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Abstract—Recently, we introduced a new class of finite al-
phabet iterative decoders (FAIDs) for low-density parity-check
(LDPC) codes. These decoders are capable of surpassing belief
propagation (BP) in the error floor region on the binary symmet-
ric channel (BSC) with much lower complexity. In this paper, we
introduce a novel scheme with the objective of guaranteeing the
correction of a given and potentially large number of errors on
column-weight-three LDPC codes. The proposed scheme uses a
plurality of FAIDs which collectively correct more error patterns
than a single FAID on a given code. The collection of FAIDs
utilized by the scheme is judiciously chosen to ensure that
individual decoders have different decoding dynamics and correct
different error patterns. Consequently, they can collectively
correct a diverse set of error patterns, which is referred to as
decoder diversity. We provide a systematic method to generate
the set of FAIDs for decoder diversity on a given code based
on the knowledge of the most harmful trapping sets present in
the code. Using the well-known column-weight-three (155, 64)
Tanner code with dmin = 20 as an example, we describe the
method in detail and show, by means of exhaustive simulation,
that the guaranteed error correction capability on short length
LDPC codes can be significantly increased with decoder diversity.

I. INTRODUCTION

It is now well established that iterative decoding based
on belief propagation (BP) approaches the performance of
maximum likelihood decoding (MLD) of the low density
parity check (LDPC) codes asymptotically in the block length.
However, for finite-length LDPC codes, the sub-optimality
of iterative decoding manifests itself as the inability of the
decoder to correct some low-noise configurations due to
the presence of specific subgraphs in the Tanner graphs of
the code, generically termed as trapping sets [1], [2]. The
presence of trapping sets in a code gives rise to the error
floor phenomenon which is an abrupt degradation in the
error rate performance of the code in the high signal-to-
noise ratio regime. This performance degradation has also
been characterized by the notion of pseudo-codewords [3],
which represent attractor points of iterative message-passing
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decoders, analogous to codewords which are the solutions of
the MLD. However, a precise structural relationship between
trapping sets and pseudo-codewords of a given Tanner graph
and a decoding algorithm is not yet fully established. It has
also been pointed out by several works such as [4] that the
minimum weight of pseudo-codewords is typically smaller
that the minimum distance for most LDPC codes. Thus, the
presence of trapping sets in the Tanner graph of the code in
principle prevents the iterative decoders from approaching the
performance of MLD for finite-length LDPC codes.

An LDPC code C is said to have a t-guaranteed error
correction capability under a particular decoding algorithm
over the binary symmetric channel (BSC) if it can correct
all error patterns of weight t or less. The guaranteed error
correction capability of an LDPC code for the BSC plays a
crucial role in its error floor performance as it determines
the slope of the error floor [5]. Moreover, the problem of
guaranteed error correction is critical for applications such
as magnetic, optical and solid-state storage, flash memories,
optical communication over fiber or free-space, as well as an
important open problem in coding theory. Guaranteed error
correction is typically achieved by using Bose-Chaudhuri-
Hocquenghem (BCH) or Reed-Solomon (RS) codes and hard-
decision decoders such as the Berlekamp-Massey decoder [6],
but very little is known about the guaranteed error correction
capability of LDPC codes under iterative decoding. The main
reason for this comes from the fact that even though the error
floor performance of an LDPC code can be relatively well
characterized through the identification of its trapping sets,
it is still an arduous task to determine whether a particular
iterative decoder succeeds in correcting all t-error patterns.
The guaranteed error correction capability of a particular
LDPC code can vary depending on the particular iterative
decoder that is being used [7].

In the first part of our two-part paper series, we introduced
a new class of finite precision iterative decoders, referred to
as finite alphabet iterative decoders (FAIDs) [8], [9], which
are much lower in complexity than the BP algorithm but can
provide a superior error-rate performance in the error floor
region. FAIDs requiring only a small number of precision bits
(as small as three) were shown to surpass BP in the error
floor region on several codes of practical interest due to their
ability to correct more low-weight error patterns than the BP
algorithm [8], [10], [11]. For instance, on the column-weight-
three (155, 64) Tanner code [12], it was shown that there are
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3-bit precision FAIDs that guarantee a correction of up to 5
errors, whereas the BP (implemented in floating-point with
a maximum of 100 iterations) fails to correct several 5-error
patterns [13].

Despite the superior error floor performance achieved by the
FAIDs, their performance especially in terms of guaranteed
error correction capability is still far from the performance of
MLD. For example on the Tanner code, with its minimum
distance dmin = 20, a guaranteed error correction of 5
errors achieved by FAIDs is still far from the capability of
MLD which is 9 errors, therefore leaving large room for
improvement.

In this paper, we aim at reducing this gap by introducing a
general approach with the objective of improving the guaran-
teed error correction capability of LDPC codes. The approach
relies on using a set of carefully chosen FAIDs which are
tuned to have different dynamical behaviors in terms of their
error correction on a given code. The idea is that if an error
pattern cannot be corrected by one particular decoder, there is
another decoder in the set that can correct this pattern. The set
of selected FAIDs can then be used sequentially (that is, when
a decoder fails to correct an error pattern, another decoder is
used), to collectively correct a diverse set of error patterns
including some which were not correctable by a single FAID.
This capability of a set of FAIDs to collectively correct a
diverse set of error patterns is referred to as decoder diversity.
The framework of FAIDs and their simplicity makes them
good candidates for decoder diversity as a plurality of FAIDs
can easily be defined by specifying their variable node update
maps.

The main objective of our approach can be summarized
as follows: given a particular LDPC code, we would like
to identify a set of FAIDs that when used sequentially can
correct a fixed number of errors, say t. A brute force approach
would rely on checking all possible error patterns up to weight
t for every FAID considered, and then choosing the set of
FAIDs that correct all the patterns. However, this brute force
approach would be prohibitively complex. Instead, we restrict
our attention to only error patterns associated with the harmful
topologies present in the code that could be trapping sets.
Our approach then involves searching for such topologies in
the code, considering all error patterns up to weight t whose
support lies in these topologies, and then finding a combination
of FAIDs that can correct all these particular error patterns. In
order to further reduce the computational complexity of our
methodology, we make use of the group automorphisms of the
Tanner graph of structured LDPC codes to reduce the number
of considered topologies and associated error patterns. The
automorphism group for a graph is the group of permutations
that map nodes to nodes, edges to edges, and preserve edge-
nodes connections. As an example, for a quasi-cyclic LDPC
code [14] with (L × L) circulant matrices, each trapping set
has L copies which are located elsewhere in the graph, but
are all isomorphic in the sense that they have the exact same
topological neighborhood and computation tree. As a result,
the error patterns located on only one of the L copies are
sufficient to be considered for the selection of FAIDs. Using
the quasi-cyclic (155, 64) Tanner code [12] as an example,

we shall present our low complexity design methodology in
detail and show, by means of exhaustive simulation, that the
guaranteed error correction capability of this code can be
increased from t = 5 which is achievable by using a single
FAID to t = 7 by using FAID decoder diversity.

