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Abstract—We consider the Interval-Passing Algorithm (IPA),
an iterative reconstruction algorithm for reconstruction of non-
negative sparse real-valued signals from noise-free measurements.
We first generalize the IPA by relaxing the original constraint
that the measurement matrix must be binary. The new algorithm
operates on any non-negative sparse measurement matrix. We
give a performance comparison of the generalized IPA with the
reconstruction algorithms based on (i) linear programming and
(ii) verification decoding. Then we identify signals not recoverable
by the IPA on a given measurement matrix, and show that
these signals are related to stopping sets responsible to failures
of iterative decoding algorithms on the binary erasure channel
(BEC). Contrary to the results of the iterative decoding on the
BEC, the smallest stopping set of a measurement matrix is not
the smallest configuration on which the IPA fails. We analyze the
recovery of sparse signals on subsets of stopping sets via the IPA
and provide sufficient conditions on the exact recovery of sparse
signals. Reconstruction performance of the IPA using the IEEE
802.16e LDPC codes as measurement matrices are given to show
the effect of stopping sets in the performance of the IPA.

Index Terms—Compressed Sensing, Interval-Passing Algo-
rithm, Iterative Reconstruction Algorithm, Low-Density Parity-
Check Codes, Message-Passing Algorithm, Stopping Sets.

I. INTRODUCTION

RECONSTRUCTING a sparse signal from a small set of
measurements via compressed sensing [1] has attracted

significant attention in the last few years. A k-sparse signal
x ∈ Rn, i.e. a signal x with at most k non-zero values,
is observed indirectly through a shorter measurement vector
y ∈ Rm and obtained from the linear equations y = Ax
where A is an m× n measurement matrix, with m� n. The
task of compressed sensing is to recover x from y. The first
approach to solve the compressed sensing problem is to find a
signal x with the smallest `0-norm. The `0-norm minimization
of compressed sensing is NP-hard [2], [3]. Instead, the `1-
norm minimization solution based on linear programming (LP)
was introduced to reconstruct x. The LP technique [4] for
the compressed sensing problem, called Basis Pursuit [5],
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[6], has a remarkable performance, but its high complexity
and running time makes it impractical in some applications
which require fast reconstruction, or when the dimension of a
measurement matrix is large. To tackle the issue of complexity,
message-passing algorithms for compressed sensing have been
proposed, originating from channel coding. Sarvothan et al.
[7] were amongst the first who introduced a reconstruction
algorithm based on belief propagation. Another application
of belief propagation in compressed sensing was presented
by Pham et al. in [8] where the authors provided two low-
complexity algorithms, list decoding and multiple-based belief
propagation. The iterative thresholding algorithm, also called
approximate message passing, was proposed by Donoho et
al. [9]. This algorithm can be viewed as the variant of the
bit-flipping algorithm which is used for the decoding of
low-density parity-check (LDPC) codes. A message passing
algorithm, to which we refer in this paper as the Interval-
Passing Algorithm (IPA), was introduced by Chandar et al.
[10]. This is a simple iterative algorithm inspired by the
parallel bit-flipping decoding algorithm to reconstruct a non-
negative vector x. In the binary measurement matrix case,
the performance of this algorithm in both noise-free and
noisy measurements was presented in [11], and a comparison
between the IPA, the verification decoding algorithm [12], [13]
and Basis Pursuit was given in [14].

Krishnan et al. [15] modified the IPA and showed that
the IPA fails on the stopping sets which are the well-known
configurations for the failure of the iterative decoding of LDPC
codes over the binary erasure channel (BEC). Moreover, they
showed that the IPA may fail even if the non-zero values of the
signal do not contain a stopping set. In this paper, we analyze
the recovery of the IPA in stopping sets and provide sufficient
conditions for reconstructing a sparse signal with sparsity less
than the size of a stopping set.

The rest of the paper is organized as follows. Section II
provides preliminaries on compressed sensing, LDPC based
measurement matrices, and a brief introduction to some itera-
tive reconstruction algorithms. Section III provides a detailed
explanation of the IPA. While the original version of the IPA
uses binary measurement matrices, we modify this algorithm
to work with non-negative sparse measurement matrices and
present a comparison of the IPA with two other reconstruction
techniques, namely the LP reconstruction, and the verification
decoding. In Section IV, we give a theoretical analysis of the
IPA recovery and provide sufficient conditions on the recovery
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of signals whose non-zero values are a subset of a stopping
set. In Section V, we provide simulation results exhibiting the
IPA reconstruction performance using some LDPC matrices
as the measurement matrices and link this performance with
the stopping set distribution of theses matrices. Finally, a
conclusion and discussion are provided in Section VI.

II. PRELIMINARIES

In this section, we provide the notations used throughout
the paper regarding compressed sensing and LDPC codes.

A. Compressed Sensing

Here we give definitions and main results related to com-
pressed sensing. Let x ∈ Rn be an n-dimensional k-sparse
signal, and let Am×n be a measurement matrix. Compressed
sensing concerns the recovery of x from measurements y =
Ax ∈ Rm where m � n and k � n. The first approach to
recover x from the measurements y, is to find a k-sparse signal
from all the

(
n
k

)
k-sparse possible signals which is known to

be an NP-hard problem [2], [3]. This problem is called the
`0-minimization, and it is given by:

x̂ = argmin‖x‖0 s.t. y = Ax (1)

Throughout this paper, for a column vector x =
[x1, x2, . . . , xn]

t, ‖x‖0 = |supp(x)| = |{k : xk 6= 0}|, and
‖x‖1 =

∑n
k=1 xk.

