Viterbi algorithm

F.1. Introduction

The Viterbi algorithm (VA) was originally proposed in 1967 for decoding convo-
lutional codes. Shortly after its discovery, it was observed that the VA was based
on the principles of dynamic programming, a general technique for solving ex-
tremum (that is, maximization or minimization) problems.

Our application of the VA consists of finding, among the paths traversing a
trellis from left to right, the one with the maximum or minimum metric. Specif-
ically, we define a trellis as a diagram representing all the allowable trajectories
of a Markov chain with N, states {S;}¥, from time k£ = 0 to time £ = K. The
trellis begin and ends at two known states, and there is a one-to-one correspon-
dence between the sequences of K + 1 states and the paths through the trellis.
Fig. F.1 shows an example of a four-state trellis with K = 6. A branch metric is
associated with each branch (or edge) of the trellis, in the form of a label. The
branch metrics are additive, i.e., the metric associated with a pair of adjoining
branches is the sum of the two metrics. Consequently, the total metric associated
with a path traversing the whole trellis from left to right is the sum of the labels of
the branches forming the path. The problem here is to find the path traversing the
trellis with the maximum (or minimum) total metric (the choice between maxi-
mum or minimum depends of course on the problem being solved). Formally, if
oy, denotes the state at time k, taking values {S;}\¢,, and m (o, ox41) denotes
the metric associated with the branch emanating from node o and joining node
Ok+1, We want to maximize (or minimize) the function

._a

K-
A
)‘(007 01,.-, 0 = m Uk) 0k+1 (Fl)

=0

X

807

808 F. Viterbi algorithm

SS
S4
Figure F.1: Trellis of a four-state Markov process.
over all the possible choices of the state sequences (og, 01, ..., 0k) compatible

with the trellis structure.

Clearly, the problem above could be solved in principle by a brute-force
approach, consisting of evaluating all the possible values of the function A(-)
in (F.1), and choosing the largest (or the smallest). However, this algorithm
would suffer from two main drawbacks, viz.,

Complexity: The number of computations required, and the storage needed,
grow exponentially with the length K of the sequence.

Delay: If the branch labels are computed sequentially from time £ = 0 to time
k = K (as it occurs in the applications considered in this book), then the
decision on the best path must be deferred until the whole sequence of
labels is computed, which entails a delay K.

As we shall see, the Viterbi algorithm solves the maximization problem with-
out suffering from exponential complexity: actually, its computational complex-
ity (and storage requirements) grow only linearly with K. Moreover, the trun-
cated version of the VA has a delay which may be much smaller than K, at the
price of a minor loss of optimality.

We start our description of the VA with the illustration of its key step, com-
monly called ACS (for Add, Compare, and Select). Consider Fig. F.2, where
(and from now on) we shall consider a maximum problem. It shows the trellis
states at time k (denoted o) and at time k + 1 (denoted o). The branches
joining pairs of paths are labeled by the corresponding branch metrics, while the
states oy, are labeled by the accumulated state metrics, to be defined soon. The
ACS step consists of the following: For each state o1, examine the branches

B el S e

i s R R i i

F1. Introduction 809

max {3+1, 1+4} =5 5
max {3+6, 1+3} =9 9
max {5+2,0+3} =7 :> 7
max {5+1,0+1} =6 ° 6
Ok Ok+1 Ok Ok+1

Figure F.2: The ACS step of Viterbi algorithm.

stemming from states o and leading to it (there are two such branches in Fig. F.2).

For these branches, ADD the metric accumulated at the state from which it stems
to the metric of the branch itself. Then COMPARE the results of these sums, and
SELECT the branch associated with the maximum value (and consequently dis-
card, for each state, all the other branches entering it; and if two or more of
the quantities being compared are equal, choose one at random). The maximum
value is associated with the state, and forms its accumulated metric. This value
1s retained only for the next ACS step and is then discarded.

The VA consists of repeating the ACS step from the starting state to the end-
ing state of the trellis. After each ACS step the VA retains, for each state, one
value of accumulated metric and one path, usually called the survivor corre-
sponding to the state. Thus, at any time k we are left, for each oy, with a single
survivor path traversing the trellis from the initial state to oy, and with one value
of accumulated metric. This survivor path is the maximum-metric path to the
corresponding state. After K ACS steps, at the termination of the trellis we
obtain a single K-branch path and a single accumulated metric. These are the
maximum-metric path and the maximum-metric value, respectively. Fig. F.3 il-
lustrates the determination of a maximum-metric path through a four-state trellis

~ via the VA.