The rest of the paper is organized as follows. Section II
provides the necessary preliminaries. Section III introduces
the concept of decoder diversity and describes our general
approach. In Section IV, we use the (155, 64) Tanner code as
a case study and discuss in detail how our approach can be
used to increase the guaranteed error correction capability of
the code. Finally, conclusions are presented in Section V.

II. PRELIMINARIES

The Tanner graph G of an (N,K) binary LDPC code
C is a bipartite graph with two sets of nodes: the set of
variable nodes V = {v1, · · · , vN} and the set of check nodes
C = {c1, · · · , cM}. The set of neighbors of a node vi is
denoted as N (vi), and the set of neighbors of node cj is
denoted by N (cj). The degree of a node is the number of its
neighbors. We shall consider only LDPC codes with regular
column-weight dv , where all variable nodes have the same
degree dv .

Let x = (x1, x2, . . . , xN ) denote a codeword of C that
is transmitted over the BSC, where xi denotes the value
of the bit associated with variable node vi, and let the
channel output vector be denoted as r = {r1, r2, . . . , rN}.
Let e = (e1, e2, . . . , eN ) be the error pattern introduced by
the BSC such that r = x ⊕ e, and ⊕ is the modulo-two
sum operator. The support of an error pattern e, denoted by
supp(e), is defined as the set of all positions i such that ei 6= 0.
The weight of the error pattern e, denoted by w(e) is the
cardinality of supp(e). Let y = (y1, y2, . . . , yN ) denote the
input vector to the decoder where each yi, also referred to
as a channel value, is calculated at a node vi based on the
received value ri.

A. Finite Alphabet Iterative Decoders

An Ns-level FAID [8] denoted by D, is a 4-tuple given by
D = (M,Y,Φv,Φc). The messages are levels confined to a fi-
nite alphabet M = {−Ls, . . . ,−L2,−L1, 0, L1, L2, . . . , Ls}
consisting of Ns = 2s+1 levels, where Li ∈ R+ and Li > Lj
for any i > j. The sign of a message x ∈M can be interpreted
as the estimate of the bit (positive for zero and negative for
one) associated with the variable node to or from which x
is being passed, and the magnitude |x| as a measure of how
reliable this value is. The message 0 in the alphabet can be
interpreted as an erasure message.

The set Y denotes the set of possible channel values. For the
case of BSC, Y = {±C}, where C ∈ R+. By convention, we
use the mapping 0→ C and 1→ −C. Let m1,m2, . . . ,ml−1

denote the l−1 extrinsic incoming messages of a node (check
or variable) of degree l which are used in the calculation of
the outgoing message.
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The function Φc : Mdc−1 → M is used for update at a
check node with degree dc and is defined as

Φc(m1, . . . ,mdc−1) =

dc−1∏
j=1

sgn(mj)

 min
j∈{1,...,dc−1}

(|mj |)

(1)
The function Φv : Y ×Mdv−1 → M is a map used for

update at a variable node with degree dv .
It can described as a closed form function or simply as a

dv−1-dimensional array or look-up table (LUT). More details
on the closed-form description are provided in the first part of
our two-part series of papers [8]. In this paper, we shall only
use the LUT form which is convenient for defining multiple
update maps required for decoder diversity.

Note that the maps defining Φv must satisfy the symmetry
property which is

Φv(yi,m1, . . . ,mdv−1) = −Φv(−yi,−m1, . . . ,−mdv−1)
(2)

and the monotonicity property which is

Φv(−C,m1, . . . ,mdv−1) ≥ Φv(−C,m′1, . . . ,m
′
dv−1) (3)

when mi ≥ m′i ∀ i ∈ {1, . . . , dv − 1}.
Let us alternatively define M to be M =

{M1,M2, · · · ,MNs
} where M1 = −Ls, M2 = −Ls−1,· · · ,

Ms = −L1, Ms+1 = 0, Ms+2 = L2,· · · , MNs = Ls.
For column-weight dv = 3 codes, the function Φv
can be conveniently represented as a two-dimensional
array [li,j ]1≤i≤Ns,1≤j≤Ns

, where li,j ∈ M, such that
Φv(Mi,Mj ,−C) = li,j for any Mi,Mj ∈ M. The values
for Φv(Mi,Mj ,+C) can be deduced from the symmetry of
Φv . The notations used for the LUT representation of Φv for
a 7-level FAID are shown in Table I, and some examples are
listed in Appendix B.

Table I
LUT REPRESENTATION OF Φv(−C,m1,m2) FOR A 7-LEVEL FAID

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 l1,1 l1,2 l1,3 l1,4 l1,5 l1,6 l1,7

−L2 l2,1 l2,2 l2,3 l2,4 l2,5 l2,6 l2,7

−L1 l3,1 l3,2 l3,3 l3,4 l3,5 l3,6 l3,7

0 l4,1 l4,2 l4,3 l4,4 l4,5 l4,6 l4,7

+L1 l5,1 l5,2 l5,3 l5,4 l5,5 l5,6 l5,7

+L2 l6,1 l6,2 l6,3 l6,4 l6,5 l6,6 l6,7

+L3 l7,1 l7,2 l7,3 l7,4 l7,5 l7,6 l7,7

B. Trapping Sets

A trapping set (TS) denoted by T for an iterative decoder is
a non-empty set of variable nodes in G that are not corrected
at the end of a given number of iterations [1]. A standard
notation commonly used to denote a trapping set is (a, b),
where a = |T|, and b is the number of odd-degree check
nodes present in the subgraph induced by T.

The Tanner graph representation of an (a, b) TS denoted by
T is a topological structure containing a variable nodes and

b odd-degree check nodes. A code C is said to contain a TS
of type T if there exists a set of variable nodes in G whose
induced subgraph is isomorphic to T , seen as a topological
structure. Let NT denote the number of trapping sets of type
T that are contained in the code C. Note that we use T to
refer to a particular subset of variable nodes in a given code
that form a trapping set. Finally, let {Ti,T | i = 1, . . . , NT }
be the collection of trapping sets of type T present in code C.
In other words, {Ti,T }i is a collection of all distinct subsets
of variable nodes whose induced subgraphs are isomorphic to
trapping sets of type T . A TS is said to be elementary if T
contains only degree-one or/and degree-two check nodes. It
is well known that the error floor phenomenon is associated
with the presence of elementary trapping sets [1], [15]. Hence,
throughout this paper, we shall only consider elementary
trapping sets. Although the (a, b) notation is typically used in
the literature, this notation is not sufficient to uniquely denote a
particular trapping set as there can be many trapping sets with
different topological structures that share the same values of
a and b. This is important to consider since the topological
structure of a particular (a, b) TS determines how harmful
the TS is for the error floor of a given decoder [2]. On the
other hand, a notation which includes complete topological
description of a subgraph would be extremely complicated
and too precise for our purpose. Therefore, we introduce a
simplified notation which only captures the cycle structure of
the subgraph thus giving a cycle inventory of a trapping set.