The LP technique introduced by Chen et al. [5], called Basis
Pursuit, provides a minimum `1-norm for x. This problem is
called the `1-minimization, as well as the recovery via convex
optimization and it is given by:

x̂ = argmin‖x‖1 s.t. y = Ax (2)

Candes et al. [6] showed that if the measurement matrix A
satisfies a condition, namely the Restricted Isometry Property
(RIP), Basis Pursuit can recover a sufficiently sparse signal.
Roughly, a measurement matrix satisfies the RIP if it does
not significantly distort the `2-norm of any sufficiently sparse
vector.

B. LDPC Codes

Low-density parity-check (LDPC) codes [16] are widely
used in channel coding. Let C denote an (n,n − m) binary
LDPC code. C is defined as the null space of a parity check
matrix H of size m × n. H is known to be the adjacency
matrix of its equivalent bipartite graph G, called the Tanner
graph [17]. The Tanner graph G of an LDPC code is defined
as G = (V ∪ C,E), where V = {v1, · · · , vn} is the set of
n variable nodes corresponding to the n columns of H , and
C = {c1, · · · , cm} is the set of m check nodes corresponding
to the m rows of H . E is the set of edges in G, and an edge
connects the variable node vj to the check node ci iff hij = 1
where hij is the element at the ith row and jth column in H .
The code is said to be dv-left-regular if all variable nodes in G
have the same degree dv (or equivalently if all the columns in
H have weight dv). The code is said to be dc-right-regular if
all check nodes in G have the same degree dc (or equivalently

H =


0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0


v1 v2 v3 v4 v5 v6

c1 c2 c3 c4

Fig. 1: Parity check matrix and Tanner graph of a
(2, 3)-regular LDPC code.

if all the rows in H have weight dc). The code is said to be
(dv, dc)-regular when it is both dv-left-regular and dc-right-
regular. The girth g of a the Tanner graph G is the length of
the shortest cycle in G. In the graphical representation of G,
a white circle represents a variable node, and a white square
represents a check node. The Fig. 1 shows a small example of
a girth-6 (2, 3)-regular LDPC matrix with its related Tanner
graph. In this paper, we only consider (dv, dc)-regular LDPC
codes with dv ≥ 2.

C. Message-Passing Algorithms

The relation between LDPC codes and compressed sensing
was studied in [18] and [19] where the authors showed that
good LDPC matrices are also good for compressed sensing
using Basis Pursuit. Following the natural relation between
measurement matrices for compressed sensing and LDPC ma-
trices, several iterative algorithms have recently been proposed
to recover sparse signals using message-passing. The first
message-passing algorithms were introduced by Donoho et
al. in [9] for noise free measurements. These algorithms,
such as the second algorithm of [9], called the Approximate
Message-Passing (AMP) algorithm, are iterative thresholding
algorithms, i.e. at each iteration it ensures to provide the
sparsest estimate of x. These algorithms can be analyzed, as
in [20], using the phase transition diagram. In this diagram
the failure or success of the AMP is given as a function of
different parameters of the system (k,m, n).

Other message-passing algorithms exist in the literature,
such as the list decoding and multiple-basis belief propagation
from Pham et al. [8]. Chandar et al. [10] introduced a simple
message passing algorithm that we investigate and modify in
Section III.

We also present another kind of message-passing based
algorithm used for comparison in our simulation results1.
Zhang and Pfister’s verification algorithm [13] is an iterative
algorithm to reconstruct strictly sparse signals. In this algo-
rithm, summarized in Appendix A, the messages correspond to
the vertices (variable and check nodes in the factor graph) and
not to the edges. However, due to its extreme low complexity
(O(n)) it is a good comparison for our simulation results.

III. INTERVAL-PASSING ALGORITHM

Chandar et al. [10] introduced a simple message passing
algorithm for reconstructing non-negative signals using binary

1This algorithm is presented in detail in [14].
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v1

-

(
µc1→v1
Mc1→v1

) �(
max (µc1→v1 , µc2→v1 , µc3→v1)× a1,1
min (Mc1→v1 ,Mc2→v1 ,Mc3→v1)× a1,1

)
-(

µc2→v1
Mc2→v1

) � (
µc3→v1
Mc3→v1

)

Fig. 2: IPA: Updating messages from the variable node v1 to
the measurement node c1.

v1

v2 v3

c1

-

max

(
0,

y(c1)−(Mv2→c1
+Mv3→c1)

a1,1

)
y(c1)−(µv2→c1+µv3→c1)

a1,1



-(
µv2→c1
Mv2→c1

) � (
µv3→c1
Mv3→c1

)

Fig. 3: IPA: Updating messages from the measurement node
c1 to the variable node v1.

measurement matrices. We refer to this algorithm as the IPA
[11], [14], [15]. We modify this algorithm in order to deal
with non-negative real-valued measurement matrices. From
[10], the complexity of the algorithm is O(n(log(nk ))

2 log(k))
which is a good trade-off between the polynomial complexity
of the LP reconstruction, and the linear complexity of the
simple verification decoding [13].

