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Abstract—In this letter we propose a compressive sensing
scheme for the mixture estimation problem in spectroscopy. We
show that by applying an appropriate measurement matrix on the
chemical mixture spectrum, we obtain an overall measurement
matrix which is sparse. This enables the use of a low-complexity
iterative reconstruction algorithm, called the interval-passing
algorithm, to estimate the concentration of each chemical present
in the mixture. Simulation results for the proportion of correct
reconstructions show that chemical mixtures with a large number
of chemicals present can be recovered.

Index Terms—Chemical mixture estimation, compressive sens-
ing, iterative reconstruction algorithm.

EDICS Category: DSP-SPARSE
I. INTRODUCTION

THE knowledge of the presence and/or concentration of
a particular chemical in a solution or on a surface is

crucial in many applications such as detection of explosive
devices in defense and security systems [1], [2]. This paper
is concerned with the mixture estimation problem in Raman
spectroscopy, where a spectrum is obtained for a given chem-
ical using a laser to energize its molecules. Once energized,
the molecules release a scattered light with a unique spectrum
[3]. Specifically, a small fraction of the scattered photons have
a wavelength different from that of the incoming laser light.
Counting the number of photons at each wavelength provides
a spectrum for a particular chemical. The spectra of different
chemicals are collected in a database, called a chemical library.
Traditional spectroscopy-based mixture estimation methods
sample the entire spectra of a chemical mixture and use
traditional estimation theory to perform the mixture estimation
[4]. Another approach has been introduced recently using an
adaptive spectrometer together with sequential hypothesis test-
ing [5]. This approach provides a basis for using compressive
sensing for chemical mixture estimation.

Compressive sensing aims at recovering sparse signals from
a set of linear projections. In the formulation considered here,
a vector having entries corresponding to the fraction of each
chemical present in a mixture can be seen as a sparse signal to
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be recovered and the chemical library as a transformation of
the chemical mixture vector into the spectrum of the mixture.
Practically, a limited number of chemicals are likely to be
present among all the chemicals from the library, hence the
sparseness of the mixture vector.

In this letter we propose the use of an appropriate measure-
ment (projection) matrix for use in the adaptive spectrometer
of [5] which allows the recovery of the chemical mixture
vector from compressive observations of the spectrum of the
mixture. A global measurement matrix is chosen to be a sparse
non-negative matrix obtained from low-density parity-check
(LDPC) code designs. In spectroscopy the number of potential
chemicals to be detected may be large, hence the dimension of
the chemical mixture vector is often large. For this reason, the
usual `1-norm solution using linear programming (LP) may
not be suitable in practice due to its cubic complexity.

Since Donoho’s original work on compressive sensing [6],
numerous reconstruction algorithms have been proposed to
approach LP performance with a fraction of its complexity.
Such algorithms include iterative algorithms reviewed in the
survey provided in [7, Chapter 8]. In this letter we use a
low-complexity iterative algorithm, called the interval-passing
algorithm (IPA) [8]. The IPA uses sparse measurement ma-
trices and is well suited for the chemical mixture problem
as it is designed for non-negative sparse vectors. Together
with our sparse measurement matrices obtained via LDPC
matrix design, the IPA allows perfect recovery of very high
dimensional mixture vectors in the noise free case.

The rest of the letter is organized as follows. Section II pro-
vides preliminaries on compressive sensing, LDPC matrices,
and the IPA. In Section III we provide background on spectral
estimation and present the mixture estimation problem. Section
IV describes the proposed compressive sensing scheme as well
as the design of sparse measurement matrices. In Section V
we present reconstruction results, as well as a brief discussion.

II. PRELIMINARIES

A. Compressive sensing

Let x ∈ Rn be an n-dimensional k-sparse signal, i.e., a
signal with at most k non-zero elements, and let A ∈ Rm×n be
a measurement matrix. Compressive sensing [6] is concerned
with the recovery of x from measurements y = Ax ∈ Rm

where m < n and k � n. One approach to recover x from the
measurements y, is to find a signal x that satisfies y = Ax
from all the k-sparse signals having

(
n
k

)
possible support sets

which is known to be an NP-hard problem. This non-tractable
problem is called `0-minimization. LP technique, called Basis
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Pursuit [9], provides a minimum `1-norm solution x̂ for x.
Provided that A satisfies the Restricted Isometry Property [10],
x̂ = x with overwhelming probability.

