
1

LOW-COMPLEXITY FINITE PRECISION DECODERS FOR

LOW-DENSITY PARITY-CHECK CODES

Graduate Student: Shiva Kumar Planjery
Advisors: Bane Vasic, David Declercq, and Michael W. Marcellin

Department of Electrical and Computer Engineering, University of Arizona, Tucson
ETIS ENSEA/UCP/CNRS, Cergy-Pontoise, France

Abstract

We present a new class of finite-precision decoders for low-density parity-check (LDPC) codes. These decoders
are much lower in complexity compared to conventional floating-point decoders such as the belief propagation
(BP) decoder, but they have the potential to outperform BP. The messages utilized by the decoders assume values
(or levels) from a finite discrete set. We discuss the implementation aspects as well as describe the underlying
philosophy in designing these decoders. We also provide results to show that in some cases, only 3 bits are
required in the proposed decoders to outperform floating-point BP.

I. INTRODUCTION

Error-correcting codes are indispensable for any modern digital communication system which requires
reliable transmission and/or storage of digital data. Overthe past decade, a particular class of error-
correcting codes called low-density parity-check (LDPC) codes that were originally discovered by
Gallager in the 1960’s, and rediscovered some thirty years later, has sparked a widespread interest
and has been a subject of intense research in the field of communications. The traditional algorithms
used for decoding LDPC codes are primarily based on an iterative algorithm called belief propagation
(BP), which operates on the graphical model of the code. Under BP decoding, these codes were shown
to asymptotically perform close to the theoretical limit established by Shannon’s noisy channel coding
theorem [2]. The remarkable performance of LDPC codes as well as their simple and efficient high-
speed implementations have made them very attractive for use in a plethora of applications ranging
from wireless communication and deep-space communcation systems to magnetic storage media.

In the past several years, a considerable amount of researchhas been dedicated towards constructing
capacity-achieving LDPC codes that have good distance properties, and finding better iterative decoders
that enable simpler hardware implementations. Richardsonet. al. in [2] proposed the technique of
density evolution under BP decoding in order to determine the asymptotic decoding threshold of a
particular code and suggested using this analysis in order to optimize the code’s profile for the best
possible decoding threshold. Although the density evolution approach can provide a fairly accurate
prediction of the performance of a code in the very low signal-to-noise ratio (SNR) region (or waterfall
region), it cannot predict in the higher SNR region (or errorfloor region). This is because the density
evolution approach does not take into account the finite-length effects of the code as it assumes an
infinite code length and a node in the graph representation ofthe code considers the graph to be a tree
during decoding. Therefore, BP decoding is suboptimal for practical implementations of LDPC codes.
In addition, the problem of error floors exists in LDPC codes of practical lengths.

E-mail: {shivap, vasic, marcellin}@ece.arizona.edu, declercq@ensea.fr

2

Error floor is an undesirable phenomenon typically present in iterative decoding based codes, where
an abrupt degradation in the error-rate performance of the code occurs in the high SNR region. The
causes of error floor can be attributed to the presence of certain harmful structures in the Tanner graph
of the code calledtrapping sets that cause the decoder to fail for error patterns of low weight. The
notion of trapping sets was first introduced by Richardson [4] in order to characterize the failures of
iterative decoders. These trapping sets can be present in any finite-length code even though it has been
optimized for a good decoding threshold. Hence, LDPC codes that are optimized using the density
evolution approach can still exhibit high error floors.

Recently, the design of quantized iterative decoders having low complexity implementations, has gained
prominence due to increasing speed requirements and stricter hardware constraints for practical realiza-
tions. In this regard, the problem of designing quantized BPand min-sum decoders has been investigated
[2], [5], [6]. These proposed quantization schemes are primarily based on achieving the best possible
asymptotic decoding threshold using density evolution, and approaching the performance of floating-
point BP, i.e., minimizing the loss in performance due to quantization. Again for reasons mentioned
previously, these schemes do not guarantee a good performance on a finite-length code especially in the
low-noise regime. In addition, effects of quantization cancontribute further to the error floor phenomenon
(which is neglected in the designs).