A. Description of the Algorithm

The IPA is an iterative algorithm, and thus messages
are associated with the graphical representation of
the measurement matrix to perform reconstruction. Let
V = {v1, v2, ..., vn} and C = {c1, c2, ..., cm} be respectively
the sets of variable nodes and measurement nodes2 in
the graphical representation of the measurement matrix
A = {aj,i} for 1 ≤ j ≤ m and 1 ≤ i ≤ n. The graphical
representation of A is actually the Tanner graph of the binary
image3 of A, whose edges are labeled by real values at the
non-zero position in A. The graphical representation of A has
the flavor of a non-binary LDPC code Tanner graph [21], [22].

In the IPA, the messages passing through edges are intervals
[µ,M ] corresponding to the lower and upper bounds of the

2Analogous to check nodes in LDPC codes.
3A matrix H = {hj,i} is said to be the binary image of a matrix A =

{aj,i} if hj,i = 1 if aj,i 6= 0 and hj,i = 0 if aj,i = 0

Algorithm 1: Interval-Passing Algorithm
Input : y and A such that y = Ax, L.
Output : x̂ the estimate of x.
Initialization: ∀cj ∈ C, ∀vi ∈ N (cj), µ

(0)
cj→vi = 0 and

M
(0)
cj→vi = y(cj)/aj,i;

for l = 1 to L do
1 foreach vi ∈ V do

foreach cj ∈ N (vi) do
µ
(l)
vi→cj = max

c′j∈N (vi)
(µ

(l−1)
c′j→vi

)× aj,i;

M
(l)
vi→cj = min

c′j∈N (vi)
(M

(l−1)
c′j→vi

)× aj,i;

2 foreach cj ∈ C do
foreach vi ∈ N (cj) do

µ
(l)
cj→vi =

1
aj,i

y(cj)− ∑
v′i ∈ N(cj)

v′i 6= vi

M
(l)
v′i→cj

 ;

if µ
(l)
cj→vi < 0 then
µ
(l)
cj→vi = 0;

M
(l)
cj→vi =

1
aj,i

y(cj)− ∑
v′i ∈ N(cj)

v′i 6= vi

µ
(l)
v′i→cj

 ;

3 for vi ∈ V do
if (l > 1 & µ

(l)
vi→N (vi)

=M
(l)
N (vi)→vi) ‖ l = L

then
x̂(vi) = µ

(l)
vi→N (vi)

;

estimation of the connected variable node. At each iteration l,
the message update from the variable vi to the measurement
node cj is given by:

µ(l)
vi→cj = max

c′j∈N (vi)

(
µ
(l−1)
c′j→vi

)
× aj,i (3)

M (l)
vi→cj = min

c′j∈N (vi)

(
M

(l−1)
c′j→vi

)
× aj,i (4)

and the messages from the measurement node cj to the
variable node vi are updated as:

µ(l)
cj→vi = max

0,
yj −

∑
v′i∈N (cj)\{vi}M

(l)
v′i→cj

aj,i

(5)

M (l)
cj→vi =

yj −
∑
v′i∈N (cj)\{vi} µ

(l)
v′i→cj

aj,i
(6)

where N (vi) (resp. N (cj)) is the set of measurement (resp.
variable) nodes which are the neighbors of vi (resp. cj) in the
Tanner graph of A. Updating messages from a variable (resp.
measurement) node to a measurement (resp. variable) node is
shown in Fig. 2 and 3, respectively.

The IPA is formally given in the Algorithm 1, where L
represents the maximum number of reconstruction iterations.
The reconstruction process stops when the maximum number
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Fig. 4: Simulation results using the designed measurement
matrix A.

of iterations is reached, or the lower bound and the upper
bound of the interval from variable nodes to check nodes has
converged to a common value for every variable node. This
common value is set as the estimate of each connected variable
node value.

B. Comparison Results

We now compare the IPA performance using the non-
negative real valued measurement matrix with the complex
LP reconstruction algorithm, and with simple verification
decoding. We used the LDPC matrix design from an array of
permutation matrices from [23]. We designed an (2, 3)-regular
LDPC matrix with m = 159 and n = 265 and then substituted
the non zero elements in H by a random positive number to
obtain the matrix A.

For each sparsity k, at least 75 random k-sparse signals x
are generated and 50 reconstruction iterations are performed.
The proportion of correct reconstruction results are summa-
rized in the plot of the Fig. 4 for the IPA, the verification
decoding algorithm, and the complex LP. We can see then
that the IPA is a good trade-off between performance and
complexity.

IV. ANALYSIS

In this section, we study the recovery of the IPA on non-
negative real-valued signals. We present the analysis on binary
measurement matrices for the sake of clarity, but the exten-
sion of these results to non-negative real-valued measurement
matrices is straightforward. First, we give a theorem given in
[15] which proves the failure of the IPA on stopping sets. A
stopping set is defined as follows.

Definition 1 ([24]). A stopping set T is a subset of the set of
variable nodes V such that all neighbors of T are connected
to T at least twice.

The cardinality of a stopping set is called the size of the
stopping set.

Theorem 1 ([15]). Let Am×n be a binary measurement
matrix. The IPA fails on the recovery of a signal x if the
non-zero entries contain a stopping set in A.

