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Abstract

We present a new class of finite-precision decoders for lemsily parity-check (LDPC) codes. These decoders
are much lower in complexity compared to conventional flag{point decoders such as the belief propagation
(BP) decoder, but they have the potential to outperform Bie Messages utilized by the decoders assume values
(or levels) from a finite discrete set. We discuss the implaatéon aspects as well as describe the underlying
philosophy in designing these decoders. We also providgtseto show that in some cases, only 3 bits are
required in the proposed decoders to outperform floatirigtP.

. INTRODUCTION

Error-correcting codes are indispensable for any modegitatlicommunication system which requires
reliable transmission and/or storage of digital data. Qter past decade, a particular class of error-
correcting codes called low-density parity-check (LDP@Yes that were originally discovered by
Gallager in the 1960’s, and rediscovered some thirty yeater,| has sparked a widespread interest
and has been a subject of intense research in the field of camations. The traditional algorithms
used for decoding LDPC codes are primarily based on an iiteratgorithm called belief propagation
(BP), which operates on the graphical model of the code. UB&edecoding, these codes were shown
to asymptotically perform close to the theoretical limitaggdished by Shannon’s noisy channel coding
theorem [2]. The remarkable performance of LDPC codes ak agetheir simple and efficient high-
speed implementations have made them very attractive f@rirug plethora of applications ranging
from wireless communication and deep-space communcayisteras to magnetic storage media.

In the past several years, a considerable amount of resbasciveen dedicated towards constructing
capacity-achieving LDPC codes that have good distanceeptiep, and finding better iterative decoders
that enable simpler hardware implementations. Richardgoral. in [2] proposed the technique of
density evolution under BP decoding in order to determiree dsymptotic decoding threshold of a
particular code and suggested using this analysis in oa@ptimize the code’s profile for the best
possible decoding threshold. Although the density evotutpproach can provide a fairly accurate
prediction of the performance of a code in the very low sigoahoise ratio (SNR) region (or waterfall
region), it cannot predict in the higher SNR region (or efftoor region). This is because the density
evolution approach does not take into account the finitgttereffects of the code as it assumes an
infinite code length and a node in the graph representatidgheotode considers the graph to be a tree
during decoding. Therefore, BP decoding is suboptimal facfical implementations of LDPC codes.
In addition, the problem of error floors exists in LDPC codépmactical lengths.
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Error floor is an undesirable phenomenon typically presentarative decoding based codes, where
an abrupt degradation in the error-rate performance of tue occurs in the high SNR region. The
causes of error floor can be attributed to the presence dicdrarmful structures in the Tanner graph
of the code calledrapping sets that cause the decoder to fail for error patterns of low weidhe
notion of trapping sets was first introduced by Richardsdnifdorder to characterize the failures of
iterative decoders. These trapping sets can be preseny ifingte-length code even though it has been
optimized for a good decoding threshold. Hence, LDPC cotias @re optimized using the density
evolution approach can still exhibit high error floors.

Recently, the design of quantized iterative decoders lgaew complexity implementations, has gained
prominence due to increasing speed requirements ancesthiatdware constraints for practical realiza-
tions. In this regard, the problem of designing quantizedaB& min-sum decoders has been investigated
[2], [5], [6]. These proposed quantization schemes are gmilgnbased on achieving the best possible
asymptotic decoding threshold using density evolutiod approaching the performance of floating-
point BP, i.e., minimizing the loss in performance due torgization. Again for reasons mentioned
previously, these schemes do not guarantee a good perfoenoana finite-length code especially in the
low-noise regime. In addition, effects of quantization cantribute further to the error floor phenomenon
(which is neglected in the designs).

In this paper, we present a new class of decoders for theybgyanmetric channel (BSC) that addresses
both finite precision as well as the error floor phenomenoeséldecoders are obtained with the purpose
of improving the message-passing process on finite-lengabhg as BP decoding is suboptimal on
finite-length graphs. This is carried out by using certaibggaphs as combinatorial objects that could
potentially be trapping sets and deriving finite precisi@tabers that reduce the failure rate on these
subgraphs. Hence, these decoders have the potential terfuutp the floating-point BP decoder in
spite of using finite precision to represent messages. Atdnee time these decoders greatly simplify
the hardware implementation without compromise in pertonoe.

The rest of the paper is organized as follows. Section |l igkexs the necessary preliminaries for this
work. In Section Ill, we provide a description of the low-cplaxity finite-precision decoders and briefly
discuss their implementation aspects as well as the deseghaaiology which is based on analyzing
decoding on isolated subgraphs. We finally provide numkresults and conclusions in Section IV.