Definition 1. Consider an (a, b) trapping set whose corre-
sponding subgraph consists of a variable nodes and b odd-
degree check nodes. The trapping set is said to be of type
(a, b;

∏
k≥2(2k)gk) if the corresponding subgraph contains

exactly gk distinct cycles of length 2k.

Our choice of notation appears to be sufficient for differ-
entiating between the topological structures of multiple (a, b)
trapping sets, and also includes the definition of codewords
of C, as the (a, 0) trapping sets correspond to codewords of
weight a.

III. DECODER DIVERSITY

A. Decoder Diversity Principle

We shall now formally introduce the concept of decoder
diversity. Let us assume that we have at our disposal a set of
Ns-level FAIDs denoted by

D =
{(
M,Y,Φ(i)

v ,Φc

)
| i = 1, . . . , ND

}
(4)

where each Φ
(i)
v is a uniquely defined map. We refer to

this set D as a decoder diversity set with cardinality ND,
and an element of this set is denoted by Di where Di =(
M,Y,Φ(i)

v ,Φc

)
.

Given a code C, we would like to determine whether the
FAIDs in the set D could be used in combination in order to
guarantee the correction of all error patterns up to a certain
weight t. We first introduce the notation used to denote the
set of error patterns correctable by a decoder. Let E denote an
arbitrary set of error patterns that are considered for a code C
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whose Tanner graph is G, i.e., a set of vectors e with non-zero
weight. Let EDi ⊆ E denote the subset of error patterns that
are correctable by a FAID Di ∈ D.

Definition 2. We say that the set of error patterns E is
correctable by a decoder diversity set D if

E =

ND⋃
i=1

EDi

Note that at this point, we have not yet placed any limit on
the maximum number of decoding iterations of each decoder
Di, and this issue will be subsequently addressed in Section
IV using the example of the (155, 64) Tanner code. Given
a set of error patterns up to a certain weight t on the code
C, one would like to determine the smallest decoder diversity
set that can correct all such error patterns. This problem is
known as the Set Covering Problem, and is NP-hard [16]. In
this paper, we propose a greedy algorithm which can provide
a decoder diversity set D of FAIDs that may not necessarily
be the smallest set, but can still dramatically improve the
number of small weight error patterns that can be corrected,
therefore potentially increasing the guaranteed error correction
capability of a given code.

Note that in the definition of a decoder diversity set, we
do not make any a priori assumptions on the cardinalities of
each correctable subset EDi

. Typically, strong decoders have
large correctable subsets EDi

, while other decoders which are
selected to correct very specific error patterns could have a
small correctable subset. There are different ways to compose
the diversity set D from Di’s in order to cover the set E with
the sets EDi

. Two distinct ways are illustrated in Fig. 1. Fig.
1(a) shows a case where the set of error events E (represented
as a big square) is paved with nearly equally powerful decoders
(smaller overlapping squares of similar sizes). Fig. 1(b) shows
another type of covering corresponding to using one strong
decoder and a number of weaker decoders (smaller rectangles)
dedicated to “surgical” correction of specific error patterns not
correctable by the strong decoder.

(a) (b)

Figure 1. Typical ways in which decoder diversity can correct all error
patterns from a pre-determined set E .

B. Error Sets

As mentioned previously, our main goal is to find a, possibly
small, decoder diversity set D which guarantees correction of

a fixed number of errors t. In this section, we describe the
error sets that will be used for the selection of FAIDs in D.

Let G′ be a subgraph that is present in the Tanner graph G
of code C. G′ defines typically closed topological structures
such as trapping sets. Let Ek(G′) denote the set of all error
patterns of weight k whose support lies entirely in the variable
node set of subgraph G′:

Ek(G′) = {e : w(e) = k, supp(e) ⊆ V ′}. (5)

Note that Ek(G) denotes the set of all k-error patterns in the
code C. For simplicity, we shall denote this particular set as
Ek instead of Ek(G). Also let E [t] =

⋃t
k=1 Ek denote the set

of all error patterns whose weight is at most t.
A brute force approach to ensure a t-guaranteed error

correction capability is to consider all the error patterns in
the set E [t] for the design of the diversity set D. Obviously,
the cardinality of such an error pattern set is too large for
a practical analysis. Instead, we shall consider smaller error
pattern sets, based on the knowledge of the trapping set
distribution of the code C. It is reasonable to assume that the
errors patterns that are the most difficult to correct for the
iterative decoders are patterns whose support is concentrated
in the topological neighborhood of trapping sets.

Recall that {Ti,T | i = 1, . . . , NT } denotes the collection
of all (a, b) trapping sets of type T that are present in code C.
Let Ek(T ) denote the set of error patterns of weight k whose
support lies in a (a, b) trapping set Ti,T of type T . More
precisely,

Ek(T ) = {e : w(e) = k, supp(e) ⊆ Ti,T i ∈ {1, . . . , NT }}
(6)

The cardinality of Ek(T ) is given by |Ek(T )| =
(
a
k

)
NT .

Now, let Λa,b denotes the set of all trapping sets of different
types present in the code C that have the same parameters
(a, b). The error sets Ek(Λa,b) and E [t](Λa,b) associated with
Λa,b are defined as follows:

Ek(Λa,b) =
⋃

T ∈Λa,b

Ek(T ) E [t](Λa,b) =

t⋃
k=1

Ek(Λa,b).

(7)
Finally, Λ{A,B} is the set containing all (a, b) trapping sets

of different types for different values of a ≤ A and b ≤ B, i.e.
Λ(A,B) =

⋃
0≤a≤A, 0≤b≤B Λa,b and its associated error set is:

E [t](Λ(A,B)) =
⋃

0≤a≤A, 0≤b≤B

E [t](Λa,b) (8)

Note that Ti,T ⊆ T ⊆ Λa,b ⊆ ΛA,B . Similarly, Ek(T ) ⊆
Ek(Λa,b) ⊆ E [t](Λa,b) ⊆ E [t](Λ(A,B)) ⊆ E [t]. Clearly, the
cardinality of E [t](Λ(A,B)) is much lower than E [t], and it can
be further reduced by taking into account certain structural
properties that the Tanner graph of the code may have due to
a specific LDPC code design. Quasi-cyclic codes are prime ex-
amples of structured codes [17]. Tanner graphs of such codes
possess many trapping sets that are not only isomorphic in
the sense of their topological structure, but also have identical
neighborhoods. Therefore it suffices to consider error patterns
associated with any one of these isomorphic topologies rather
than considering all of them. Certain LDPC code constructions
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can ensure that the codes have even more structural properties
than just the quasi-cyclicity. A notable example of constrained
algebraic construction is reported in [17], in which the ex-
istence of three types of group automorphisms reduces the
number of trapping sets of maximum size (A,B) that need to
be considered by several orders of magnitude. More details on
the example of the (155, 64) Tanner code shall be provided in
Section IV and appendix A.