Proof: We prove that if all variable nodes in T have non-
zero values, the IPA cannot recover them. In other words,
we prove that the bounds of the intervals passing through the
edges of the graphical representation of A never converges,
i.e. we show that ∀v ∈ T such that x(v) > 0, then µ

(l)
v→c <

x(v) < M
(l)
v→c, ∀l ≥ 0,∀c ∈ N (v).

Suppose ∀v ∈ T , x(v) > 0, from the definition of a stopping
set ∀c ∈ N (v), y(c) > x(v). Then, at the initialization (l = 0)
we have:

µ(0)
c→v = 0 < x(v) < y(c) =M (0)

c→v (7)

At the first iteration we have:

µ(1)
v→c = max

c∈N (v)

(
µ(0)
c→v

)
= 0 < x(v) (8)

M (1)
v→c = min

c∈N (v)

(
M (0)
c→v

)
> x(v) (9)

Now consider the update at the measurement node. For the
lower bound of the interval we have:

µ(1)
c→v = max

0, y(c)−
∑

v′∈N (s)\{v}

M
(1)
v′→c

 (10)

<

y(c)− ∑
v′∈N (s)\{v}

x(v′)

 (11)

= x(v) (12)

The last equation stands from the initialization x(v) < y(c) =

M
(1)
v→c. Similarly, for the upper bound at the measurement

node we have:

M (1)
c→v = y(c)−

∑
v′∈N (s)\{v}

µ
(1)
v′→c (13)

> y(c)−
∑

v′∈N (s)\{v}

x(v′) (14)

= x(v) (15)

The last equation results from the initialization x(v) > y(c) =

µ
(1)
v→c.
Thus we obtain µ

(1)
c→v < x(v) < M

(1)
c→v . For l > 1 the

messages from variable nodes to check nodes are simply the
intersection of intervals from the check nodes at the previous
iteration, and then we still have µ(l)

v→c < x(v) < M
(l)
v→c. The

proof is completed by induction for every l > 0.
Theorem 1 also indicates that the IPA fails on reconstruction

of a signal x whose non-zero values form the smallest stopping
set in the measurement matrix A. However, as we explain in
the following example, the smallest stopping set is not the
smallest configuration on which the IPA fails.

Example 1. Consider a stopping set of size four as given
in Fig. 5. According to Theorem 1, the IPA cannot recover
a signal x with non-zero values on {v1, v2, v3, v4}. The
algorithm also fails on a 2-sparse signal x whose non-zero
values are {v1, v3} or {v2, v4}, which implies that the variable
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Fig. 5: Stopping set of size 4

nodes forming a smallest stopping set are not necessarily the
smallest configuration on which the IPA fails. However, the
IPA can recover a 2-sparse signal with non-zero values on
{v1, v2} or {v1, v4}.

Example 1 shows the main difference between the iterative
decoding on the BEC and the signal recovery of the iterative
IPA in compressed sensing. The iterative decoder over the
BEC fails if and only if the erasures contain a stopping set,
while the IPA fails even if the non-zero values do not involve a
stopping set. The following results identify recoverable signals
whose non-zero values are subsets of stopping sets. First, we
show that every zero-value variable node is recoverable by the
IPA. In this paper, we say that a node is zero if its value is
equal to zero.

Lemma 1. The IPA can recover all zero variable nodes.

Proof: Suppose v is a variable node with value 0 and
{c1, c2, ..., cdv} is the set of the dv measurement neighboring
nodes of v with measurement values {α1, α2, ..., αdv}. At each
iteration of the IPA, the message which is sent from cj (j =
1, ..., dv) to v is either [0, 0] or [0, βj ] where 0 < βj ≤ αj .
If v receives at least one [0, 0] from one of its neighbors, the
value of v is recovered as 0. If all messages from every cj to v
are [0, βj ], the decision rule of the algorithm leads to recover
the value of v to the maximum value of lower bounds of the
intervals [0, βj ], which is 0.

Since all zero variable nodes are recovered by the IPA, it is
enough to study the recovery of non-zero variable nodes.

Definition 2. A set of variable nodes S is called a minimal
stopping set, if S forms a stopping set and it does not contain
a smaller stopping set.

It is clear that the smallest stopping set in a measurement
matrix A is a minimal stopping set while a minimal stopping
set is not necessarily the smallest stopping set. The size of the
smallest stopping set is called the stopping distance [25] and
plays a significant role in iterative decoding of LDPC codes
over the BEC.

Theorem 2. Let Am×n be a binary measurement matrix and
VS = {v1, v2, ..., vk} be a subset of variable nodes forming
a minimal stopping set. Let x = [x1, x2, ..., xn]

t ∈ Rn≥0 be
a signal with at most k − 2 non-zero values, i.e. ‖ x ‖0 ≤
k−2 such that the set of non-zero variables is a subset of VS .
Then, the IPA can recover x if there exists at least one zero
measurement node among the neighbors of VS .