II. PRELIMINARIES

In this section, we shall provide the necessary fundamentédted to LDPC codes and briefly describe
the BP algorithm. We shall also elaborate on the notion qifftireg sets which are essential for deriving
good decoders and introduce some notations.

A. LDPC codes

LDPC codes are linear codes that are characterized by aespargy check matrix H containing a

small number of nonzero entries. These codes can be comtgniepresented by bipartite graphs
called Tanner graphs, which are more useful represengatidren carrying out the iterative decoding
process. The Tanner graph representation of an LDPC codastemf two sets of nodes. One set of
nodes are called variable nodes and they represent thedsibgiated with a codeword. The other set
of nodes are called check nodes and they represent paritk clo@straints on the bits of the codeword
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Fig. 1. Example of a rate 1/2 (3,6) LDPC code

which are defined by the parity check matrix H. An edge of thepbrconnects a variable node to a
check node only if that particular bit represented by thealde node participates in the parity check
equation represented by the check node. The degree of astiteenumber of neighbors it is connected
to in the graph. Regular LDPC codes are codes for which alv#r@ble nodes have the same degree
and all check nodes have the same degree, whereas irreddR(C lcodes can have different degrees
for different nodes.

Figure 1 shows the example of a Tanner graph for a rate-haff)(Binary LDPC code with code length
8, and its corresponding parity check matrix. The circlestlom Tanner graph denote variable nodes
and the boxes denote check nodes. The vectoonsists of bitsh; to bs that are associated to their
corresponding variable nodes to vs on the Tanner graphe is a codeword if and only if it satisfies
the matrix productHz” = 0 (satisfiability condition). This implies that every row dfet parity check
matrix H corresponds to a parity check constraint on thedfitscodeword. Then all the bits represented
by the variable nodes that are connected to a particulakanede must add up to zero modulo 2, and
under such condition, the check node is considered to bsfisdti If the parity check equation does
not hold, then the check node is considered to be unsatisfied.

We shall adopt notations used in [7]. Lét= (V' U C, E) denote the Tanner graph of a binary LDPC
codeC with the set of variable nodes = {v;,--- ,v,} and set of check nodes = {c;, - ,c}. E

is the set of edges id:. The code has length and code rate?. For a vectorv = (vq,vs,...,0,),
the support ofv denoted asupp(v), is defined as the set of all variable nodes such that 0. A
code( is said to bed,-left-regular if all variable nodes i of graphG have the same degrek. Let

r = (ry,7mo...,7,) be the input to the decoder from the BSC.

B. Decoding algorithms
Several message-passing algorithms exist in literatuaé dhe used for decoding LDPC codes. We
briefly describe the BP algorithm in order to highlight thetatiction between the currently proposed
decoders and existing message-passing decoders, sintalecoslers are based on the BP algorithm
or its modified version.



Any message-passing algorithm for LDPC codes can be desidoy defining update rules at the variable
node and check node. The variable node update rule and thk obde update rule, denoted as functions
¥, and ¥, resepctively, are used to determine the outgoing messageally, every variable node);
calculates its channel valug based on the observation valugreceived from the channel. For the
BP algorithm implemented in the “log-liklihood domain”,glchannel valugy; is a log-liklihood ratio
calculated from the observation. Assuming that a transmitted Wit can be a zero or a one with equal
probability, the valuey; can be calculated as

p(rilb; = 0)
p(rilbi = 1)
The calculation ofy; depends on the type of channel and noise distribution.

log

Let my,---,mq,—1 denote incoming messages to a variable node of degreend mq,---,mg, 1
denote the incoming messages for a check node of degrééote that while determining the outgoing
message on any particular edge of a node, the incoming neessatipat particular edge is not included
in the computation of the outgoing message. This is to en$iatethe outgoing message is exirinsic
message and the dependencies between the messages entering thareageluced.

For the BP algorithm, the variable node update and check npdate rules are defined as

dy—1
\I]U(yhml?"'?mdv—l) = Zm.ﬂ—i_yl
j=1

de—1
m.
\Ilc<m17 ma, ... 7mdc—1> == Qtanh_l (H tanh (#))

Initially all messages are set to zero and each variable sedds its channel value as the outgoing
message. Messages are then passed iteratively betwednndtexs and variable nodes using the update
rulesv,. and ¥,,.