From the standpoint of computational complexity, it is
indeed important to limit the maximum size of the trapping
sets that are included in the set Λ(A,B). We now provide a
conjecture that gives a criterion for the choice of the values
of A and B, which are needed for defining the error sets.

Conjecture 1. If there exists a decoder diversity set D that
corrects all patterns in the set E [t](Λ(A,B)) on the code C with
A = 2t and sufficiently large B, then the decoder diversity set
D will also correct all error patterns up to weight t on the
code C with high probability.

This conjecture was found to be valid for the test cases that
we have analyzed. The first remark concerns the choice of B.
Typically it has been observed that, in the case of column-
weight dv = 3 LDPC codes, most harmful (a, b) trapping sets
have small values of b. Note that this is not the case anymore
for LDPC codes with dv = 4, as explained with the concept
of absorbing sets in [18].

The above conjecture is analogous to the condition for
correcting t errors by the MLD, which requires the Hamming
weight of error patterns to be lower than bdmin/2c. In other
words, if a decoder Di ∈ D cannot correct all weight-t error
patterns whose support is entirely contained on trapping sets
of size smaller than 2t, then it is more likely to not be
able to correct more scattered weight-t error patterns as well:
topologically concentrated error patterns are more difficult to
correct.

At the present stage of this work, we have not found
any counter-example, but have not been able to prove the
conjecture. We have analyzed several codes, and for this paper,
we present the results of the (155, 64) Tanner code for which
the conjecture was verified.

Based on the above conjecture, we now see that considering
the set E [t](Λ(A,B)) instead of E [t] is argued to be sufficient for
determining the decoder diversity set that ensures guaranteed
error correction capability of t with a high probability, and
this has a significant complexity reduction, as will be shown
on the (155, 64) Tanner code.

C. Generation of FAID Diversity Sets

We now present the procedure for obtaining the FAID
diversity set that guarantees the correction of all error patterns
in the set E [t](Λ(A,B)). We shall denote this set by D[t].

Let us assume that we are given a large set of candidate
FAIDs Dbase that are considered for possible inclusion in the
diversity set. This set could be obtained from simulations on
different codes or by using a selection technique that was
presented in [8]. Our goal is to build a possibly small set
D[t] from FAIDs belonging to Dbase, that collectively corrects

all error patterns in E [t](Λ(A,B)). In essence, the procedure
described in Algorithm 1 runs over all error patterns in
E [t](Λ(A,B)) and determines their correctability when decoded
by different FAIDs from Dbase. In Algorithm 1, NI is the
maximum number of decoding iterations and ErDi

denotes the
subset of error patterns of Er that are correctable by the FAID
Di.

Algorithm 1 Decoder Diversity Selection Algorithm
1) Given Dbase and NI , and k the maximum weight for

error patterns at the initialization step; set D[k] = Ø,
(A,B) = (2k,B), and Er = Ek(Λ(A,B)).

2) set Dk = Ø and i = 1.
a) If Er = Ø, proceed to Step 3. Else, ∀ Dj ∈
Dbase\(D[k−1]∪Dk), run each FAID on all error
patterns in Er for a maximum of NI iterations
and select the FAID with the largest correctable
subset of error patterns |ErDj

|, i.e., set

Di = arg max
Dj∈Dbase\(D[k−1]∪Dk)

|ErDj
|.

Set Dk = Dk ∪Di.
b) Remove all error patterns corrected by Di from

the set Er , i.e., Er = Er\ErDi
.

c) If Er = Ø, proceed to Step 3. Else, proceed to
next step.

d) If i < |Dbase|, set i = i + 1 and go back to Step
2a. Else STOP. The algorithm has failed with the
initial parameters of Dbase and NI .

3) Set D[k] = D[k] ∪ Dk.
4) Let t be the target guaranteed error correction. If k = t,

STOP. The algorithm has successfully built the desired
diversity set D[t].
Else, set k = k + 1, (A,B) = (2k,B), and D[k] =
D[k−1].

a) ∀ Dj ∈ D[k], determine the correctable subsets
of k-error patterns of each FAID Dj denoted by
EkDj

(Λ(A,B)).
b) set Er = Ek(Λ(A,B))\

⋃
Dj∈D[k]

EkDj
(Λ(A,B)). Go

to step 2.

The algorithm starts by building the diversity set D[k]

for a given k, then iteratively expands to the diversity sets
D[k+1],D[k+2], . . . ,D[t] by including more and more FAIDs
from Dbase that collectively correct error patterns with increas-
ing weight in E [t](Λ(A,B)). The iterative selection of FAIDs
is carried out by keeping track, at each iterative stage, of the
set of unresolved error patterns Er ⊂ E [t](Λ(A,B)) which are
not collectively correctable by the FAIDs selected so far, and
then choosing additional FAIDs to correct these patterns. For
example, if D1,D2, . . . ,DL are the FAIDs selected so far for
D[t], and E [t]

Di
denotes the subset of error patterns correctable

by FAID Di, then the set of unresolved error patterns is

Er = E [t](Λ(A,B))\
⋃

1≤i≤L

E [t]
Di
.

The algorithm terminates when Er = Ø, which means that
the set of FAIDs selected up to that point collectively correct
all error patterns in E [t](Λ(A,B)), and therefore constitute
the desired diversity set D[t]. Assuming that Conjecture
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1 holds, the obtained diversity set D[t] will guarantee a
correction of t errors on the LDPC code C. As a side result,
the algorithm also gives the FAID diversity sets D[k] for k < t.