Proof: Let M = {c1, c2, ..., cq}, 1 ≤ q ≤ m be the
set of measurement nodes connected to VS . Suppose that
c1 is the only zero measurement node. Since VS forms a
stopping set, there exist at least two zero variable nodes,
say v1, v2, connecting to c1 and there exist non-zero value
measurement nodes connected to v1, v2. Moreover, VS is a
minimal stopping set, so there exists at least one measurement
node, c2 ∈ M\{c1} with only one neighbor in VS\{v1, v2},
namely v3. Otherwise, VS \{v1, v2} will be a smaller stopping
set, which is a contradiction. Suppose c2 has the value α. At
the first iteration, c1 sends [0, 0] to v1 and v2 and v1 and v2
send [0, 0] to their neighbors. Based on the above explanation,
c2 is a neighbor of v1 or v2 or both of them with only one
neighbor in VS \{v1, v2}. At the second iteration, c2 will send
[α, α] to the only variable node v3. So, the value of the variable
node v3 is recovered to α. Since the value of this variable node
is recovered, we can consider this variable node to have value
zero by subtracting α from the value of all measurement nodes
which are the neighbors of v3. Now, we have three variable
nodes v1, v2, v3 whose values have been determined. Again,
with the same discussion, there exists a measurement node
c3 ∈ M\{c1, c2} with only one neighbor in VS\{v1, v2, v3}
which can be recovered in the next iteration. Continuing the
same process will recover all variable nodes.

Example 2. Fig. 6 illustrates the previous theorem considering
the recovery of a signal with 4 non-zero variable nodes in a
minimal stopping set of size 6 in which there exists one zero
measurement node c1 and two zero variable nodes v1 and v2.
Let α, β, γ, δ, η be the non-zero values of c2, c3, c4, c5 and c6,
respectively. Note that c2 is one the measurement nodes with
exactly one neighbor among {v3, v4, v5, v6}. At initialization,
the zero measurement node c1 sends [0, 0] to v1 and v2. And
c2 sends [0, α] to v2 and v3. At the first iteration, v2 sends
[0, 0] to c2 which causes c2 sends [α, α] to v3. Thus, the value
of v3 is recovered as α. Another measurement node with only
one neighbor in {v4, v5, v6} is c3. Again this measurement
node sends [β, β] to v4 and so the value of v4 is recovered
as β. The same process results in the recovery of all variable
nodes.

In Theorem 2 we proved that the existence of at least one
zero measurement node is enough to reconstruct a signal x
whose non-zero values are a subset of a minimal stopping set.
As we will show in the following Lemma and Corollary, in
regular measurement matrices we can give an upper bound on
the number of variable nodes forming a subset of a minimal
stopping set S such that there exists at least one measurement
node among the neighbors of S with no connection to this
subset of variable nodes. This result shows that in a minimal
stopping set, if the number of non-zero values is bounded by
a fixed number, the IPA can recover the signal x.

Lemma 2. Let Am×n be a binary (dv, dc)-regular measure-
ment matrix and let g = 2r be the girth of the Tanner graph
corresponding to A. Then, every subset N of variable nodes
such that

|N | <
∑r−1
i=0 (dv − 1)d

i
2e(dc − 1)b

i
2c

dv
(16)
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Fig. 6: Reconstruction of a signal with non-zero elements in a minimal stopping set of size 6 with the IPA when there exists
one zero measurement node. (a) the first messages sending from measurement nodes to variable nodes, (b) messages from

the measurement nodes to variable nodes in the first iteration (recovery of v3), (c) the message to v4 in the second iteration
(recovery of v4), (d) the message to v5 in the third iteration (recovery of v5), (e) the message to v6 in the fourth iteration

(recovery of v6).

contains a measurement node which does not have any neigh-
bor in N .

Proof: The proof is obtained by using lower bounds on
the number of measurement nodes given in [26]. According
to this bound,

m ≥
r−1∑
i=0

(dv − 1)d
i
2e(dc − 1)b

i
2c. (17)

Now, suppose N is a subset of variable nodes. Since the
matrix is regular, the maximum number of measurement nodes
that can be connected to the variable nodes in N is at most
|N |dv . If |N |dv <

∑r−1
i=0 (dv−1)d

i
2e(dc − 1)b

i
2c which results

|N | <
∑r−1

i=0 (dv−1)d
i
2e(dc−1)b

i
2c

dv
, there exists at least one

measurement node which does not have any connection to
N .

Corollary 1. Suppose Am×n is a binary (dv, dc)-regular
measurement matrix with girth g = 2r. Let N be a subset

of k variable nodes that forms a minimal stopping set. If

|N | <
∑r−1

i=0 (dv−1)d
i
2e(dc−1)b

i
2c

dv
, then the IPA can recover a

signal x with non-zero values in N . In the case that the girth
is 6, |N | is bounded by |N | ≤ (dv−1)dc

dv
= (dv−1)k

m . If the
girth is 8, |N | is bounded by |N | ≤ (dv−1)dc+(dv−1)(dc−1)

dv
.

The following theorem gives a sufficient condition on exact
recovery of a signal whose support is a subset of a minimal
stopping set and all neighboring measurement nodes are non-
zero.

Theorem 3. Let Am×n be a binary measurement matrix and
VS = {v1, v2, ..., vk} be a subset of variable nodes forming
a minimal stopping set. Let x = [x1, x2, ..., xn]

t ∈ Rn≥0 be a
signal with at most k− 1 non-zero values, i.e. ‖ x ‖0 ≤ k− 1
such that the set of non-zero variables is a subset of VS .
Suppose all measurement nodes have non-zero values. Then,
the IPA can recover x if
1. There exists at least one measurement node cj such that
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the variable nodes {v1, v2, ..., vp} which are connected to cj
have non-zero values and do not share a measurement node
other than cj .
2. The measurement nodes {c1, c2, ..., cl} connected to
{v1, v2, ..., vp} do not have non-zero neighboring variable
nodes excluding {v1, v2, ..., vp}.