In this paper, we present a new class of decoders for the binary symmetric channel (BSC) that addresses
both finite precision as well as the error floor phenomenon. These decoders are obtained with the purpose
of improving the message-passing process on finite-length graphs as BP decoding is suboptimal on
finite-length graphs. This is carried out by using certain subgraphs as combinatorial objects that could
potentially be trapping sets and deriving finite precision decoders that reduce the failure rate on these
subgraphs. Hence, these decoders have the potential to outperform the floating-point BP decoder in
spite of using finite precision to represent messages. At thesame time these decoders greatly simplify
the hardware implementation without compromise in performance.

The rest of the paper is organized as follows. Section II provides the necessary preliminaries for this
work. In Section III, we provide a description of the low-complexity finite-precision decoders and briefly
discuss their implementation aspects as well as the design methodology which is based on analyzing
decoding on isolated subgraphs. We finally provide numerical results and conclusions in Section IV.

II. PRELIMINARIES

In this section, we shall provide the necessary fundamentals related to LDPC codes and briefly describe
the BP algorithm. We shall also elaborate on the notion of trapping sets which are essential for deriving
good decoders and introduce some notations.

A. LDPC codes

LDPC codes are linear codes that are characterized by a sparse parity check matrix H containing a
small number of nonzero entries. These codes can be conveniently represented by bipartite graphs
called Tanner graphs, which are more useful representations when carrying out the iterative decoding
process. The Tanner graph representation of an LDPC code consists of two sets of nodes. One set of
nodes are called variable nodes and they represent the bits associated with a codeword. The other set
of nodes are called check nodes and they represent parity check constraints on the bits of the codeword

3

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

c
1

c
2

c
3

c
4

H

1 1 1 1 1 0 1 0

0 1 1 1 1 1 0 1

1 1 0 1 0 1 1 1

1 0 1 0 1 1 1 1

x b b b b b b b b
1 2 3 4 5 6 7 8

Fig. 1. Example of a rate 1/2 (3,6) LDPC code

which are defined by the parity check matrix H. An edge of the graph connects a variable node to a
check node only if that particular bit represented by the variable node participates in the parity check
equation represented by the check node. The degree of a node is the number of neighbors it is connected
to in the graph. Regular LDPC codes are codes for which all thevariable nodes have the same degree
and all check nodes have the same degree, whereas irregular LDPC codes can have different degrees
for different nodes.

Figure 1 shows the example of a Tanner graph for a rate-half (3, 6) binary LDPC code with code length
8, and its corresponding parity check matrix. The circles onthe Tanner graph denote variable nodes
and the boxes denote check nodes. The vectorx consists of bitsb1 to b8 that are associated to their
corresponding variable nodesv1 to v8 on the Tanner graph.x is a codeword if and only if it satisfies
the matrix product,HxT = 0 (satisfiability condition). This implies that every row of the parity check
matrix H corresponds to a parity check constraint on the bitsof a codeword. Then all the bits represented
by the variable nodes that are connected to a particular check node must add up to zero modulo 2, and
under such condition, the check node is considered to be satisfied. If the parity check equation does
not hold, then the check node is considered to be unsatisfied.

We shall adopt notations used in [7]. LetG = (V ∪ C, E) denote the Tanner graph of a binary LDPC
codeC with the set of variable nodesV = {v1, · · · , vn} and set of check nodesC = {c1, · · · , cm}. E

is the set of edges inG. The code has lengthn and code rateR. For a vectorv = (v1, v2, . . . , vn),
the support ofv denoted assupp(v), is defined as the set of all variable nodes such thatvi 6= 0. A
codeC is said to bedv-left-regular if all variable nodes inV of graphG have the same degreedv. Let
r = (r1, r2 . . . , rn) be the input to the decoder from the BSC.

