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Abstract

Constrained codes also known as modulation codes are a key component in the digital magnetic
recording systems. The constrained codes forbids particular input data patterns which lead to some of
the dominant error events or higher media noise. In data recording systems, a concatenated approach
toward the constrained code and error-correcting code (ECC) is typically used and the decoding is done
independently. In this paper, we show the improvement in combining the decoding of the constrained
code and the ECC using generalized belief propagation (GBP) algorithm. We consider the performance
of a combined modulation constraints and the ECC on a binary symmetric channel (BSC). We show
that combining demodulation and decoding results in a superior performance compared to concatenated
schemes. Furthermore, we compute the capacity of the joint ECC and modulation codes for 1-D and
2-D constraints.

Index Terms

Constrained Codes, Error-Control Codes (ECCs), Reverse Concatenation, Joint decoder/demodulator.

I. INTRODUCTION

Modulation codes are first introduced for data storage by Marcus et. al. [1] to improve the
performance of the system by matching the characteristics of the recorded signals to those of
the channel. Various class of modulation codes have been developed for different purposes in
data storage systems. Run Length Limited (RLL) codes are one of the widely used family
of constrained codes [2]. RLL codes are usually used in order to prevent the loss of clock
synchronization. Maximum transition run (MTR) codes limits the maximum run of transitions
written on the disk [3]. Due to the data dependent nature of the media noise, consecutive
transitions leads to increasing the media noise which results in degradation of the performance.

Typically, modulation codes are followed by an error correction code (ECC) while the mod-
ulation code is designed to match the channel and the ECC is designed to correct the errors
caused by the channel or even in detection. An error sequence in the input of the modulation
decoder may result in error propagation since modulation codes unlike ECC codes are nonlinear
in nature. Error propagation would results in overwhelming the error correcting capability of
the ECC decoder. There have many works in order to provide a encoder that captures both
error-correction and modulation properties. In order to solve the error propagation issue, there
have been a lot of attention on reversed concatenation [4], where basically the encoders are
concatenated in the reversed order. In this way, many channel errors can be corrected before
reaching to the modulation decoder, and therefore decreasing the chance of error propagation.
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In [5] and [6] , Wijngaarden and Immink introduced a novel concatenation scheme in which a
modulation code is designed in a way so that specific positions are unconstrained such that those
positions can take on any symbol without violating the constraint. In these codes, a systematic
ECC is used and the the parity bits are inserted into the unconstrained positions without violating
the constraint. Therefore the codewords satisfy both parity-check constraints and the modulation
constraints. In a different approach, Vasic et al. [7] proposed a method in which deliberate bit-
flipping is used to impose the k-constraint in the LDPC codewords. In this way by using strong
codes with high minimum distance, it is expected that ECC would be able to correct both the
deliberate errors and the channel errors.

In this paper, we propose a joint modulation/ECC decoder which performs sub-optimal decod-
ing on the full graph using generalized belief propagation (GBP [8]). The GBP decoder operates
on an undirected graphical model. It infers the symbol a posteriori probabilities (APPs) using
a message passing algorithm which takes into account the existence of loops in a graph. GBP
decoder can be used with the modulation schemes in which the codewords generated by the
scheme satisfy both the error-correction and modulation constraints in order to perform joint
decoding such as the unconstrained position method [5]. Furthermore, the capacity of the low-
pass constraints are calculated based on [9]. The capacity of the joint ECC/modulation code is
also determined.

The paper is organized as follows: In Section II, the concatenation and the joint scheme of
ECC and modulation decoders are described and the performance comparison is given. Section
III defines the capacity problem in 1-D and 2-D modulation codes and provides the estimates
of the capacity for local constraints. Finally, Section IV concludes the paper.

II. JOINT MODULATION/DECODING

In digital storage systems, the constrained code is followed by an error-control code (ECC).
The inner modulation code serves the general function of matching the recorded signals to
the physical channel, while the outer error-correction code is designed to remove any errors
remaining after the detection and demodulation process. The constrained code and the ECC
code are typically designed and decoded independently. In one type of concatenation, message
bits are first encoded by ECC and then passed to the modulation codes. This type of concatenation
is known as forward concatenation (FC). The problem with the forward concatenation is that
the output of the constrained encoder is not necessarily an ECC codeword, and the decoding
of the constrained code often results in error propagation which the outer ECC code could not
able to correct. An alternative approach is provided by reverse concatenation (RC). The idea
is to first encode the message bits using the modulation encoder, and then apply a systematic
ECC encoder to produce parity bits. Since the parity bits do not necessarily meet the modulation
constraint, they are then in turn encoded by the second modulation encoder. The block diagram
of the reverse concatenation is shown in Fig. 1.