For example, suppose we want to build a decoder diversity
set D[7] that achieves a guaranteed error correction of t = 7
on a code C, and suppose we know that all FAIDs in the
given Dbase guarantee a correction of t = 4. We then choose
an intitial value of k = 5 in Step 1 of the algorithm. The
algorithm then starts by building the decoder diversity set D[5]

on the considered error set E5(Λ(10,B)) with the given choices
of Dbase, NI , and B. The FAIDs are selected from Dbase in
a greedy manner and included in D[5] until all error patterns
in E5(Λ(10,B)) are collectively corrected. Then the algorithm
next considers the error set E6(Λ(12,B)) in order to build the
set D[6]. First, all the error patterns correctable by the set D[5]

are removed from the set E6(Λ(12,B)) to constitute the set Er.
Then additional FAIDs from Dbase are selected to correct all
the error patterns remaining in Er, which, together with the
FAIDs in D[5], forms the diversity set D[6] = D[5] ∪ D6. The
algorithm repeats the procedure for building D[7] by operating
on the set of error patterns in E7(Λ(14,B)).

Note that the choices of NI and Dbase can play an important
role inn whether or not the algorithm is successful in building
the desired decoder diversity set. Determining the optimal NI
is beyond the scope of this paper. However, if the algorithm
fails in Step 2d, then increasing the value of NI or considering
a larger set for Dbase typically allows the algorithm to progress
further. We adopted this strategy to obtain a decoder diversity
set ensuring a 7-guaranteed error correction on the (155, 64)
Tanner code, as shown in the next section.

IV. CASE STUDY: GUARANTEED ERROR CORRECTION ON
THE (155, 64) TANNER CODE

We shall now use the (155, 64) Tanner code [12], [17], as an
example to illustrate how the concept of decoder diversity can
be used to increase the guaranteed error-correction capability
of the code with reasonable complexity. The (155, 64) Tanner
code, which is an LDPC code with regular column weight
dv = 3 and row weight dc = 5, is a particularly good test
case for the following reasons. First, the difference between
its minimum distance dmin = 20 and its minimum pseudo-
distance wminp ' 10 is large [19], which means that the dif-
ference in the guaranteed error correction capability between
traditional iterative decoders (Gallager-B, Min-Sum, BP) and
the MLD is expected to be large. Therefore, there is a scope
for improvement in reducing this gap using the approach of
FAID decoder diversity. Second, the (155, 64) Tanner code is
sufficiently small and structured (the code has quasi-cyclicity
equal to 31) so that a brute force checking of whether all error
patterns up to a certain weight-t are corrected by a decoder
diversity set can be carried out by Monte Carlo simulations
with reasonable computation time.

For comparisons, Table II shows the t-guaranteed error
correction capability of the existing decoders on the Tanner
code. We also found by exhaustively checking through simu-
lations [11] that there is no 7-level FAID that can guarantee

a correction of t > 5 on this particular code. However,
using the approach of decoder diversity, we show that it is
possible to increase the guaranteed error correction capability
of the code to t = 7. As mentioned in the previous section,
we only consider error patterns belonging to E [t](Λ(A,B))
where A = 2t and B is large enough. The question of the
optimal value for parameter B remains open. B should be set
sufficiently large such that Conjecture 1 is verified, but on the
other hand, B should be chosen sufficiently small such that
the computational complexity of the decoder selection is not
too heavy. For dv = 3 LDPC codes and this Tanner code in
particular, it appeared from our experiments that B = 3 was
not sufficient for Conjecture 1 to be valid. To be explicit, we
found a weight-7 error pattern that was not corrected by the
diversity set of FAIDs we selected to collectively correct all
weight-7 error patterns located in TSs with B = 3. However,
a value of B = 4 was sufficient for all our test cases.

Table II
t-GUARANTEED ERROR CORRECTION CAPABILITY OF DIFFERENT

DECODERS ON THE (155, 64) TANNER CODE

t Algorithm Reference

3 Gallager A and Gallager B [7]

4 Min-Sum and Belief Propagation [10]

5 5-level and 7-level FAIDs [13]

Table III
t-GUARANTEED ERROR CORRECTION CAPABILITY OF FAID
DIVERSITY WITH INCREASING NUMBER OF DECODERS AND

ITERATIONS.

t ND NI

5 1 15

6 9 50

7 243 120

The graph structure of this Tanner code satisfies additional
properties on top of the quasi-cyclicity property [12]. Tanner
proposed a code construction based on subgroups of GF(q).
The classical additive shift group gives rise to the quasi-
cyclic form of the code, while two multiplicative subgroups
associated with rows and columns of the parity-check ma-
trix induces additional group automorphisms on the graph.
These isomorphic transformations allow for further reduction
in the number of error patterns that need to be considered.
Following notations of [12], the transformations σ, π, and
ρ act on the indices of the variable nodes and preserve the
topological structures. The transformation σ comes from the
quasi-cyclicity of the code and allows then a constant reduction
factor of L = 31 for all the TS topologies, while the other
transformations π and ρ can bring another factor of reduction,
depending on the type and location of the TS. More details
on the three different transformations that the Tanner graph of
this code follows are reported in Appendix A.

The full enumeration of trapping sets with a ≤ 14 and b ≤ 4
is presented in Table IV. The first column of the table gives
the (a, b) parameters, and the second column indicates the TS
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Table IV
TRAPPING SET SPECTRUM OF THE (155, 64) TANNER CODE

T TS-label NT Nσ(T ) Nσ(π(ρ(T )))

(5,3) (5,3;83) 155 15 1

(6,4) (6,4;81102) 930 30 2

(7,3) (7,3;83102142) 930 30 2

(8,2) (8,2;83104122144162) 465 15 1

(8,4) 4 types 5012 165 11

(8,4;83122162) 45 3

(8,4;81102122142) 15 1

(8,4;81103121141161) 90 6

(8,4;81104162) 15 1

(9,3) 3 types 1860 60 4

(9,3;81104124142162182) 15 1

(9,3;81105122142164) 30 2

(9,3;83102122144162182) 15 1

(10,2) 2 types 1395 45 3

(10,2;81106125144166185202) 15 1

(10,2;83105122146166182204) 30 2

(10,4) 27 types 29295 945 63

(11,3) 11 types 6200 200 14

(12,2) 2 types 930 30 2

(12,2;81106126146169189208227244) 15 1

(12,2;841021241441681812206228242) 15 1

(12,4) 170 types 196440 6240 416

(13,3) 53 types 34634 1155 79

cycle inventory of different (a, b) TS types (the cycle inventory
is omitted for the parameters that allow too many cycle-
inventory types). The last three columns show the numbers of
trapping sets that need to be checked by Algorithm 1 when the
code group automorphisms are exploited. NT corresponds to
the number of trapping sets present without taking any code
structure into account, Nσ(T ) corresponds to the number of
trapping sets present after taking into account the quasi-cyclic
property obtained from the transformation σ, and Nσ(π(ρ(T )))

corresponds to the number of trapping sets present after taking
all three transformations σ, π and ρ into consideration.

Table V shows the structure and number of the lowest
weight codewords of different types, which correspond to the
smallest TSs with b = 0.