At the end of each iteration, a hard decision rule is carrietlad the variable node which determines
whether its associated bit is a one or a zero based on thesvafune incoming messages and the
channel valuey;. For the BP algorithm, the bi; is decided by taking the sum of all the incoming
messages and the channel value, and observing the sign isihié These bits obtained from the hard
decision rule are then sent to the check nodes along the edgéeg graph in order to verify if the
decoder has converged to a codeword. If so, the iterativeegrois terminated, else the iterative process
is continued until a maximum number of iterations is reached

C. Trapping sets

Trapping sets are structures present in the Tanner grapheatdde that cause the decoder to fail for
error patterns of low weight, usually much lower than theeaorrection capability of the code under
maximum likelihood (ML) decoding. Following the definitiagiven by Richardson in [4], a trapping
setT(r) is a non-empty set of variable nodesGhthat are not eventually corrected by the decoder for
a particular inputr. A standard notation used to denote a trapping sét,is) wherea = |T(r)|, andb

is the number of odd-degree checks present in the inducegtagpi of T'(r). The critical number of a
trapping set is the minimum number of variable nodes thae liawe initially in error for the decoder
to end up in the trapping set. The critical number conveys hawnful a given trapping set is. The
lower the critical number, the more harmful the trapping set



IIl. LOW-COMPLEXITY FINITE PRECISION DECODERS

In this section, we present a new class of finite precisioroders that are much lower in complexity
compared to the BP decoder. For the proposed decoders, tla¢eupules do not mimic the rules used
in the BP algorithm; they are instead derived using knowdedfytrapping sets that are already known
for traditional decoders such as Gallager-B or BP. The rabes be described algbraically or using
Boolean functions (or look-up tables). For sake of exposijtive shall begin by providing an algebraic
description of the decoders [7].

A. Description of decoders

For these decoders, the messages take values from a fintietdisetM ={—Ly, ---,—Ls,— Ly,
0,L1,Ls, -+, Ly}, whereL; € RT and k is the number of bits used for representation. The sign of a
message: € M represents the message’s estimate of whether the assbbiate zero or one, and the
magnitude|y| represents the reliability measure of its estimate. Algois defined such that, > L;,

for anyi > j. The set)y = {£C} denotes the set of possible channel values. For each \aniole

v; in G with r; received from the BSC, the channel valyec ) is computed ag; = (—1)"C. The
value C gives a measure of how much the decoder relies on the charestimate of the bit node.

At the check node, the update functign is defined as

de—1
U (my,...,mg._1) = : i :
(ma, ..., mg.1) (E sgn(my)> i ()
wheresgn denotes the standard signum function.
At the variable node, the update functign is defined as

dy—1
Uy (yi, ma, - .., ma,—1) = Q <Z m; + Q(ma, ..., mg,—1) - yi>
j=1

where() is symmetric functiorf) : M%~! — {0, 1} that could be linear or nonlinear. The functignis
a quantization function that compares the sum of the incgmmiessages ang with a set of thresholds
defined by a threshold s€t = {1}, 15,--- , Ty}, whereT; € R, and for anyl,, T, € T, T, > T, if
p > q. The functionQ(x) outputs the messageL; if T; < |z| < Tj4;1.

Note that if the functionf2 is nonlinear, these decoders are different from any exjsfirantized message-

passing decoders. The functidn, can now be uniquely described by specifying the channelubutp
set), message seM, threshold setZ, and the functior(2, which constitute the design parameters
for these decoders. The non-linearity introduced into tiection allows the variable node to capture
some of its local neighborhood that could be potentiallyntfat (ex: if the node is in a six cycle), and

accordingly compute outgoing messages that help the detodmnverge. More details on this shall

be provided in the next subsection while discussing thegdesiethodology.

B. Implementation aspects

Although we have represented messages as levels from tiAd siitey are represented as binary vectors
of length £ during implementation. There is a one-to-one corresporeldretween the binary vector
representation and the levels defined in setM. For example, consider a decoder that uses a message
set M with 7 levels. Each leveL; in the setM is represented by a 3-bit binary vector. The most
significant bit (MSB) denotes the estimate of whether th@@ated node is one or zero, i.e., the sign



of L;. All positve levels have an MSB of zero and all negative Isueve an MSB of 1. The next two
bits denote how reliable the estimate is. For examples the strongest possible level with an estimate
of zero and hence its 3-bit representation is 011. In thismagrthe mapping from the levels in set

M to their 3-bit binary representation can be derived and @svshin table I.

