Recently, Burshtein in [8] developed

a new technique to investigate the error correction capylif regular LDPC codes and showed that at

sufficiently large block lengths, almost all codes with enluweight four are also capable of correcting a
fraction of errors under bit flipping algorithm. For colunareight-three codes he notes that such a result
cannot be proved. This is because a non negligible fractiaodes have parallel edges in their Tanner
graphs and such codes cannot correct a single worst case erro

In this paper we prove a stronger result by showing that fgrgaven « > 0, at sufficiently large block
lengthsn, no code in the®” (3, p) ensemble can correct ait. or fewer errors under Gallager A algorithm
and show that this holds for the bit flipping algorithm also.

Lemma 1:[8] A code whose Tanner graph has parallel edges cannotat@rsingle worst case error.
Proof: See [8]. The proof is for bit flipping algorithm, but also aiglto Gallager A algorithmm
Lemma 2:Let C be an(n, 3, p) regular LDPC code with girtly = 4. ThenC has at least one failure

set of size two or three.

Proof: See Appendix Il. [|

Lemma 3:Let C be an(n, 3, p) regular LDPC code with girtly = 6. ThenC has least one failure set
of size three or four.

Proof: Sinceg = 6, there is at least one six cycle. Without loss of generalitg, assume that
{v1,v9,v3} together with the three even degree chegks co,c3} and the three odd degree checks
{c4, c5,c6} form a six cycle as in Fig.1(a). If no two checks frofay, c5, cs} are connected to a variable
node, then{vy, vy, v3} is a(3, 3) trapping set and hence a failure set of size three. On theazgnassume
that {v1, ve, v3} do not form a(3, 3) trapping set. Then there exists which is connected to at least two
checks from{cy, c5, cs}. If vy is connected to all the three checKs; , v, v3,v4} is a codeword of weight
four and it is easy to see thdt,, v, v3} is a failure set. Now assume that is connected to only two
checks from{c,, cs, cs}. Without loss of generality, let the two checks fieand ¢s. Let the third check
connected tav, be ¢; as shown in Fig.1(b). I, and ¢; are not connected to a common variable node
then {vy, v, v3,v4} IS @ (4,2) trapping set and hence a failure set of size fouryl&ndc; are connected

to sayvs, we have two possibilities: (a) The third checkeisand (b) The third check af; is ¢, (the third

check cannot be; or ¢3 as this would introduce a four cycle). We claim that in botees]{ v, , vs, v3, v4}
is a failure set. The two cases are discussed below.

Case (a): LetS(r) = {vy, v2, v3,04}.

]-7 NS {U17U2,U3,U4}
wi(v,:) =
0, otherwise

The messages in the second half of first iteration are,

1, ve{v,v}
wi(c1,v) =

0, otherwise

Similar equations hold foe,, c3, ¢5, ¢s. FOr ¢4, we have

0, v=1u
w1 (cq,v)
1, otherwise

Similar equations hold for;. At the end of first iteration, we note that and v; receive all incorrect
messagesy;, v, andwv; receive two incorrect messages and all other variable noeesve at most one
incorrect message. We therefore haé = r and S(r(")) = {v;, vy, v3,v4}. The messages sent by variable

nodes in the second iteration are,

wa(v,:) = 1,v € {vy,v9,v3,04}
W2(U5> Cs) = 1,
wo(vs, {eq,e7}) = 0,
wa(v,:) = 0,v €{v,..., v} \ {v1,v2, 03,04, 05}
The messages passed in second half of second iterationmaeeasain second half of first iteration, except
thatw(cs, : \vs) = 1. At the end of second iteration, we note thaiandv; receive all incorrect messages,
v1,v4 andwvs receive two incorrect messages and all other variable nogtesve at most one incorrect

message. The situation is same as at the end of first iteraftom algorithm runs foM iterations and

the decoder outputs™) = r which implies that{v,, v,, vs,v,} is a failure set.

