Solutions for Homework 4
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a. To show that the waveforms f,(¢), n =1,...,3 are orthogonal we have to prove that:
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Thus, the signals f,,(¢) are orthogonal. It is also straightforward to prove that the signals have unit
energy :
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Hence, they are orthonormal.

b. We first determine the weighting coefficients
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As it is observed, z(t) is orthogonal to the signal wavaforms f,(¢t), n = 1,2,3 and thus it can not
represented as a linear combination of these functions.
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A well-known result in estimation theory based on the minimum mean-squared-error criterion states
that the minimum of &, is obtained when the error is orthogonal to each of the functions in the
series expansion. Hence :
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since the functions { f,,(¢)} are orthonormal. only the term with £ = n will remain in the sum, so :
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The corresponding residual error & is :
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where we have exploited relationship (1) to go from the second to the third step in the above
calculation.
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The amplitudes A,, take the values
d
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Hence, the average energy is
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As we see, this signal set is indeed equivalent to a 4-phase PSK signal.
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5) (Cauchy-Schwart inequality)

Theorem. Lef (ay,az, ..., an ) and (b, ba, ..., by} be two sequences of real numbers, then

Proof 1. Expanding out the brackets and collecting together identical terms we have
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Because the left-hand side of the equation is a sum of the squares of real numbers it is greater than or
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Proof 2. Consider the following quadratic polynomial
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Since f(x) = 0 for any = € B, it follows that the discriminant of f{z) is negative, ie.,
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