B. LDPC codes

An (n,n−m) binary LDPC code [11] is defined as the null
space of a m × n parity-check matrix H whose equivalent
bipartite graph G is called a Tanner graph. The Tanner graph
G of an LDPC code is defined as G = (V ∪C,E), where V is
the set of n variable nodes corresponding to the n columns of
H, and C is the set of m check nodes corresponding to the m
rows of H. E is the set of edges in G, and an edge connects
the variable node vj to the check node ci iff hij 6= 0 where
hij is the element at the ith row and jth column in H. The
code is said to be (dv, dc)-regular if all variable (resp. check)
nodes in G have the same degree dv (resp. dc).

C. Message-passing algorithms

The first link between LDPC matrices for channel coding
and LDPC matrices used as measurement matrices was es-
tablished in [12] where it has been shown that good LDPC
matrices for LP decoding are also good measurement matrices
for LP based reconstruction in compressive sensing. These first
results give a basis to provide a natural relation between mea-
surement matrices for compressive sensing and LDPC matri-
ces, which explains why several iterative algorithms have been
recently proposed to recover sparse signals using message-
passing. The first class of message-passing algorithms, such as
the approximate message-passing algorithm (AMP) presented
in [13], are iterative thresholding algorithms. Other message-
passing algorithms exist in the literature such as list decoding
and multiple-basis belief propagation [14], sparse matching
pursuit [15], verification decoding [16] or interval-passing [8]
that we present in the next section.

D. The interval-passing algorithm

The IPA has been analyzed in [8]. Notably, it was shown that
the IPA is a good complexity/performance trade-off between
LP reconstruction and simple verification decoding [16]. The
IPA is an iterative algorithm. Messages are associated with
the graphical representation of the measurement matrix to
perform the reconstruction. Let V = {v1, v2, ..., vn} and
C = {c1, c2, ..., cm} be respectively the sets of variable nodes
and measurement nodes in the graphical representation of the
non-negative real-valued measurement matrix A = {aj,i} with
1 ≤ j ≤ m and 1 ≤ i ≤ n.

In the IPA, the messages passed through edges are intervals
[µ,M ] corresponding to lower and upper bounds of the
estimation of the connected variable node. At each iteration l,
the message update from vi to cj is given by:

µ(l)
vi→cj = max

c′j∈N (vi)

(
µ
(l−1)
c′j→vi

)
× aj,i (1)

M (l)
vi→cj = min

c′j∈N (vi)

(
M

(l−1)
c′j→vi

)
× aj,i (2)

and the messages from cj to vi are updated as:

µ(l)
cj→vi = max

0,
yj −

∑
v′
i∈N (cj)\{vi}M

(l)
v′
i→cj

aj,i

 (3)

M (l)
cj→vi =

yj −
∑

v′
i∈N (cj)\{vi} µ

(l)
v′
i→cj

aj,i
(4)

where N (vi) (resp. N (cj)) is the set of measurement (resp.
variable) nodes which are the neighbors of vi (resp. cj). More
details on this algorithm can be found in [8].

III. THE MIXTURE ESTIMATION PROBLEM

Raman spectroscopy [3] relies on the uniqueness of the
proportion of photons scattered inelastically from an energized
molecule. A photon is said to be scattered inelastically if its
wavelength is different from the wavelength of the incoming
energizing laser light. Counting the number of photons with
this property at each wavelength for molecules composing a
chemical provides a Raman spectrum which can be used as a
fingerprint for the identification of the given chemical.

Our Raman spectra estimation approach is supervised and
based on the sensor of [5] which acquires compressive mea-
surements. Unlike unsupervised approaches where spectral
estimation must be accomplished from measurements without
any prior information, our supervised approach assumes com-
plete knowledge of each possible chemical spectrum. In the
supervised approach the prior information about the chemicals
is helpful for the reconstruction, but this knowledge needs to
be acquired beforehand and the considered chemicals need to
be carefully chosen. In the unsupervised approach no prior
knowledge is required but the measurements process can be
tedious and complex in some real time applications.

The mixture estimation problem aims to estimate the pro-
portion of each chemical present in a mixture. As mentioned
above, the spectrum of each possible chemical present is
assumed. For a given chemical ξj , the spectrum is represented
by the vector Sj = [s1,j , s2,j , ..., sns,j ]

T where si,j represents
the number of photons scattered inelastically for chemical ξj
in the ith spectral channel, i = 1, . . . , ns. Organizing these
vectors as a matrix of size ns×nc results in a chemical library
L = [S1,S2, . . . ,Sk, . . . ,Sns

],

L =

 s1,1 s1,2 . . . s1,nc

...
...