Proof: Suppose {v1, v2, ..., vp} have non-zero values
{α1, α2, ..., αp}. Since {c1, c2, ..., cl} are connected to zero
variable nodes except for {v1, v2, ..., vp} and {c1, c2, ..., cl}
are not shared by more than one variable node in
{v1, v2, ..., vp}, the value of every measurement node in
{c1, c2, ..., cl} lies in {α1, α2, ..., αp}. There exists a mea-
surement node in {c1, c2, ..., cl} that has only one neighbor
in VS\{v1, v2, ..., vp}. Otherwise, VS\{v1, v2, ..., vp} will be
a smaller stopping set. Without loss of generality, suppose c1
is a measurement node with this property which is connected
to v1 with the value α1. In the first iteration, cj sends

∑p
i=1 αi

to its neighbors in {v1, v2, ..., vp} and c1 sends [0, α1] to its
neighbors. In the second iteration, cj sends [α1,

∑p
i=1 αi] to v1

and c1 and other neighbors of v1 send intervals with the upper
bound α1 to v1 which results that the message [α1, α1] is sent
from v1 to its neighbors. Thus, the value of v1 is recovered as
α1 and all measurement nodes which are the neighbors of v1
are satisfied. So, c1 is satisfied and its value can be considered
as zero. The recovery of other variable nodes is followed from
Theorem 2 which implies that existence of at least one zero
measurement node is enough to recovery of all variable nodes
in a configuration forms as a stopping set.

The following example shows how the IPA can recover a
vector x under the conditions of the Theorem 3.

Example 3. Fig. 7 depicts the recovery of the three non-zero
variable nodes in {v1, v2, v3} a minimal stopping set of size 5
in which all measurement nodes are non-zero. First, note that
the measurement node c1 and the variable nodes v1, v2, v3
satisfy the two conditions of Theorem 3. Thus, if the non-zero
variable nodes v1, v2, v3 have values α, β, γ, then c1 has value
λ = α + β + γ and other measurement nodes c2, c3, c4, c5
have the values α, β, γ and γ respectively. For simplicity, we
just show how the value of the variable node v3 is recovered.
At initialization, c1 sends [0, α + β + γ] to v3 and c5 sends
[0, γ] to v3. In the first iteration, c1 receives [0, α] and [0, β]
from v1 and v2, respectively and c5 receives [0,min(α, γ)]
from v5. Then, c1 sends [γ, α + β + γ] to v3 and c5 sends
[0, γ] or [γ −min(α, γ), γ] = [γ − α, γ] to v3. In the second
iteration, v3 sends [γ, γ] to its neighbors which makes c5 is
satisfied and can be considered as a zero measurement node.
Now, there exists a zero measurement node in this minimal
stopping set. Theorem 2 results the recovery of other variable
nodes.

Theorems 2 and 3 give sufficient conditions on the recovery
of signals whose non-zero values form a subset of a minimal
stopping set. To show how small stopping sets affect the
performance of the IPA, we provide simulation results of the
performance of the IPA in the next section.

α β γλ = α + β + γ

�� �� �	 �
 ��

�� �� �	 �
 ��

η= γ

[0, α + β + γ]

[0, γ]

[0, γ]

0 0

(a)

α β γλ = α + β + γ

�� �� �	 �
 ��

�� �� �	 �
 ��

η= γ

0 0

[0,min	{α, γ}][0, α]

[0, β]
[0, γ] [0, γ]

(b)

α βλ = α + β + γ

�� �� �	 �
 ��

�� �� �	 �
 ��

η= γ

0 0

[γ, α + β + γ]

[0, γ] [γ − α, γ]or

γ

γ

(c)

Fig. 7: Reconstruction of a signal with non-zero elements in
a support of a stopping set of size 5 with IPA and with no

zero measurement node. (a) the first messages which are sent
from check nodes to variable nodes, (b) messages from

variable nodes in the first iteration, (c) messages from check
nodes in the second iteration.

V. SIMULATION RESULTS

In this section we provide simulation results of the re-
construction performance of the IPA by establishing the link
with the analysis done previously related to stopping sets.
From Theorem 1, we know that if the support of the signal
x is, or contains, a stopping set, the IPA cannot recover it.
The stopping sets in the measurement matrix A are then
responsible for most of the failures of the reconstruction via
the IPA.