The separation of decoder and demodulator causes performance loss. Using GBP method
for joint demodulation/decoding allows us to recover the performance loss due to separation
of demodulation and decoding. The GBP demodulator performance is very close to the MAP
demodulation. Furthermore, GBP can also be utilized to decode LDPC codes. An LDPC code
can be defined by the parity check matrix Hm×n where there are m parity check constraints
on n variable bits. These constraints can also be represented by a Tanner graph. By adjoining
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Fig. 1. Block diagram of the reverse concatenation technique

Modulation Code Constraints 

LDPC Constraints(Checks) 

Fig. 2. Combined tanner graph of the LDPC and the modulation code constraints for 2-D channel.

the modulation code constraints to the LDPC code constraints, GBP can be applied as a joint
demodulator/decoder. Fig. 2 depicts a Tanner graph which is a combination of the Tanner graphs
of the 2-D modulation code and the LDPC code. The upper squares represent the 2-D modulation
code constraints and the lower squares represent the LDPC code constraints. Variable nodes
are represented by circles inside the grid. This approach is general and it is not defined for
1-D or 2-D data and constraints. In order to get a sense of possible improvements of joint
demodulator/decoder compared to concatenated demodulator and decoder, we simulated joint
demodulation/decoding using GBP for 1-D case and RC is also simulated as a benchmark. The
modulation code used in this simulation forbids two consecutive transitions. Let C ⊂ X be the
set of admissible patterns. The indicator function is defined as:

f(x) =

{
1, x ∈ C

0, x /∈ C
(1)

The constraint, which is imposed on C, can be factored into smaller locally defined constraints
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Fig. 3. Comparison of the GBP joint scheme and the RC method

which contain the three consecutive bits. The local constraints can be formulated as

fa(xi, xi+1, xi+2) =

{
0, if xi = xi+2 6= xi+1

1, else,
(2)

where xi, xi+1 and xi+2 are three consecutive bits and fa is the local constraint. The indicator
function for this code can be written as the product of local constraints of (2) each having some
subset of x as arguments:

f(x) =
∏
a

fa(xa) (3)

The ECC code used in the simulations, is C(155,64) code (Tanner code) with rate equal to 0.41
and the rate of the constrained code is 0.6977. In the joint scheme, we only send the codewords
which satisfy our constraint. The overall rate is estimated by using GBP on the tanner graph
of Fig. 2 based on [9] which is equal to 0.28. We used the same ECC code for RC method.
The first constrained code is also the same. However we used 0.5 rate modulation code for
the secondary constrained code. Therefore the overall block length of the codeword sent to the
channel is (155 + 91) = 246 and the overall rate is 0.18 for the RC scheme. Fig. 3 shows the
performance of these schemes. Although, the block length used for RC is higher and also the
rate is lower, the performance of the GBP joint demodulator /decoder is even slightly better

III. CAPACITY OF 2-D MODULATION CODES

For TDMR systems, the constrained codes are viewed as 2-D codes. Therefore, we are
investigating 2-D constraints to mitigate the media noise caused by grain size irregularities. Since



5

(a) (b)

Fig. 4. (a) Forbidden pattern for the 1-D constrained code. (b) Forbidden pattern for the 2-D constrained code.

the input transition between the neighbors is the source of media noise, we choose constraints
based on 2-D low-pass constraints which forbid two consecutive transitions in both horizontal
and vertical dimensions. In [10], Ashley et. al. introduce a framework for designing encoders that
transform arbitrary data sequences into two-dimensional arrays satisfying certain constraints, in
particular, low-pass constraints. Since finite state machine can not be defined for 2-D constraints,
the decoding of these codes is not trivial.

In order to find the capacity of the constrained codes, the number of message patterns that
satisfy the constraint must be estimated. The capacity of 1-D constrained code is given as:

C1D = lim
n→∞

log2Z (n)

n
(4)

where Z(n), the partition function, denotes the number of 1-D message patterns of size n that
satisfy the constraint.

Similar to the 1-D case, the 2-D capacity of modulation codes are as follows:

C2D = lim
n,m→∞

log2Z (m, n)

mn
(5)

where Z(m,n), the 2-D partition function, denotes the number of 2-D message patterns of size
m× n that satisfy the constraint. In the general case, the partition function is defined as:

Z =
∑
x∈X

f(x) (6)

where f is the indicator function of the set of admissible patterns. In statistical physics, the
Helmholtz free energy is defined as:

FH = −ln(Z) (7)

The partition function and the Helmholtz free energy are important quantities in statistical
physics since they carry information about all thermodynamic properties of a system. Hence,
computing the partition function is related to find the capacity of the constrained channel
using (5). The Helmholtz free energy is then estimated using the region-based free energy
approximation technique [9]. GBP is then used to compute the beliefs which in turn used to
estimate F̂H . The region-based free energy F̂H can then be used to estimate the partition function
Z using (4). For more details, we refer you to [9].

Here we present the results of applying GBP to estimate the finite-sized noiseless capacity of
1-D and 2-D low-pass constraints. Fig. 4(a) shows the forbidden patterns which is defined in
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Fig. 5. Estimated capacity versus channel length for the 1-D constraints with the forbidden patterns shown in Fig. 4(a)

(2). For this constraint, Fig. 5 shows the capacity versus the channel width n over the interval
[4, 155].

Shown in Fig. 4(b) are the forbidden patterns of the 2-D constraint of which we estimate the
capacity. For this constraint, Fig. 6 shows the capacity versus the channel width (n, n) over the
interval [4, 20].

IV. CONCLUSION

In this paper, we showed that by combining the decoding of the constrained code and the ECC
significant improvement in performance can be achieved. We implemented the GBP algorithm
as the joint decoder/demodulator and showed its superior performance compared to concatenated
schemes such as reverse concatenation. Moreover, we compute the capacity modulation codes
for local 1-D and 2-D constraints.
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