The trapping sets have been enumerated using the modified
impulse algorithm, which is known to be an efficient algorithm
to find low-weight codewords or near-codewords of a given
short length LDPC code [20], [21]. When the number of
types was too large, we did not indicate the details of the TS
notation. It is clear from the table that the number of topologies
needed to be considered to characterize the behavior of an
iterative decoder on the Tanner code could be greatly reduced.
Actually, the number of structures (including isomorphic) of
given type T present in the code could be multiples of
either Ldc dv = 465, Ldc = 155 or Ldv = 93 and this
number is reduced for the analysis by the transformations

σ(π(ρ(T ))). The TS of type (5,3;83) is an example where
there are Ldc = 155 such structures in the Tanner code,
while (20,0)-type-III codewords is an example where there
are Ldv = 93 such structures.

A. Error Sets for the Tanner Code

The error sets that we have considered for the Tanner code
are shown in Table VI along with their cardinalities. The
cardinalities of the error sets have been reduced using the
structural properties σ, π, and ρ of the Tanner code to:

|Ek(T )| =
(
a
k

)
Nσ(π(ρ(T ))). (9)

where Nσ(π(ρ(T ))) is the value obtained from Table IV.
One can further reduce the number of error patterns consid-

ered in each error set, since a particular error pattern belonging
to an error set of a small trapping set may also be included
in the error set of a larger trapping set containing the smaller
one. For example, a 5-error pattern on one of the TS (9, 3)
could be also listed as one of the 5-error patterns in the TS
(8, 2) if (8, 2) is contained in (9, 3). Therefore, we also take
this into account by including only the error patterns in the
error set E [k](Λa,b) that are distinct from all error patterns
in E [k](Λa′,b′) with a′ < a and b′ < b. This leads to a
further reduction in the number of error patterns considered
in error sets, and the final number is reported at the bottom
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Table V
LOW-WEIGHT CODEWORDS SPECTRUM OF THE (155, 64) TANNER CODE

T TS-label NT Nσ(T ) Nσ(π(ρ(T )))

(20,0) 3 types 1023 33 3

type-I 465 15 1

type-II 465 15 1

type-III 93 3 1

(22,0) 14 types 6200 200 14

(24,0) 97 types 43865 1415 97

Table VI
CARDINALITIES OF ERROR SETS CONSIDERED FOR THE (155, 64) TANNER CODE. FOR EACH k-ERROR PATTERN SET, WE INDICATE THE

TOTAL NUMBER OF PATTERNS IN THE FIRST COLUMN (BASED ON EQUATION (9)), THE SECOND COLUMN INDICATES THE FINAL NUMBER
OF ERROR PATTERNS, AFTER REMOVING THE ISOMORPHIC ONES.

5-errors 6-errors 7-errors

E [5](Λ5,3) 1 1

E [5](Λ6,4) 12 12 E [6](Λ6,4) 2 2

E [5](Λ7,3) 42 23 E [6](Λ7,3) 14 11 E [7](Λ7,3) 2 2

E [5](Λ8,2) 56 20 E [6](Λ8,2) 28 15 E [7](Λ8,2) 8 6

E [5](Λ8,4) 616 398 E [6](Λ8,4) 308 240 E [7](Λ8,4) 88 79

E [5](Λ9,3) 504 100 E [6](Λ9,3) 336 110 E [7](Λ9,3) 144 72

E [5](Λ10,2) 756 399 E [6](Λ10,2) 630 416 E [7](Λ10,2) 360 277

E [5](Λ10,4) 15 876 7 064 E [6](Λ10,4) 13230 7860 E [7](Λ10,4) 7560 5421

E [6](Λ11,3) 6468 1958 E [7](Λ11,3) 4620 1894

E [6](Λ12,2) 1848 766 E [7](Λ12,2) 1584 857

E [6](Λ12,4) 384 384 163 562 E [7](Λ12,4) 329 472 187 360

E [7](Λ13,3) 135 564 31 890

E [7](Λ14,2) 37 752 8 157

E [7](Λ14,4) 9 129 120 3 326 862

5-errors 6-errors 7-errors

E [5](Λ(10,4)) 8 017 E [6](Λ(12,4)) 174 940 E [7](Λ(14,4)) 3 562 877

E [5] 698 526 906 E [6] 17 463 172 650 E [7] 371 716 103 550

Comp. Reduction Factor Comp. Reduction Factor Comp. Reduction Factor

87 130 99 824 104 330

of Table VI. From the Table, we can see that the complexity
reduction factor in each case is of the order of 105, which is
very large and in any case sufficient to reduce the complexity
of finding the decoder diversity set to a reasonable level. In
terms of computational time, using this reduced number of
error patterns, it is possible to test one FAID, that is to identify
the correctable error patterns in E [5](Λ(10,4)), E [6](Λ(12,4)) and
E [7](Λ(14,4)), within only a few minutes. As a result, one
can consider a large number of candidate FAIDs in order to
optimize the diversity set with Algorithm 1, and starting with a
collection of |Dbase| = 49 522 FAIDs, we were able to identify
the diversity sets for the Tanner code presented in the next
section in less than 48 hours. Our approach is reproducible
for any dv = 3 LDPC code with short to moderate block-
length, with a roughly constant complexity.

B. Error Correction Results for the Tanner Code

Let us recall that we consider only 7-level FAIDs for
decoder diversity which require only 3 bits of precision for
their message representation. Our main results are summarized
in Table III. We are able to guarantee a correction of t = 7
errors on the Tanner code using ND = 343 FAIDs with
NI = 120 iterations.

We also verified by brute force Monte Carlo simulations
that each of the obtained diversity sets D[t] for t = 5, 6, 7
guarantees a correction of all error patterns of weight at most
t on the Tanner code even though only error patterns in
E [t](Λ(A,B)) with (A,B) = (2t, 4) were used in the algorithm,
thus validating the conjecture stated in Section III-B.

Due to the huge cardinality reduction in the error sets
considered (as shown in Table VI), we were able to identify
the decoder diversity set for t = 6 in less than one hour, and
for t = 7 in a few days. Note that decoder diversity does not
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require any post-processing, as it is still an iterative message-
passing decoder with the additional feature that the the variable
node update rule Φv changes after NI iterations (and the
decoder is restarted). Note also that additional complexity re-
duction can be achieved by exploiting any existing similarities
between the update rules of the FAIDs in the decoder diversity
set.

In order to illustrate how different 7-level FAIDs in the
decoder diversity set can behave in terms of their correctability
of different error patterns in the error set, we provide two
examples with the help of Table VII.

Table VII
STATISTICS ON THE ERROR CORRECTION OF SEVERAL FAIDS USED

IN THE DECODER DIVERSITY SETS.