Orlitsky et al. derived a formula to obtain the average
distribution E(s) for any size s of stopping sets for a (dv, dc)-
regular LDPC code of size n [27]:

E(s) =

(
n

s

)coef
((

(1 + x)
dc − xdc

) dv
dc
n

, xsdv
)

(
ndc
sdv

) (18)
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TABLE I: Stopping distance smin for the length n = 768
LDPC codes from the IEEE802.16 standard with different
rates R. The number of stopping sets of weight smin is

denoted Nsmin
(from [28] and [30])

R smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4

1/2 14 32 32 0 32 32
2/3 A 8 64 0 0 160 160
2/3 B 12 64 128 384 1120 3352
3/4 A 9 32 128 576 2192 9696
3/4 B 4 16 0 0 32 216

5/6 6 96 672 5376 36512 280128
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Fig. 8: IPA performance on the IEEE 802.16e LDPC codes
of length n = 768.

where coef
(
p(x), xi

)
denotes the coefficient of xi in the

polynomial p(x). The average distribution of stopping sets
can theoretically be computed using the previous formula,
however it has to be done by numerical methods due to its
large complexity. To be able to practically find stopping sets,
algorithms have been proposed as in [28] and [29] in the
channel coding context. In their recent work, Rosnes et al.
[28], [30] provide the stopping set repartition on various LDPC
codes based on their algorithm to find small stopping sets. In
[30] they focused more specifically on the LDPC codes from
the IEEE 802.16e standard [31], referred as the WiMax codes.
These codes are circulant-based LDPC codes, and the IEEE
standard provides the design of codes for 19 different lengths.
Also, one model matrix to design codes with rates 1/2, and 5/6
is provided, and two model matrices are provided for codes
with rates 2/3 and 3/4 (denoted by A and B). We generated all
the codes of length n = 768 according to the IEEE standard
and we remind the stopping set distribution of these codes
in Table I in which we adopted the notation of Rosnes et
al. [30]. We used these 6 codes as measurement matrices and
simulate the recovery performance via the IPA. The simulation
results are shown in Fig. 8 where the proportion of correct
reconstruction of sparse signals are plotted versus the sparsity
measure k/n. For each sparsity k and for each matrix, 500 k-
sparse signals are generated, and a maximum of 50 iterations
of the IPA for the reconstruction are done.

These results emphasize the connection between the stop-

ping set distribution and the performance of the IPA from
the theorems of the previous section. For instance, it is clear
from Table I and the Fig. 8 that the stopping set spectra are
responsible for most of the failures of the IPA. Indeed at a
constant rate (e.g. 2/3), the measurement matrix with higher
stopping distance has a slightly better performance. However,
we can see that even if the matrix A with rate 3/4 has a
better stopping distance than the rate 5/6 matrix, it performs
better. This observation comes from the stopping set spectra
as matrix A with rate 3/4 has only 16 stopping sets of weight
4, and the next ones have weight 7 (and there are a few of
them) whereas for the rate 5/6, the number of stopping sets of
weight 6 or 7 are very numerous. Then, although the stopping
set spectra gives an insight of the performance of the IPA on
a given measurement matrix, it is not obvious to foresee this
performance because it depends on the stopping distance and
on the number of stopping sets of each weight.

VI. CONCLUSION AND DISCUSSION

In this paper, we described in details the IPA that we
modified in order to deal with the non-negative measurement
matrices. As expected this algorithm presents better results
than the simple verification decoding, and is less complex
than the l1-minimization reconstruction via the LP. We also
provided an analysis for the signal recovery of the IPA on
stopping sets. Indeed the IPA fails to recover non-zero values
when these values correspond with a stopping set of the
measurement matrix. However we provided results that give
sufficient conditions on which the IPA can recover a k′-sparse
signal in a minimal stopping set of size k whose support
is a subset of the stopping set and k′ < k. Simulation
results on LDPC codes whose stopping set distribution is
known demonstrate the relation between the stopping sets
and the performance of the IPA. However the exact influence
of the stopping distance and the number of stopping sets
present in the measurement matrix will be addressed in future
publication.

Future work also includes to analyze the failure of the IPA
in presence of noise and find a scheme to recover at least
the support of the signal x. Finding configurations on which
the IPA fails when the measurements are noisy might help
to construct better measurement matrices free of topological
structures that leads to failures of reconstruction.
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APPENDIX A
VERIFICATION DECODING

In the verification algorithm each variable node can have
two states; one unverified state [*] (no value has yet been
estimated at the corresponding variable node), and one verified
state (the variable node has been estimated). Once a variable
node has been estimated the assigned value cannot be modi-
fied.
The different steps of the algorithm are summarized in the
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Fig. 9: Verification decoding algorithm: First Step (Left);
Third Step (Right)

next four steps.
Step 1. Verify as 0 the variable nodes which are the neighbors
of zero-value measurement nodes.
Step 2. Verify variable nodes connected to measurement nodes
with degree one (only one edge connected) as the value of the
measurement node.
Step 3. Verify a single variable node connected to two
measurement nodes with the same measurement value as the
common value of the measurement nodes.
Step 4. Subtract the values of the verified variable nodes
from the neighboring measurement nodes and then remove
all verified variable nodes and edges connected to them on
the factor graph.

Steps 1 to 4 are repeated until the success of the recon-
struction or until no more progress in the reconstruction is
witnessed. The Fig. 9 sketch the Steps 1 and 3. The justifi-
cation of Step 3 is based on the observation that over large
alphabets the probability that two independent measurements
are equal is quite small. Then, any two common measured
values are likely to be generated by the same set of non-zero
data. This observation holds for large alphabets and for real
numbers too.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[2] ——, “For most large underdetermined systems of linear equations, the
minimal l1 norm solution is also the sparsest solution,” Comm. on Pure
and Applied Math., vol. 59, no. 6, pp. 797–829, Jun. 2006.