To prove the optimality of the VA it suffices to observe the following. As-
sume that the optimum path passes through state S; (say) at time k. Then, its first
k branches must be the same as for the survivor corresponding to S;. In fact, if
they did not, the optimum path would begin with a path passing through S; and
having a metric lower than the survivor of .S;, which is a contradiction. In other
words, no path discarded in favor of a survivor can provide a contribution to the
total metric larger than the survivors.

810 F. Viterbi algorithin

The computational complexity of the VA is the same at each time instant
(we disregard initial and final transients). Hence, it grows only linearly with K.
More specifically, the VA requires /V, storage locations, one for each state, with
each location storing an accumulated metric and a surviving path. In terms of
the number of computations, at each time instant the VA must make ¢ additions,
where () is the number of transitions in a trellis section (for example, Q) = 8 in
Fig. F.1), and N, comparisons. Thus, the amount of storage is proportional to the
number of states, and the amount of computation per time unit is proportional to
the number of transitions.

F.1.1. The truncated Viterbi algorithm

The VA as described above leaves the delay problem unsolved. In fact, the algo-
rithm cannot reach a decision about the maximum-metric sequence before time
K. On the other hand, it is obvious that a decision about the best sequence cannot
be reached before scanning all the states from k = 0 to k = K, so that reducing
the delay would necessarily entail a loss of optimality of the algorithm.

When the delay of K time instants cannot be tolerated, the truncated Viterbi
algorithm may be used. This consists of forcing decisions at stage k on all paths
prior to stage k — D, for some truncation depth (or decision depth) D. The
approach consists of comparing the partial path metrics for the paths at stage k,
and noting which one is the largest. The branch chosen at this time is the one
belonging to this path at time k — D. Thus, after a latency of D time instants, the
truncated VA outputs one branch at a time. Doing this entails also a reduction in
the storage needed, since only the last D branches of the survivor paths must be
kept in memory. The loss of optimality is reduced when D is increased, because
when D is large there is a high probability that all the surviving paths leading to
any node have an initial part in common: so this initial path will be a part of the
optimum one, and we say that a merge has taken place.

F.1.2. An example of application

Here we describe a simple example of application of the Viterbi algorithm to a
decoding problem. Assume that a symbol sequence x, consisting of K equally
likely binary symbols taking values O or 1, is transmitted over a memoryless
channel. Assume also that the symbols, rather than being independent, are cor-
related with each other, and that their correlation can be described in the form of
a trellis as defined before. Specifically, all the admissible symbol sequences are
in one-to-one correspondence with the the paths traversing the trellis from & = 0
to k = K, with one symbol associated with each branch. This occurs for exam-
ple when the symbol sequence can be thought of as the output of a finite-state

i i B R

S i e Mt

(O SR ERCUI RS WE O

o 8

F2. Maximum a posteriori detection. The BCJR algorithm 811

machine driven by an independent, identically distributed sequence of random
variables, so that the sequence of states forms a Markov chain.

Let y), denote the components of the received signal sequence y, and p(y; |
i) the probability density function of the received samples given that z was
transmitted. Maximum-likelihood detection of the transmitted sequence consists
of maximizing the conditional pdf

K

p(y | x) = I (e | z&) (F2)

k=1

over all the admissible sequences x. Here the assumption of a memoryless chan-
nel has been used to factorize the pdf.
By taking the logarithm of (F.2), we obtain the additive form

Inp(y | x) = > Inp(ye | z) (F3)

k=1

We can then use Inp(y, | zx) as the metric that labels the trellis branches as-
sociated at time k with the symbol z; when the observed channel output is y.
Maximization of the sum (F.3) leads to choosing the most likely sequence of
transmitted symbols. As a special case, for the additive white Gaussian noise
channel the above leads to a problem equivalent to the minimization of a Eu-
clidean distance, or, for equal-energy signals, to the maximization of a scalar
product.