Decoder Di D0 D1 D2 D3 D4 D5 D6 D7 D8∣∣∣E [6]Di
(Λ(11,4))

∣∣∣ 10469 10560 10570 10575 10527 10488 10444 10247 10454

remaining errors 143 25 12 8 5 3 2 1 0

Decoder Di D9 D10 D11 D12 D13 D14 D15 D16∣∣∣E [7]Di
(Λ7,3) ∪ E [7]Di

(Λ8,2)
∣∣∣ 1 1 1 1 1 1 1 1∣∣∣E [6]Di

(Λ(11,4))
∣∣∣ 9730 103 80 198 9216 3450 156 304

The first part of Table VII shows an example of us-
ing equally powerful decoders in the diversity set. Statistics
are provided on the number of correctable error patterns∣∣∣E [6]

Di
(Λ(12,4))

∣∣∣ by each 7-level FAID in the decoder diversity

set D[6] from the error set E [6](Λ(11,4)). The LUT maps of Φv
that define these 7-level FAIDs are reported in Table VIII of
Appendix B. For convenience, we have noted D[5] = {D0}
and D[6] = D[5] ∪ {D1, . . . ,D8}. The total number of error
patterns in E [6](Λ(11,4)) is

∣∣E [6](Λ(11,4))
∣∣ = 10612, which

corresponds to all the 6-error patterns in TS with a ≤ 11 and
b ≤ 4. From Table VII, we can see that all decoders in D[6]

are in fact almost equally powerful in terms of the number
of error patterns they correct. However, all 9 decoders when
used in combination are able to collectively guarantee an error
correction of t = 6.

The second part of Table VII provides an example of how
certain decoders, that we refer to as “surgeon” decoders,
can be used to specifically correct certain error patterns not
correctable by the particularly good decoders. The statistics
shown in the table are for eight different FAIDs (labeled D9

to D16 for convenience) that were selected to correct eight par-
ticular 7-error patterns in the error set E [7](Λ7,3)∪E [7](Λ8,2).
These eight different FAIDs are required to separately correct
each of these error patterns. Moreover, in comparison with the
statistics obtained from the FAIDs belonging to D[6] on the
6-error patterns, these decoders are not as strong as the first
nine decoders D0 to D8. Five of them especially have very
poor behaviors on the 6-error events.

These surgeon decoders, can be seen as tuned to a particular
error event, and are not necessarily included in the set of
candidate FAIDs Dbase used for the diversity set selection
algorithm. In particular, (D10, D11, D12, D15, D16) were not
found in the |Dbase| = 49 522 FAIDs which were used in
the initialization of Algorithm 1. To find these decoders, we

increased the number of candidate FAIDs, and looked for the
ones which correct the remaining five 7-error patterns.

These two examples clearly show that in order to guarantee
t error correction, the decoder diversity sets can pave the space
of error sets in very different manners. In summary, for t = 6
error correction, the decoder diversity set behavior is roughly
like that depicted in Fig. 1(a), while for t = 7 error correction,
the decoder diversity set behavior is more like that shown in
Fig. 1(b) using both powerful and surgeon decoders. The list
of FAIDs D0 to D8 and D10 to D17 are reported in Appendix
B.

Fig. 2 shows the remaining 7-error patterns in E [7] after the
sequential use of the FAIDs in D[5] followed by the FAIDs in
D[6]\D[5], and then followed by FAIDs in D[7]\D[6].

 

 

 

Diversity order (number of decoders) 

Figure 2. Number of remaining uncorrected 7-error patterns with sequential
use of FAIDs in the diversity sets.

Fig. 3 shows the FER performance of the decoder diver-
sity set D[7], when simulated on the Tanner code over the
BSC channel with cross-over error probability α and with a
maximum of NI = 120 decoding iterations for each decoder.
The following sequential schedule is employed for the use
of several FAIDs. The order in which the FAIDs are used
sequentially is fixed by the identification process of Algorithm
1. For each and every channel noise realization, the FAIDs are
run iteratively. When a given FAID Dd ∈ D[7] fails to converge
after NI iterations, then the channel values are used to re-
initialize the next decoder Dd+1, until a codeword is found or
the maximum number of FAIDs in D[7] has been reached. Note
that in the case Dd converges to a wrong codeword, we declare
it as an undetected error, and do not switch to the next decoder.
This latter situation never appeared for our simulations on
the Tanner code. Since the FAIDs are used sequentially, the
average computational time for the Monte-Carlo simulations
is roughly the same as if one were using a single FAID. The
subsequent FAIDs in the diversity set are triggered only when
the previous one fails to converge, and since in the error floor,
the first FAID has already a FER< 10−7, the diversity set is
used only at the same rate, which adds a negligible simulation
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time. While finding an efficient hardware implementation for
decoder diversity with FAIDs is an important issue to consider,
it is one that lies beyond the scope of this paper.
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Belief Propagation
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Guaranteed Correction
of 7 errors

Figure 3. FER results on the Tanner Code with guaranteed error correction
of 7 errors.

One can see that, especially in the error floor region, the
use of an increasing number of FAIDs increases the slope of
the FER curve, and eventually reaches a slope of t = 8, which
corresponds to the minimum weight error pattern that is not
corrected by our decoder diversity set D[7].

V. CONCLUSIONS

We introduced a general decoding scheme that utilizes a
collection of several different FAIDs, which is referred to
as a decoder diversity set, in order to further increase the
guaranteed error correction capability of a given LDPC code
on the BSC from what is achievable by a single FAID. We
provided a methodology to build the decoder diversity sets
based on using the trapping set distribution of the code, and
considering error patterns that are only associated with the
trapping sets present in the code. Using the (155, 64) Tanner
code as an example, we showed that the structural properties
of the code can be exploited to reduce the complexity in
terms of reducing the number of considered error patterns
by several orders. We were able to increase the guaranteed
error correction capability of the (155, 64) Tanner code using
our approach of decoder diversity, from t = 5 errors that is
achievable by a single FAID to t = 7 errors by FAID decoder
diversity. Note that the BP algorithm is able to guarantee a
correction of only t = 4 on the Tanner code. Also although
our discussion throughout this paper primarily focused on
the particular example of the Tanner code, the technique can
be applied to other codes with regular column weight dv ,
provided that the trapping set distribution is known (which
is a reasonable assumption for short to moderate codeword
lengths).

Finally, we remark that while the approach proposed in this
paper is restricted to the case of the BSC and deals with only

hard-decision errors, extensions of this approach to other chan-
nels such as the additive white Gaussian channel (AWGNC) is
highly non-trivial as the notion of guaranteed error correction
only makes sense for hard-decision decoding. However, we
believe that the central idea of decoder diversity can still be
beneficial for improving the error floor performance over the
AWGNC, and extending this idea for the AWGNC is a topic
for future research.