Case (b): The proof is along the same lines as for Case (a). Theages for first iteration are the

same. The messages in the first half of second iteration are,

wa(v,:) = 1,v € {vy,v9,v3,04}
wz(v5702) = 1,
w2(v57 {04707}) = 07

wa(v,:) = 0,0 € {vg,..., 0.} \ {v1, 02,03, 04,05}

The messages passed in second half of second iterationmaeeasain second half of first iteration, except
thatw(co, : \{v2,v3,v5}) = 1 andw(cy, {ve, v3,v5}) = 0. At the end of second iteration,, v,, v3, v, and
vs receive two incorrect messages and all other variable neaesve at most one incorrect message and
hencer® = r. The messages passed in first half of third iteration (ancetbee subsequent iterations)
are same as the messages passed in first half of seconditefdtie algorithm runs foM iterations and
the decoder outputs™ = r which implies that{v,, vs, vs,v,} is a failure set. []
Lemma 4:Let C be an(n, 3, p) regular LDPC code with girtty = 8. ThenC has at least one failure
set of size four or five.

Proof: See Appendix Il. []
Remark:It might be possible that Lemmas 2—4 can be made stronger dyefuanalysis, i.e., it might
be possible to show that a code with girth four has a failuteo§esize two, a code with girth six has
failure set of size three and a code with girth eight has aifaiket of size four. However, these weaker
lemmas are sufficient to establish the main theorem.

Lemma 5:Let C be an(n, 3, p) regular LDPC code with girtly > 10. Then the set of variable nodes
{vi,va,...,v4,2} involved in the shortest cycle is a trapping set of sjze.

Proof: SinceC has girthg, there is at least one cycle of lengthWithout loss of generality, assume

that {v1, v, ..., vy} form a cycle of minimum length as shown in Fig.2. Let the evegrde checks be

E ={c1,c2,...,¢42} and the odd degree checks Oe= {c;/211,¢4/212, - - ., ¢4 }. Note that each variable

node is connected to two checks fragmand one check fron® andc,,,; is connected ta;. We claim
that no two checks fron® can be connected to a common variable node.

The proof is by contradiction. Assumeg andc¢; (g/2+1 < i < j < g) are connected to a variable
nodev;;. Then{v,,...,v;,v;} form a cycle of lengthR(j — i 4+ 2) and{v;, ... vy, v1,...,v;,v;;} form

a cycle of length2(g/2 — j + i+ 2). Sinceg > 10,
min(2(j —i+2),2(g/2 —j+1i+2)) <g.

This implies that there is a cycle of length less thanwhich is a contradiction as the girth of the graph
is g.

By Theorem 1{vy,vs,...,vy/2} is a trapping set. u

Gy2+1 Cga+2 Cgr2+3 Cg

D O O O D
G C2) Cgr2-1 Qg2

Fig. 2. lllustration of a cycle of lengtly

Corollary 1: For a code to correct alt > 5 or fewer errors, it is necessary to avoid all cycles up to
length 2.
We now state and prove the main theorem.

Theorem 2:Consider the standar(B, p) regular LDPC code ensemble. Let > 0. Let N be the

smallest integer satisfying

aN > 2(%+1)

aN > 5.

Then, forn > N, no code in the€™ (3, p) ensemble can correct alln or fewer errors.

Proof: First observe that for any > N, we have

logn

From [Theorem C.1 [1]] and [Lemma C.1 [1]], we have the gijtbf any code inC"(3, p) is bounded

by

logn)
<4 —F——+1 2
14 (Gt ”
Forn > N, Equations (1) and (2) imply that for any code in /&3, p) ensemble, the girth is bounded
by

g < 2an.

The result now follows from Corollary 1. []

V. EXTENSION TO THEBIT FLIPPING ALGORITHM

The bit flipping algorithm does not belong to the class of ragespassing algorithms. However, the
definitions from Section 1l and the results from Section kihcbe generalized to the parallel bit flipping
algorithm [4]. Without loss of generality we assume that #ilezero codeword is sent. We begin with a
few definitions.