B. Decoding algorithms

Several message-passing algorithms exist in literature that are used for decoding LDPC codes. We
briefly describe the BP algorithm in order to highlight the distinction between the currently proposed
decoders and existing message-passing decoders, since most decoders are based on the BP algorithm
or its modified version.

4

Any message-passing algorithm for LDPC codes can be described by defining update rules at the variable
node and check node. The variable node update rule and the check node update rule, denoted as functions
Ψv andΨc resepctively, are used to determine the outgoing messages.Initially, every variable nodevi

calculates its channel valueyi based on the observation valueri received from the channel. For the
BP algorithm implemented in the “log-liklihood domain”, the channel valueyi is a log-liklihood ratio
calculated from the observationri. Assuming that a transmitted bitbi can be a zero or a one with equal
probability, the valueyi can be calculated as

log
p(ri|bi = 0)

p(ri|bi = 1)

The calculation ofyi depends on the type of channel and noise distribution.

Let m1, · · · , mdv−1 denote incoming messages to a variable node of degreedv and m1, · · · , mdc−1

denote the incoming messages for a check node of degreedc. Note that while determining the outgoing
message on any particular edge of a node, the incoming message on that particular edge is not included
in the computation of the outgoing message. This is to ensurethat the outgoing message is anextrinsic
message and the dependencies between the messages entering the nodeare reduced.
For the BP algorithm, the variable node update and check nodeupdate rules are defined as

Ψv(yi, m1, . . . , mdv−1) =
dv−1
∑

j=1

mj + yi

Ψc(m1, m2, . . . , mdc−1) = 2 tanh−1

(

dc−1
∏

j=1

tanh
(mj

2

)

)

Initially all messages are set to zero and each variable nodesends its channel value as the outgoing
message. Messages are then passed iteratively between check nodes and variable nodes using the update
rulesΨc andΨv.

At the end of each iteration, a hard decision rule is carried out at the variable node which determines
whether its associated bit is a one or a zero based on the values of the incoming messages and the
channel valueyi. For the BP algorithm, the bitbi is decided by taking the sum of all the incoming
messages and the channel value, and observing the sign of theresult. These bits obtained from the hard
decision rule are then sent to the check nodes along the edgesof the graph in order to verify if the
decoder has converged to a codeword. If so, the iterative process is terminated, else the iterative process
is continued until a maximum number of iterations is reached.

C. Trapping sets

Trapping sets are structures present in the Tanner graph of the code that cause the decoder to fail for
error patterns of low weight, usually much lower than the error-correction capability of the code under
maximum likelihood (ML) decoding. Following the definitiongiven by Richardson in [4], a trapping
setT(r) is a non-empty set of variable nodes inG that are not eventually corrected by the decoder for
a particular inputr. A standard notation used to denote a trapping set is(a, b) wherea = |T(r)|, andb

is the number of odd-degree checks present in the induced subgraph ofT(r). The critical number of a
trapping set is the minimum number of variable nodes that have to be initially in error for the decoder
to end up in the trapping set. The critical number conveys howharmful a given trapping set is. The
lower the critical number, the more harmful the trapping set.

5

III. LOW-COMPLEXITY FINITE PRECISION DECODERS

In this section, we present a new class of finite precision decoders that are much lower in complexity
compared to the BP decoder. For the proposed decoders, the update rules do not mimic the rules used
in the BP algorithm; they are instead derived using knowledge of trapping sets that are already known
for traditional decoders such as Gallager-B or BP. The rulescan be described algbraically or using
Boolean functions (or look-up tables). For sake of exposition, we shall begin by providing an algebraic
description of the decoders [7].