APPENDIX A
TOPOLOGIES OF THE TANNER CODE

As explained in [12], there are three types of group au-
tomorphisms which preserve the topological structures in the
graph of the Tanner code, due to the fact that Tanner’s design
of the parity-check matrix is based on an array of (dv, dc)
circulants of size L, and that the values of shifts for the
circulant matrices are chosen from two multiplicative sub-
groups of the Galois field GF(L). For ease of understanding,
we shall instead present the group automorphisms as simple
transformations acting on the indices of the variable nodes
in the code. Let γ (respectively β) be two elements of GF(L)
with multiplicative order dc (respectively dv). The parity check
matrix is defined by an array of circulants with shift orders
{γtβr}0≤t≤dc−1,0≤r≤dv−1. Now, let the index of a variable
node vi be expressed as i = k ∗ L + l. We now define the
three following transformations acting on the indices of T
that preserve the topology as well as the neighborhood of the
TS.
• block-cyclicity: Let σ : V × {0, . . . , L− 1} → V . Then

σ(vi, t) = vj where j = (k ∗ L) + (l + t mod (L))

• row-wise automorphism: Let π : V ×{0, . . . , dc− 1} →
V . Then
π(vi, t) = vj where j = ((k + t mod (dc)) ∗ L)

+ (γtl mod (L))

• column-wise automorphism: Let ρ : V × {0, . . . , dv −
1} → V . Then

ρ(vi, t) = vj where j = (k ∗ L) + (βtl mod (L))

Consider a TS of size a bits denoted by T =
{vn1

, . . . , vna
}. By applying the transformation σ on T

such that σ(T, t) = {σ(vn1 , t), . . . , σ(vna , t)} where t ∈
{0, . . . , L − 1}, the induced subgraphs of σ(T, t) and T are
isomorphic to each other in the code ∀t ∈ {0, . . . , L − 1},
i.e., they have exactly the same topology and neighborhood.
This implies that one has to only consider error patterns
associated with one of the isomorphic structures instead of
all of them. The same applies for the transformations π and ρ.
By applying all three transformations σ(π(ρ(T))), the number
of trapping sets of a certain type T that need to be considered
is significantly reduced.

APPENDIX B
LIST OF 7-LEVEL FAIDS USED IN THE FAID DIVERSITY

ALGORITHM

In Table VIII, we list some of the 7-level FAIDs used in
this paper, and which were used in the FAID diversity sets



11

Table VIII
LIST OF SOME 7-LEVEL FAIDS USED IN THIS PAPER. THE FIRST NINE FAIDS GUARANTEE AN ERROR CORRECTION OF t = 6 ON THE

(155, 64) TANNER CODE.

FAID l1,1 l1,2 l1,3 l1,4 l1,5 l1,6 l1,7 l2,2 l2,3 l2,4 l2,5 l2,6 l2,7 l3,3 l3,4 l3,5 l3,6 l3,7 l4,4 l4,5 l4,6 l4,7 l5,5 l5,6 l5,7 l6,6 l6,7 l7,7

D0 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L3 −L2 −L1 L1 −L2 −L2 −L1 −L1 L1 −L1 0 0 L1 0 L1 L2 L1 L3 L3

D1 −L3 −L3 −L3 −L3 −L3 −L3 0 −L3 −L3 −L3 −L2 −L2 L1 −L2 −L1 −L1 0 L2 −L1 0 0 L2 0 L1 L2 L1 L3 L3

D2 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L2 −L2 −L2 L1 −L2 −L1 −L1 0 L1 −L1 0 0 L3 0 L1 L3 L1 L3 L3

D3 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L2 −L2 −L1 L2 −L2 −L1 −L1 0 L2 −L1 0 0 L2 0 L1 L3 L1 L3 L3

D4 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L3 −L1 −L1 L1 −L2 −L2 −L1 −L1 L2 −L1 0 0 L2 0 L1 L2 L1 L2 L3

D5 −L3 −L3 −L3 −L3 −L3 −L3 0 −L3 −L3 −L3 −L1 −L1 L1 −L2 −L2 −L1 −L1 L2 −L1 0 0 L2 0 L1 L2 L1 L2 L3

D6 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L3 −L2 −L1 L1 −L2 −L2 −L1 L1 L2 −L1 0 L1 L2 0 L1 L2 L1 L2 L3

D7 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L3 −L3 −L1 L1 −L2 −L2 −L1 −L1 L1 −L1 −L1 0 L3 0 L1 L3 L2 L3 L3

D8 −L3 −L3 −L3 −L3 −L3 −L3 0 −L3 −L3 −L3 −L3 −L1 L1 −L2 −L1 −L1 0 L2 −L1 0 0 L2 L1 L1 L2 L3 L3 L3

D9 −L3 −L3 −L3 −L3 −L2 −L2 0 −L3 −L3 −L3 −L2 −L1 L2 −L3 −L2 −L1 −L1 L2 −L1 0 L1 L2 L1 L1 L3 L1 L3 L3

D10 −L3 −L3 −L3 −L3 −L3 −L2 −L1 −L3 −L3 −L1 −L1 −L1 L1 −L3 −L1 0 0 L2 −L1 L1 L2 L3 L2 L3 L3 L3 L3 L3

D11 −L3 −L3 −L3 −L3 −L3 −L2 0 −L3 −L3 −L3 −L2 0 L2 −L3 −L3 0 L1 L2 −L1 L1 L2 L3 L1 L2 L3 L2 L3 L3

D12 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L2 −L2 0 L1 −L3 −L2 −L2 0 L2 −L2 0 L2 L2 L2 L2 L3 L3 L3 L3

D13 −L3 −L3 −L3 −L3 −L3 −L2 −L1 −L3 −L3 −L2 −L2 0 L1 −L2 −L2 −L1 L1 L2 −L2 −L1 L1 L2 0 L2 L3 L3 L3 L3

D14 −L3 −L3 −L3 −L2 −L2 −L2 −L1 −L3 −L3 −L2 −L2 0 L2 −L3 −L2 −L2 L1 L2 −L2 −L1 L1 L3 0 L2 L3 L3 L3 L3

D15 −L3 −L3 −L3 −L3 −L3 −L3 −L1 −L3 −L3 −L3 −L3 −L2 L1 −L3 −L3 0 L1 L1 −L1 L1 L1 L2 L1 L1 L2 L2 L2 L3

D16 −L3 −L3 −L3 −L2 −L2 −L1 0 −L3 −L3 −L2 −L2 −L1 L2 −L3 −L2 −L1 L1 L2 −L2 L1 L1 L3 L1 L2 L3 L2 L3 L3

described in Section IV. We only indicate the entries of the
LUT array (see Table I) that cannot be deduced by symmetry.
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