Levels | 3-bit representation
L3 011
Lo 010
Ly 001
0 000 or 100
—L1 101
—Lo 110
—Ls 111
TABLE |

3- BIT BINARY VECTOR REPRESENTATION OF LEVELS

Similarly, there exists a one-to-one correspondence leztwiee algebraically definedl, and a simple
look-up table. Depending on the application and type of ireguents in the decoder realization, either
form can be used for implementation. In the algebraic fabmis implemented based on the message set
M, threshold sef’, channel output s€Y and channel weight functioft. For simplicity of exposition,
we shall assumé) = 1 and consider only decoders for 3-left-regular codes. Ireotd facilitate the
implementation in algebraic form, the messages which ggeesented as 3-bit binary vectors must be
converted to binary vectors in 2's complement form whichrespnt the actual values éf. Since we
are using the 2’'s complement form, we will need extra bitsefaresent the sign, integer and fractional
parts of the values of,;. Care must be taken in choosing the values Fprso that minimal number
of extra bits are required while converting to the 2's compeat form. Figure 2(a) shows the general
schematic for implementation using the algebraic formigf Figure 2(b) shows the implementation
using the look-up table form. The look-up table correspogdio ¥, stored in a ROM is used to
determine the outgoing message. Due to larger memory egaints in this implementation, outgoing
messages are computed sequentially in this scheme instgaatallel so that only a single ROM is
required for each variable node. Again the messages canrbputed parallely using multiple ROMs
of the look-up table if hardware area is not a constraint. ffhstate buffers (represented as triangles)
in Figure 2(b) ensure that only extrinsic messages are leazl

Based on the implementation schemes described we can paitwo advantages that make implemen-
tation using the algebraic form an attractive choice ovekiap table form. Firstly, the implementation
scheme using algebraic form is simple and straightforwacdditithe modules of the implementation use
reconfigurable components, then changing the update ametj can be easily done by simply changing
the thresholds and magnitudes. This is advantageous aeBpéar the case of a decoder that switches its
variable node update function to another and also for engfliexibility and reconfigurability to modify
decoders in the hardware whenever the need arises. Sectmmdlgcoders that use larger number of bits
(say 4 or 5 bits), the look-up table @f, can become quite large leading to large memory requirements
and utilization of hardware area. On the other hand, the ¢@xip will only linearly increase with the
number of bits for the implementation using algebraic form.

However, if we are to strictly use only bits for the n-bit decoders to represent the messages, the
look-up table form needs to be used. The look-up table forng especially be well suited when the
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Q2 function is nonlinear and the message set is small, singe ieeno added complexity involved for
implementing in the look-up table form. Also the look-up table form may hedgful for faster search

of good update rules. Either of the two implementations caniged based on the hardware constraints,
decoder speed requirements, and type of application thatuged for. As an example, Table Il shows
the look-up table form corresponding tolg for a 7-level decoder which is defined by a message set
M ={-8.5,-3.5,-1,0,1,3.5, 8.5}, threshold se? = {1,3.5,8.5}, C = 1.5, and functionQ2 = 1. m,
andm, are incoming messages to a degree-3 variable nodergnd the outgoing message. Note that
with deeper introspection into the look-up table, there meaist simple Boolean functions that have
even lower complexity than algebraic form.

C. Design methodology

A key strategy used in deriving good update rules is to amadegcoding on isolated subgraphs that could
be potential trapping sets for a given decoder. Since weidensymmetric decoders, we can assume
that the all-zero codeword is transmitted during analyisisorder to decode on an isolated subgraph,
we assume that all the variable nodes outside the subgraphigaally correct (receive initially correct
channel values) and that the neighborhood of the subgrapiicis that the messages entering into the
subgraph from outside are not affected by the messages peapggated within the subgraph. As an
example, Figure 3 illustrates the decoding on an isolatglteaiycle which is a potential (4,4) trapping
set. The nodes with solid lines are the nodes that belongeastibgraph. The open boxes represent
degree-2 check nodes and the filled boxes represent theedegeecheck nodes in the subgraph. Clearly
the subgraph has 4 variable nodes and 4 degree-one check hedee a (4,4) trapping set. The nodes
with dotted lines represent the variable nodes outside ubgraph.



Fig. 3.

LOOK-TABLE FORM OF ¥,, USED IN A 3-BIT DECODER

Decoding on an isolated potential (4,4) trapping set

mi1 | ma yi | mo m1 | ma Yi Mo mi1 | ma Yi Mo m1 | ma Yi Mo
L L C Lo Lo Lo C L3 L3 0 C L3 0 —Ls C —Lo
Ly Ly -C 0 Lo Lo —C Lo L3 0 —C Lo 0 —Ls | —C | —Ls
L1 Lo C Lo Lo Ls C Ls Ls | —L1 C L3 —Li | =11 C 0