Definition 6: [4] A variable node is said to be corrupt if it is different fnoits original sent value. In
our case, a variable node is corrupt if itis A check node is said to be satisfied if it is connected to
even number of corrupt variables and unsatisfied otherwise.

Definition 7: Let r be the input to the parallel bit flipping decodsir) is a trapping set for bit flipping
algorithm if the set of corrupt variables after every itematis S(r).

Theorem 3:Let 7 be a set of variable nodes satisfying the conditions of Témol. Then7 is a
trapping set for the bit flipping algorithm.

Proof: Let S(r) = 7. Then7 is the set of corrupt variable nodes. Observe that a variipkeif it
is connected to at least two unsatisfied checks. Since nablaris connected to two unsatisfied checks,

the set of corrupt variable nodes is unchanged and by defirfffiis a trapping set. []

We note that Theorem 3 is also a consequence of Fact 3 from [11]
Corollary 2: A trapping set for Gallager A is also a trapping set for bitdlmpy algorithm.

It can be shown that Lemmas 1-5 and Theorem 2 also hold foritiepiping algorithm.

V. CONCLUSION

In this paper we have investigated the error correction lméipaof column-weight-three codes under
Gallager A and extended the results to bit flipping algoritifrature work includes investigation of
sufficient conditions to correct a given number of errorsdolumn-weight-three as well as higher column

weight codes.

APPENDIX |

Proof of Theorem 1Let r be the input to the decoder witki(r) = 7. Then,

1, veT
wi(v,:) =
0, otherwise
Let a check node, € O. Then,
)
0, veT
wi(Co,v) =
1, otherwise
\
Let a check node. € €. Then,
(
1, veT
w1 (Ce,v) =
0, otherwise

\

For any other check node w,(c,v) = 0. By the conditions of the theorem, at the end of first itergtion

anyv € 7 receives at least twd's and anyv ¢ 7 receives at most one So, we have

1, veT
wo(v,:) =
0, otherwise

By definition, 7 is a trapping set.

To see that the conditions stated are necessary observdothatvariable node to send the same
messages as in the first iteration, it should receive at temsmessages which coincide with the received

value.

APPENDIXII

Proof of Lemma 21et {v;,v2} be the variable nodes that form a four cycle with even degheelcs
{c1,c2} and odd degree checKss, cy}. If ¢3 and ¢, are not connected to a common variable node,
then {v,v2} is a(2,2) trapping set and hence a failure set of size two. Now assuate:fland ¢, are
connected to a common variable nade Then,{v;, v5, v3} is a(3, 1) trapping set and therefore a failure
set of size three. [

Proof of Lemma 4tet 7, = {vy, v, v3,v4} be the variable nodes that form an eight cycle (see Fig.3(a))
If no two checks from{cs, ¢, ¢z, cs} are connected to a common variable node, theis a(4,4) trapping
set and hence a failure set of size four. On the other harfd, i$ not a trapping set, then there must
be at least one variable node which is connected to two cHecks {c;, cg, c7, cs}. Assume thats and
c; are connected to; and the third check of; is ¢y (see Fig.3(b)). We claim thak, = 7; U {vs} is a

failure set. Letf and O be as defined in Theorem 1.

Cs G
k& o M
(]

Gl | [Je
/.] .\.

Vi G 3

H
G

C7

(@ (b)
Fig. 3. Subgraphs isomorphic to (a)(4 4) trapping set (b) &5, 3) trapping set

Case 1. No two checks fromO = {c¢g, cs, c9} are connected to a common variable node. Theis a
(5,3) trapping set and hence a failure set of size five.

Case 2: All the three checks irO are connected to a common variable node, sayrhen7; U {vg }
is a codeword of weight six and it is easy to see thats a failure set.