[3] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
J. Comput., vol. 24, pp. 227–234, 1995.

[4] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming
to decode binary linear codes,” IEEE Trans. Inf. Theory, vol. 51, no. 3,
pp. 954–972, Mar. 2005.

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, Aug. 1998.

[6] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[7] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Compressed sensing
reconstruction via belief propagation,” Tech. Rep., 2006.

[8] H. V. Pham, W. Dai, and O. Milenkovic, “Sublinear compressive sensing
reconstruction via belief propagation decoding,” in Proc. IEEE Int.
Symp. Inform. Theory, Seoul, Korea, Jun. 28–Jul. 3 2009, pp. 674–678.

[9] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” Proc. Nat. Academy of Sciences, vol.
106, no. 45, pp. 18 914–18 919, Sep. 2009.

[10] V. Chandar, D. Shah, and G. Wornell, “A simple message-passing
algorithm for compressed sensing,” in Proc. IEEE Int. Symp. Inform.
Theory, Austin, TX, USA, Jun. 13–18 2010, pp. 1968–1972.

[11] V. Ravanmehr, L. Danjean, D. Declercq, and B. Vasic, “On iterative
compressed sensing reconstruction of sparse non-negative vectors,”
in Proc. 4th Int. Symp. on Appl. Sci. in Biomedical and Commun.
Technologies, Barcelona, Spain, Oct. 26–29 2011.

[12] F. Zhang and H. Pfister, “Compressed sensing and linear codes over real
numbers,” in Inf. Theory and Applicat. Workshop, Feb. 2008, pp. 558
–561.

[13] F. Zhang and H. D. Pfister, “On the iterative decoding of
high-rate LDPC codes with applications in compressed sensing,”
IEEE Trans. Inf. Theory, (to appear) 2012. [Online]. Available:
http://arxiv.org/abs/0903.2232

[14] L. Danjean, V. Ravanmehr, D. Declercq, and B. Vasic, “Iterative recon-
struction algorithms in compressed sensing,” in Proc. 19th Telecommun.
Forum, Belgrade, Serbia, Nov. 22–24 2011, pp. 537–541.

[15] A. R. Krishnan, S. Sankararaman, and B. Vasic, “Graph-based iterative
reconstruction of sparse signals for compressed sensing,” in Proc. 10th
Int. Conf. on Telecommun. in Modern Satellite, Cable and Broadcasting
Services, Nis, Serbia, Oct. 5–8 2011, pp. 133–137.

[16] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA,
USA: M.I.T. Press, 1963.

[17] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[18] A. G. Dimakis and P. Vontobel, “LP decoding meets LP decoding: a
connection between channel coding and compressed sensing,” in Proc.
47th Allerton Conf. on Commun., Control, and Computing, Monticello,
Illinois, USA, Sep. 30–Oct. 2 2009, pp. 8–15.

[19] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, “LDPC codes for
compressed sensing,” submitted to IEEE Trans. Inf. Theory, Dec. 2010.
[Online]. Available: http://arxiv.org/abs/1012.0602

[20] A. Maleki and A. Montanari, “Analysis of approximate message passing
algorithm,” in Proc. 44th Annu. Conf. on Inform. Sci. and Syst.,
Princeton, NJ, USA, Mar. 17–19 2010, pp. 1–7.

[21] M. C. Davey and D. J. C. MacKay, “Low-density parity check codes
over GF(q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[22] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary
LDPC Codes Over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp.
633–643, Apr. 2007.

[23] D. V. Nguyen, S. K. Chilappagari, B. Vasic, and M. W. Marcellin,
“On the construction of structured LDPC codes free of small trapping
sets,” IEEE Trans. Inf. Theory, (to appear) 2012. [Online]. Available:
http://arxiv.org/abs/1008.4177

[24] C. Di, D. Proietti, I. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory,, vol. 48, no. 6, pp. 1570–1579, Jun.
2002.

[25] M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codes,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 922–
932, Mar. 2006.

[26] S. Hoory, “The size of bipartite graphs with a given girth,” J. Combi-
natorial Theory Series B, vol. 86, no. 2, pp. 215–220, Nov. 2002.

[27] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution
of LDPC code ensembles,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp.
929–953, Mar. 2005.

[28] E. Rosnes and O. Ytrehus, “An efficient algorithm to find all small-size
stopping sets of low-density parity-check matrices,” IEEE Trans. Inf.
Theory,, vol. 55, no. 9, pp. 4167–4178, Sep. 2009.

[29] G. Richter, “Finding small stopping sets in the tanner graphs of LDPC
codes,” Munich, Germany, Apr. 3–7 2006.

[30] E. Rosnes, O. Ytrehus, M. Ambroze, and M. Tomlinson, “Addendum to:
An efficient algorithm to find all small-size stopping sets of low-density
parity-check matrices,” IEEE Trans. Inf. Theory,, vol. 58, no. 1, pp. 164
–171, Jan. 2012.

[31] “IEEE standard for local and metropolitan area networks part 16:
Air interface for fixed and mobile broadband wireless access systems
amendment 2: Physical and medium access control layers for combined
fixed and mobile operation in licensed bands and corrigendum 1,” IEEE
Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment
and Corrigendum to IEEE Std 802.16-2004), Feb 2006.