...
...

sns,1 sns,2 . . . sns,nc

 .

A mixture of chemicals is modeled by a vector x =
[x1, ..., xnc

]T , in which xj is the fraction of chemical ξj
present in the mixture. No chemical outside the library can
be present and we assume that only k � nc chemicals are
present, which implies ‖x‖1 = 1 and ‖x‖0 = k. The resulting
chemical mixture spectrum is modeled by the ns × 1 vector

z = Lx. (5)
Although x is sparse, L and z are not. Indeed a spectrum may
not have a single non-zero spectral component.

From the uniqueness of the spectrum for a given chemi-
cal, we show in what follows that compressive spectrometer
measurements can be obtained from an appropriate choice of
measurement matrix. The chemical mixture vector can then be
recovered from these measurements via IPA presented above.
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IV. COMPRESSIVE RAMAN SPECTROSCOPY

We now present the proposed compressive sensing scheme.
Instead of measuring the vector z directly, the compressive
spectrometer of [5] measures linear combinations of the spec-
tral channels from the mixture spectrum via a measurement
matrix A of size m× ns. The measurement vector (output of
the spectrometer) is denoted by the vector y

y = Az = ALx (6)
of size m × 1. When m < ns, the system is compressive
compared to measuring z directly. In the problem defined
above, from the observation vector y, we want to recover x
directly without necessarily recovering z first. In other words,
we formulate the problem as y = Mx, with M = AL. Given
that the chemical library L is fixed and known, by choosing
the elements of the matrix A properly, we can make M a non-
negative sparse matrix which is a necessary condition for use
of the IPA for reconstruction. The matrix A then governs the
way that measurements (of the mixture spectrum) are taken
by the spectrometer, while M governs the recovery of x.
If m > nc, Eq. 6 is typically over-determined with respect
to x, and least square techniques are easily employed. The
more interesting case is when m < nc and the system is
undetermined (compressive) with respect to x. This is the case
treated in what follows.

A. Design of the matrix A

As mentioned previously, the IPA has very low computa-
tional complexity, but requires that the measurement matrix be
sparse. With respect to the mixture vector x, the measurement
matrix is M = AL. The design of a matrix A to obtain a
sparse matrix M is not a trivial problem. We propose instead
to make a choice for M, and then design A such that the
product AL produces the chosen sparse matrix M. The main
idea is to ignore all but nc spectral channels. The nc rows in L
corresponding to the nc selected channels then form a square
matrix (denoted Ls). If the columns of L are independent
(which is the case in our example as different chemicals having
unique spectra are used), the rank of the matrix Ls is nc,
meaning that the matrix Ls is invertible. We then let

ML−1s = As =

[
Aϕ1

. . . Aϕj
. . . Aϕnc

]
and define A from the columns of As as:

A =

[
0 . . . 0 Aϕ1 0 . . . 0 Aϕj 0 . . . 0 Aϕnc

0 . . . 0

]
where (ϕj) j = 1, . . . , nc is the sequence of spectral channels
which are not disregarded. It is straightforward to verify that
AL = AsLs = ML−1s Ls = M as desired.

In the next subsection we discuss briefly the IPA reconstruc-
tion performance, providing insight on the properties that M
should satisfy to obtain the best achievable performance.

B. Design of the matrix M

In order to provide a brief analysis of the theoretical
reconstruction possibilities, we recall that, from the IPA stand-
point, a chemical mixture is a k-sparse non negative signal x
observed through a sparse measurement matrix M. The IPA is
used to reconstruct x. However we know that if the graphical
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Fig. 1. Raman spectra of 10 pharmaceutical chemicals.

representation of M contains some specific topologies (small
size stopping sets), the IPA will fail in some cases [8].
Definition 1 ([17]). A stopping set (SS) T is a subset of the
set of variable nodes V of M such that all neighbors of T
are connected to T at least twice. The cardinality of a SS is
called the size of the SS.
Theorem 1. Let M ∈ Rm×n be a sparse measurement
matrix and let k be the size of a SS in M with support
T = {i1, i2, ..., ik}, where 1 ≤ il ≤ nc, l = 1, 2, ..., k. Let
x = [x1, x2, ..., xnc ]

T ∈ Rnc be a chemical mixture vector. If
the support of the vector x is exactly the support T of a SS
in M, then, the IPA cannot recover the chemical mixture.