Case 3: There are variable nodes connected to two checks ftanThere can be at most two such
variable nodes (if there are three such variable nodes,hilejorm a cycle of length less than or equal
to six violating the condition that the graph has girth ejgitote that if S(r) = 7, the decoder has a
chance of correcting only if a check nodeérreceives an incorrect message from a variable node outside

7, in some;*" iteration. We now prove that this is not possible. Indeedhim first iteration

1, vel,
wi(v,:) =
0, otherwise

By similar arguments as in the proof for Theorem 1, it can ba $kat the only check nodes which send
incorrect messages to variable nodes outSigdare cg, cs and c¢y. There are now two subcases.

Subcase 1: There is one variable node connected to two checks fédniet vs be connected teg
andcg. It can be seen that the third check connectedgstecannot belong t& as this would violate the

girth condition. So, let the third check lkegy. In the first half of second iteration, we have

1, veTyor(v,c)=(vg,cr0)
wa(v,c) =

0, otherwise

The only check nodes which send incorrect messages to lamables outsid€s, arecg, cs, cg and cyg.
The variable nodey is connected t@g andcs. If ¢g andc;y are not connected to any common variable
node, we are done. On the other hand,cetind ¢, be connected to a variable node, say The third
check ofwv; cannot be in€. Proceeding as in the case of proof for Lemma 3, we can prateZthis a
failure set by observing that there cannot be a variable wotlsde7Z; which sends an incorrect message

to a check in€.

Subcase 2: There are two variable nodes connected to two checks forbet ¢s andcs be connected

to vg¢ andcg and ¢y connected ta;. Proceeding as above, we can conclude fhat a failure set.

ACKNOWLEDGMENT

This work is funded by NSF under Grant CCF-0634969, ITR-032587@ INSIC-EHDR program.

The authors would like to thank Anantharaman Krishnan floisttations.

REFERENCES

[1] R. G. GallagerLow Density Parity Check CodesCambridge, MA: M.L.T. Press, 1963.
[2] T. J. Richardson and R. Urbanke, “The capacity of low-densitgitypaheck codes under message-passing decodI&EE Trans.
Inform. Theory vol. 47, no. 2, pp. 599-618, Feb. 2001.
[3] V.V.Zyablovand M. S. Pinsker, “Estimation of the error-correntammplexity for Gallager low-density code®toblems of Information
Transmissionvol. 11, pp. 18-28, 1976.
[4] M. Sipser and D. Spielman, “Expander codd&EE Trans. Inform. Theorwol. 42, no. 6, pp. 1710-1722, Nov. 1996.
[5] D. Burshtein and G. Miller, “Expander graph arguments for mgsgaassing algorithms/EEE Trans. Inform. Theorwol. 47, no. 2,
pp. 782—790, Feb. 2001.
[6] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. WainwtighP decoding corrects a constant fraction of errotEEE
Trans. Inform. Theoryvol. 53, no. 1, pp. 82-89, Jan. 2007.
[7]1 J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear pesgming to decode binary linear codefZEE Trans. Inform.
Theory vol. 51, no. 3, pp. 954-972, March 2005.
[8] D. Burshtein, “On the error correction of regular LDPC codes gisire flipping algorithm,” ininternational Symposium on Information
Theory June 24-29 2007, pp. 226—230.
[9] A. Shokrollahi, “An introduction to low-density parity-check codeBy’ Theoretical aspects of computer science: advanced lectures
New York, NY, USA: Springer-Verlag New York, Inc., 2002, pp.5t197.
[10] R. M. Tanner, “A recursive approach to low complexity codéEEE Trans. Inform. Theorwol. 27, pp. 533-547, Sept. 1981.
[11] T. J. Richardson, “Error floors of LDPC codes,”4dst Annual Allerton Conf. on Communications, Control and Compug0g3, pp.
1426-1435.
[12] S. K. Chilappagari, S. Sankaranarayanan, and B. VasicotEors of LDPC codes on the binary symmetric channelfhiternational

Conference on Communicatignsl. 3, June 11-15 2006, pp. 1089-1094.