F.2. Maximum a posteriori detection. The BCJR algorithm

It is known (Section 2.6) that maximum-likelihood detection minimizes the prob-
ability that the whole detected sequence be in error. Assume instead that in the
example of Section F.1.2 we are interested in minimizing the symbol error prob-
ability for the detected symbols (motivation for this choice is provided in Section
11.3). To do this, for each £ we should choose the value of z; that leads to the
greater between the two quantities (a posteriori probabilities) P(zy = 0 | y) and
P(zy, = 1| y). This is tantamount to comparing with a unit threshold the a
posteriori probability ratio

_ Pz =1]y)
M=Pa=oly) =

Now, observe that the transmitted symbol z; is associated with one or more
branches of the trellis stage at time &, and that each one of these branches can

812 FE. Viterbi algorithm

be characterized by the pair of states, say (o, 0x+1), that it joins. Thus, we can
write
> by, 08 0k4)
Ay = o)l (E.5)
> p(y, 0k 0841)
(0K ,Tk+1):T=0
where the two summations are over those pairs of states for which z;, = 1 and
zr = 0, respectively, and the conditional probabilities of (F.4) are replaced by
joint probabilities after using Bayes’ rule and cancelling out the pdf of y, com-
mon to numerator and denominator.
We proceed now to the computation of the pdf p(y, ok, ox+1). By defining
yr » the components of the received vector before time k, and y;, the components
of the received vector after time k, we can write ‘

y =&, Y ¥§)
and consequently

P(y,ak,0k+1) = p(Yk_,yk;yl_:aUk,Uk-H)
= p(¥Yi Yk Ok Oks1) DYE | Vi » Uk Ok, Okt1)
= P(Yk_a‘fk)p(yk,ffkﬂ IYE,Uk)p(;YEL|yk_»yk,0k,0k+1)

Now, observe that due to the dependences among observed variables and trellis
states, reflected by the trellis structure or, equivalently, by the Markov-chain
property of the trellis states, y,j depends on o, 0k+1, Yi > and y; only through
Ok+1, and, similarly, the pair yx, ox+1 depends on oy, y,, only through . Thus,
by defining the functions

p(Yi > 0k) (F.6)
p(y¥ | Oks1) E7)
P(Urs Oks1 | k) = P(Ys | Ok, Ok41) P(Okta1 | k) (F.8)

ak(ak)

Br+1(0k+1)

e e i

’Yk,k+1(0k, 0k+1)
we may write
(Y, 0k, Okt1) = % (Ok) Yek+1(Tks Okt1) Brt1(Oks1) F9)

In conclusion, the a posteriori probability ratio (F.5) can be rewritten in the form

Z ak(a'k)')'k,k+1(ak, 0’k+1)ﬁk+1(0k+1)
Ak _ Uk,0k+1:mk=1 (F.IO)

S olk) Yewrr (08, Tkr1) Brrr (Ok41)
Ok \Ok41:T=0

F.3. Bibliographical notes 813

To complete our calculations, we now describe how the functions ay (o) and
Br+1(0k+1) can be evaluated recursively. We note the forward recursion

k11(0k+1) = P(Yig1r Ok41)
= p(¥& Yk Ohs1)
= Zp(yk_’yk,o'k,o'k+1)

Ok

= > p(¥5,96)P (U, k11 | O%)

Ok

= Zak(ak)7k,k+l(‘7ka0k+l)
Tk

with the initial condition ag(s;) = 1 (s; denotes the initial state of the trellis).
Similarly, we note the backward recursion

Br(ox) = p(yi_i|ox)
= Z p(yk>yz>0'k+1 l O'k)

k41

= Z DYk oxt1 | 06)p(YH | Ors1)
Tk41

= > Yekt1(0k, Okt1) Brs1(0k41)
k41

with the final value Bg(sg) = 1.

The combination of the latter two recursions with (F.10) forms the BCJR al-
gorithm, named after the authors who first derived it (Bahl, Cocke, Jelinek, and
Raviv, 1974). This algorithm, that was derived here with the aim of maximiz-
ing the a posteriori probabilities of the symbols, is used in Section 11.3 to the
purpose of computing a posteriori probabilities.

Roughly speaking, we can state that the complexity of the BCJR algorithm is
about three times that of Viterbi algorithm. A truncated version of this algorithm
(the “sliding-window” algorithm) is described in Section 11.3.