A. Description of decoders

For these decoders, the messages take values from a finite discrete setM ={−Lk, · · · ,−L2,−L1,
0,L1,L2,· · · , Lk}, whereLi ∈ R

+ and k is the number of bits used for representation. The sign of a
messageµ ∈ M represents the message’s estimate of whether the associated bit is zero or one, and the
magnitude|µ| represents the reliability measure of its estimate. AlsoM is defined such thatLi > Lj ,
for any i > j. The setY = {±C} denotes the set of possible channel values. For each variable node
vi in G with ri received from the BSC, the channel valueyi ∈ Y is computed asyi = (−1)riC. The
valueC gives a measure of how much the decoder relies on the channel’s estimate of the bit node.
At the check node, the update functionΨc is defined as

Ψc(m1, . . . , mdc−1) =

(

dc−1
∏

j=1

sgn(mj)

)

min
j∈{1,...,dc−1}

(|mj |)

wheresgn denotes the standard signum function.
At the variable node, the update functionΨv is defined as

Ψv(yi, m1, . . . , mdv−1) = Q

(

dv−1
∑

j=1

mj + Ω(m1, . . . , mdv−1) · yi

)

whereΩ is symmetric functionΩ : Mdv−1 → {0, 1} that could be linear or nonlinear. The functionQ is
a quantization function that compares the sum of the incoming messages andyi with a set of thresholds
defined by a threshold setT = {T1, T2, · · · , TM}, whereTi ∈ R

+, and for anyTp, Tq ∈ T , Tp > Tq if
p > q. The functionQ(x) outputs the message±Li if Ti ≤ |x| < Ti+1.

Note that if the functionΩ is nonlinear, these decoders are different from any existing quantized message-
passing decoders. The functionΨv can now be uniquely described by specifying the channel output
setY , message setM, threshold setT , and the functionΩ, which constitute the design parameters
for these decoders. The non-linearity introduced into the function allows the variable node to capture
some of its local neighborhood that could be potentially harmful (ex: if the node is in a six cycle), and
accordingly compute outgoing messages that help the decoder to converge. More details on this shall
be provided in the next subsection while discussing the design methodology.

B. Implementation aspects

Although we have represented messages as levels from the setM, they are represented as binary vectors
of length k during implementation. There is a one-to-one correspondence between the binary vector
representation and the levelsLi defined in setM. For example, consider a decoder that uses a message
set M with 7 levels. Each levelLi in the setM is represented by a 3-bit binary vector. The most
significant bit (MSB) denotes the estimate of whether the associated node is one or zero, i.e., the sign

6

of Li. All positve levels have an MSB of zero and all negative levels have an MSB of 1. The next two
bits denote how reliable the estimate is. For example,L3 is the strongest possible level with an estimate
of zero and hence its 3-bit representation is 011. In this manner, the mapping from the levelsLi in set
M to their 3-bit binary representation can be derived and is shown in table I.

Levels 3-bit representation
L3 011
L2 010
L1 001
0 000 or 100

−L1 101
−L2 110
−L3 111

TABLE I
3- BIT BINARY VECTOR REPRESENTATION OF LEVELS

Similarly, there exists a one-to-one correspondence between the algebraically definedΨv and a simple
look-up table. Depending on the application and type of requirements in the decoder realization, either
form can be used for implementation. In the algebraic form,Φv is implemented based on the message set
M, threshold setT , channel output setY and channel weight functionΩ. For simplicity of exposition,
we shall assumeΩ = 1 and consider only decoders for 3-left-regular codes. In order to facilitate the
implementation in algebraic form, the messages which are represented as 3-bit binary vectors must be
converted to binary vectors in 2’s complement form which represent the actual values ofLi. Since we
are using the 2’s complement form, we will need extra bits to represent the sign, integer and fractional
parts of the values ofLi. Care must be taken in choosing the values forLi so that minimal number
of extra bits are required while converting to the 2’s complement form. Figure 2(a) shows the general
schematic for implementation using the algebraic form ofΨv. Figure 2(b) shows the implementation
using the look-up table form. The look-up table corresponding to Ψv stored in a ROM is used to
determine the outgoing message. Due to larger memory requirements in this implementation, outgoing
messages are computed sequentially in this scheme instead of parallel so that only a single ROM is
required for each variable node. Again the messages can be computed parallely using multiple ROMs
of the look-up table if hardware area is not a constraint. Thetri-state buffers (represented as triangles)
in Figure 2(b) ensure that only extrinsic messages are calculated.