Proof: The proof is identical to [8, Theorem 1].
This theorem provides limitations on the reconstruction of

chemical mixtures using the IPA, and a link with the analysis
of the failures of LDPC codes under iterative decoding on
the binary erasure channel. The knowledge of SSs in the
measurement matrix M gives an upper bound to the minimum
number of chemicals that can lead to a reconstruction failure.
The design of good matrices M is then driven by the goal of
maximizing the size of the smallest SSs. Other theorems from
[8] can be directly applied, especially to state the conditions
for a correct reconstruction, notably in the case where the
support of the vector x is included in a SS.

V. SIMULATION RESULTS AND DISCUSSION

We present here simulation results for the mixture estima-
tion problem using the IPA for a chemical library from real
measurements of different pharmaceutical chemicals. Fig. 1
presents an example of 10 spectra from the chemical library.
The library is composed of nc = 265 different chemicals
each having ns = 1300 spectral samples. Note that in this
example ns > nc, but no restrictions exist on ns nor nc so
long as m < nc. Each Raman spectra in the library is unique,
although they may be very similar (peaks or plateaus around
same spectral channels). The sequence of spectral channels
ϕj used to construct A can be selected at random, or in a
deterministic fashion. The spectral channels have been selected
here by taking the first nc peaks common to the majority of
chemicals. Due to page constraints, we omit the details of this
procedure, however experiments indicate that reconstruction
performance is insensitive to the spectral channels chosen.
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Fig. 2. Proportion of correct reconstructions versus number of chemicals
present (k) using different sparse measurement matrices M.

As in [8], the measurement matrices M used in this letter
are designed from the code construction technique of struc-
tured LDPC matrices [18] where each matrix M is a block
matrix of circulants. This construction leads to a structured
code which permits low-complexity implementation. Other
techniques provide similar results. We use binary measurement
matrices for the sake of simplicity. The use of non-negative
measurement matrices give similar reconstruction results [8].
As an example, let p = 53 and let:

M =

I0 I0 I0 I0 I0
I0 I14 I1 I36 I37
I0 I3 I4 I38 I42

 (7)

where Ij denotes the p×p identity matrix circularly shifted by
a factor j. This choice yields a (3, 5)-regular LDPC matrix.
Indeed, there are exactly dv = 3 “1”s per column (each column
block is composed of 3 shifted versions of the identity matrix),
and dc = 5 “1”s per row (each row block is composed of 5
shifted versions of the identity matrix). Finally, M is of size
m × nc = pdv × pdc = m × nc = 159 × 265. The value of
p = 53 in the example is a prime factor of nc = 265.

Fig. 2 presents simulation results showing the proportion of
correct reconstructions between the original chemical mixtures
and the reconstructed ones in a noise free environment. For
each sparsity k, random chemical mixtures (or equivalently
random k-sparse vectors x with ‖x‖1 = 1) are generated.
The vector x is produced by first creating a non-negative
unit `1-norm vector of length k and then assigning randomly
each of the k generated values among the n values of x, the
n − k other values of x being set to 0. The measurements
y are then obtained via y = Mx. A maximum of 50 IPA
iterations are performed. A mixture is said to be correctly
recovered if each xj j = 1, . . . , nc is recovered with absolute
error no greater than 10−6. Fig. 2 demonstrates that chemical
mixtures with a large number of chemicals can be recovered
exactly. Specifically, the recovery of mixtures of up to 55
chemicals can be obtained with m = 159 measurements
from the spectrometer, which represents a compression ratio
of 1300:159 & 8:1. For m = 212, it is about 75 chemicals
that can be recovered, which represents a compression ratio
of 1300:212 & 6:1.

We also compare the results of the IPA with the AMP.
Instead of using a measurement matrix M which is sparse, the
AMP requires M to be a random matrix whose elements are

i.i.d. drawn from some distribution, taken here to be Gaussian.
We can see that the performance is better for the IPA for both
choices of measurement matrix sizes (compression ratios). The
AMP does not allow, in general, for perfect recovery, hence
for the AMP, we relax our criterion and say that a mixture
is said to be correctly recovered if each xj j = 1, . . . , nc is
recovered with absolute error no greater than 10−3. The results
for an absolute value no greater than 10−6 are poor.

The noisy case will be addressed in future publications, and
first results show that with a modification of the IPA, good
mean-square error reconstruction results can be obtained.
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