L Lo -C L1 Lo L3 -C L3 Ls | =L | —C Lo —Li | =L1 | =C | —L2o
L L3 C L3 Lo 0 C Lo Lz | —L2 C Lo —Li | —L2 C —Lo
Ly Ls -C Lo Lo 0 —C L1 Ls | =Ly | —C Lo —L1 | =L | —=C | —L2
L1 0 C L1 Ly | =Ly C Lo Ls | —Ls C L1 —Li | —Ls C —Lo
L 0 -C 0 Ly | =L | =C L Ls | =Ls | —C | =11 —Li | =Ls | —C | —Ls
L1 | =L C L1 Lo | —Lo C L 0 0 C L —Lo | —Lo C —Lo
L1 | —Li | —C | =11 Ly | —La | —C | =11 0 0 —C | =11 —Ly | =L | —=C | —Ls
L1 | —L2 C —I11 Ly | —Ls C — Lo 0 —Ls C 0 —La | —Ls3 C —Ls
Li | =Ly | —C | —Lo Ly | =Ls | —=C | —L2 0 —Li | —C | =11 —Ls | —=Ls | —C | —Ls
L1 | —Ls C — Lo L3 L3 C L3 0 —Lo C —Ls —Ls | —Ls C —Ls
L1 | —Ls | —C | —Ls Ls Ls —C Ls 0 —Ly | —=C | —Lo —Ls | —Ls | —C | —Ls

TABLE I




In Figure 3,m,_,. denotes messages going from variable node to the degreeek dode andn.._.,
denotes messages going from the degree-2 check nodes tarthble& nodesm;, denotes the outgoing
message from the degree-one check node to a variable nggedenotes the outgoing message from a
variable node to a degree-one check node. The messagesandm,,; are computed using a specific
variable node update tabl,. However, in order to compute:;, at the end of every iteration, a
different rule is needed assuming that all variable noddsidel the subgraph are initially correct. By
the isolation assumption on the neighborhood of the degneecheck nodes, the degree-one check node
in the subgraph will send the messagg, = L; into the subgraph during th#" iteration untilm,,,
reaches the maximum possible level and thereafter it will always send the strongest mesdage
The remaining variable nodes and degree-2 check nodesvfttl® usual update rules and the decoding
process is continued. Based on the error pattern in the apbgcertain variable nodes in the subgraph
will be initially wrong but may eventually become right byarbsing a good variable node update table
v,.

Using the technique of decoding on isolated subgraphs, ehergl method which is based on reducing
failure rates on potential trapping sets can be summarigddilaws. A database containing all possible
subgraphs that are potential trapping sets is generatedadied trapping set database. This database can
be generated using analytical methods, by simulation oraion of a decoder(s) on a given channel,
or even by a combination of the simulation and analyticalhoédt For example, the database could be
generated by observing the failures in the high SNR regiorafparticular decoder or several decoders
on a specific channel and using the subgraphs correspondlitttese failures. Or, the database can
be generated as previously mentioned by using a combiahtmnstruction algorithm and then further
including some subgraphs associated with failures obdadlueing simulation of decoder(s). Essentially,
the trapping set database contains subgraphs that haveipbte be trapping sets for any given decoder,
and then the decoders are designed such that they have defduicee rates on these subgraphs. The
goal is to search for a decoder that can correct most or alhefttapping sets (with error induced
on them) under the isolation assumption. Some key parameétiethe case of BSC that are used in
the design are an increase in critical number of the poteinéipping sets and convergence within few
iterations when the decoder does converge. This process good decoders that are well-equipped
to handle potentially harmful structures and helps impritneiterative decoding process on the graph.
For a more rigorous explanation on the concept of isolatesumption, refer to [7].

IV. NUMERICAL RESULTS AND CONCLUSIONS

We provide numerical results in order to validate our apginoand illustrate that in some cases, only
3 bits are required for these decoders to surpass floatimg-B®. Simulations of the BP decoder and
3-bit decoder specified by table Il were carried out for fraemeor rate (FER) on two quasicyclic
codes of different lengths: 1) = 5184, R = 0.834, quasicyclic code, and 2) = 804, R = 0.75,
quasicyclic code. For both codes, the 3-bit decoder outpad the floating-point BP in the error floor
region with minimal loss in the waterfall region. Notice tb#ference in the slope of the FER curves
in the error floor region for both decoders. Moreover, theit3decoder achieves this at a fraction of
the complexity of the BP decoder since both decoders usedxamam number of 100 iterations for
decoding. Also the same 3-bit decoder that was derived Usnogvledge of trapping sets appears to
be good on both codes. This suggests that the proposed de@éenot code-specific and the update
rules derived appear to improve the message-passing praces finite-length code by considering
potentially harmful neighborhoods of nodes into the decgdi
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