Based on the implementation schemes described we can point out two advantages that make implemen-
tation using the algebraic form an attractive choice over look-up table form. Firstly, the implementation
scheme using algebraic form is simple and straightforward and if the modules of the implementation use
reconfigurable components, then changing the update functionΨv can be easily done by simply changing
the thresholds and magnitudes. This is advantageous especially for the case of a decoder that switches its
variable node update function to another and also for enabling flexibility and reconfigurability to modify
decoders in the hardware whenever the need arises. Secondly, for decoders that use larger number of bits
(say 4 or 5 bits), the look-up table ofΨv can become quite large leading to large memory requirements
and utilization of hardware area. On the other hand, the complexity will only linearly increase with the
number of bits for the implementation using algebraic form.

However, if we are to strictly use onlyn bits for then-bit decoders to represent the messages, the
look-up table form needs to be used. The look-up table form may especially be well suited when the

7

Demux

3-bit

message

A
0

A
1

A
2

A
3

A
4

A
5

8X6 ROM

D
0

D
1

D
2

Demux

A
0

A
1

A
2

A
3

A
4

A
5

8X6 ROM

D
0

D
1

D
2

Demux

A
0

A
1

A
2

A
3

A
4

A
5

8X6 ROM

D
0

D
1

D
2

3-bit

message

3-bit

message

Four input 6-bit adder

A
0

A
1

A
2

A
3

A
4

A
5

one-bit-to-six-bit code
converter

D
0

6-bit

vector

6-bit

vector

6-bit

vector

6-bit

vector

Two input 6-bit
Subtractor

Two input 6-bit
Subtractor

Two input 6-bit
Subtractor

MSB is the

sign bit

Sign bit directly gives
the hard-decision bit

which is sent to check
nodes

Quantizer
T

1

T
2

T
3

Quantizer
T

1

T
2

T
3

Quantizer
T

1

T
2

T
3

MUX MUX MUX

Outgoing messages passed to check node processor

1-bit

message

m
1

m
2

m
3

yi

(a)

m
1

m
2

m
3

Internal
Clock

(VCO)

Buffer that stores only

two messages

A
0

A
1

A
2

A
3

A
4

A
5

A
6

128 X 3 ROM

D
0

D
1

D
2

Demux Demux

3-bit
message

3-bit
message

Input Buffer

yi

MUX

Buffer that stores three messages

Outgoing messages passed to check

node processor

(b)

Fig. 2. Variable node processor: (a) Algebraic form; (b) Look-up table form

Ω function is nonlinear and the message set is small, since there is no added complexity involved for
implementingΩ in the look-up table form. Also the look-up table form may be helpful for faster search
of good update rules. Either of the two implementations can be used based on the hardware constraints,
decoder speed requirements, and type of application that itis used for. As an example, Table II shows
the look-up table form corresponding to aΨv for a 7-level decoder which is defined by a message set
M ={−8.5,−3.5,−1,0,1,3.5, 8.5}, threshold setT = {1, 3.5, 8.5}, C = 1.5, and functionΩ = 1. m1

andm2 are incoming messages to a degree-3 variable node andmo is the outgoing message. Note that
with deeper introspection into the look-up table, there mayexist simple Boolean functions that have
even lower complexity than algebraic form.

C. Design methodology

A key strategy used in deriving good update rules is to analyze decoding on isolated subgraphs that could
be potential trapping sets for a given decoder. Since we consider symmetric decoders, we can assume
that the all-zero codeword is transmitted during analysis.In order to decode on an isolated subgraph,
we assume that all the variable nodes outside the subgraph are initially correct (receive initially correct
channel values) and that the neighborhood of the subgraph issuch that the messages entering into the
subgraph from outside are not affected by the messages beingpropagated within the subgraph. As an
example, Figure 3 illustrates the decoding on an isolated eight-cycle which is a potential (4,4) trapping
set. The nodes with solid lines are the nodes that belong to the subgraph. The open boxes represent
degree-2 check nodes and the filled boxes represent the degree-one check nodes in the subgraph. Clearly
the subgraph has 4 variable nodes and 4 degree-one check nodes, hence a (4,4) trapping set. The nodes
with dotted lines represent the variable nodes outside the subgraph.

8

m1 m2 yi mo

L1 L1 C L2

L1 L1 −C 0
L1 L2 C L2

L1 L2 −C L1

L1 L3 C L3

L1 L3 −C L2

L1 0 C L1

L1 0 −C 0
L1 −L1 C L1

L1 −L1 −C −L1

L1 −L2 C −L1

L1 −L2 −C −L2

L1 −L3 C −L2

L1 −L3 −C −L3

m1 m2 yi mo

L2 L2 C L3

L2 L2 −C L2

L2 L3 C L3

L2 L3 −C L3

L2 0 C L2

L2 0 −C L1

L2 −L1 C L2

L2 −L1 −C L1

L2 −L2 C L1

L2 −L2 −C −L1

L2 −L3 C −L2

L2 −L3 −C −L2

L3 L3 C L3

L3 L3 −C L3

m1 m2 yi mo

L3 0 C L3

L3 0 −C L2

L3 −L1 C L3

L3 −L1 −C L2

L3 −L2 C L2

L3 −L2 −C L2

L3 −L3 C L1

L3 −L3 −C −L1

0 0 C L1

0 0 −C −L1

0 −L1 C 0
0 −L1 −C −L1

0 −L2 C −L1

0 −L2 −C −L2

m1 m2 yi mo

0 −L3 C −L2

0 −L3 −C −L3

−L1 −L1 C 0
−L1 −L1 −C −L2

−L1 −L2 C −L2

−L1 −L2 −C −L2

−L1 −L3 C −L2

−L1 −L3 −C −L3

−L2 −L2 C −L2

−L2 −L2 −C −L3

−L2 −L3 C −L3

−L2 −L3 −C −L3

−L3 −L3 C −L3

−L3 −L3 −C −L3

TABLE II
LOOK-TABLE FORM OFΨv USED IN A 3-BIT DECODER

mv c mv c

mv cmv c

m
c

v

mc v mc v

mc v mc v

m
c

v

m
c

v
m

c
v

min

min

min

min

mout

mout

mout

mout

Fig. 3. Decoding on an isolated potential (4,4) trapping set

9

In Figure 3,mv→c denotes messages going from variable node to the degree-2 check node andmc→v

denotes messages going from the degree-2 check nodes to the variable nodes.min denotes the outgoing
message from the degree-one check node to a variable node.mout denotes the outgoing message from a
variable node to a degree-one check node. The messagesmv→c andmout are computed using a specific
variable node update tableΨv. However, in order to computemin at the end of every iteration, a
different rule is needed assuming that all variable nodes outside the subgraph are initially correct. By
the isolation assumption on the neighborhood of the degree-one check nodes, the degree-one check node
in the subgraph will send the messagemin = Li into the subgraph during theith iteration until min

reaches the maximum possible levelLk and thereafter it will always send the strongest messageLk.
The remaining variable nodes and degree-2 check nodes follow the usual update rules and the decoding
process is continued. Based on the error pattern in the subgraph, certain variable nodes in the subgraph
will be initially wrong but may eventually become right by choosing a good variable node update table
Ψv.

Using the technique of decoding on isolated subgraphs, the general method which is based on reducing
failure rates on potential trapping sets can be summarized as follows. A database containing all possible
subgraphs that are potential trapping sets is generated andcalled trapping set database. This database can
be generated using analytical methods, by simulation or emulation of a decoder(s) on a given channel,
or even by a combination of the simulation and analytical method. For example, the database could be
generated by observing the failures in the high SNR region for a particular decoder or several decoders
on a specific channel and using the subgraphs corresponding to these failures. Or, the database can
be generated as previously mentioned by using a combinatorial construction algorithm and then further
including some subgraphs associated with failures obtained during simulation of decoder(s). Essentially,
the trapping set database contains subgraphs that have potential to be trapping sets for any given decoder,
and then the decoders are designed such that they have reduced failure rates on these subgraphs. The
goal is to search for a decoder that can correct most or all of the trapping sets (with error induced
on them) under the isolation assumption. Some key parameters in the case of BSC that are used in
the design are an increase in critical number of the potential trapping sets and convergence within few
iterations when the decoder does converge. This process gives good decoders that are well-equipped
to handle potentially harmful structures and helps improvethe iterative decoding process on the graph.
For a more rigorous explanation on the concept of isolation assumption, refer to [7].

IV. NUMERICAL RESULTS AND CONCLUSIONS

We provide numerical results in order to validate our approach and illustrate that in some cases, only
3 bits are required for these decoders to surpass floating-point BP. Simulations of the BP decoder and
3-bit decoder specified by table II were carried out for frameerror rate (FER) on two quasicyclic
codes of different lengths: 1)n = 5184, R = 0.834, quasicyclic code, and 2)n = 804, R = 0.75,
quasicyclic code. For both codes, the 3-bit decoder outperforms the floating-point BP in the error floor
region with minimal loss in the waterfall region. Notice thedifference in the slope of the FER curves
in the error floor region for both decoders. Moreover, the 3-bit decoder achieves this at a fraction of
the complexity of the BP decoder since both decoders used a maximum number of 100 iterations for
decoding. Also the same 3-bit decoder that was derived usingknowledge of trapping sets appears to
be good on both codes. This suggests that the proposed decoders are not code-specific and the update
rules derived appear to improve the message-passing process on a finite-length code by considering
potentially harmful neighborhoods of nodes into the decoding.

10

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

cross−over probability α

F
ra

m
e

er
ro

r
ra

te
 (

F
E

R
)

BP decoder
3−bit decoder

(a)

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

cross−over probability ε

F
ra

m
e

er
ro

r
ra

te
 (

F
E

R
)

BP decoder

3−bit decoder

(b)

Fig. 4. FER results: (a)n = 5184, R = 0.834, quasicyclic code; (b)n = 804, R = 0.75, quasicyclic code

REFERENCES

[1] R. G. Gallager,Low Density Parity Check Codes. Cambridge, MA: M.I.T. Press, 1963.
[2] T. Richardson and R. Urbanke, “Capacity of low-density parity-check codes under message-passing decoding,”IEEE Trans. Inform.

Theory , vol 47, pp. 599–618, Feb. 2001.
[3] T. Richardson, A. Shokrollahi, R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,”IEEE Trans.

Inform. Theory, vol. 47, pp. 619–637, Feb. 2001.
[4] T. Richardson, “ Error floors of LDPC codes”, inProc. of 41st Annual Allerton Conf. on commun., control and computing, 2003.
[5] J. K. Lee and J. Thorpe, “Memory-efficient decoding of LDPC codes,” inProc. Int. Symp. on Inform. Theory (ISIT 2005), Adelaide,

Australia, pp. 459–463., Sept. 2005.
[6] B. Smith, F. R. Kschischang and W. Yu, “Low-density parity-check codes for discretized min-sum decoding,” inProc. 23rd Biennial

Symp. on Commun., pp. 14–17, 2006.
[7] S. K. Planjery, D. Declercq, S. K. Chilappagari, and B. Vasic, “Multilevel decoders surpassing belief propagation on the binary

symmetric channel,” inProc. Int. Symp. on Inform. Theory (ISIT 2010), Austin, TX, June 2010.

