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Abstract—We describe a family of instanton-based optimiza- of bit flipping algorithms and expander based arguments and
tion methods developed recently for the analysis of the error [13], [14], [15] for analysis of the LP decoder).
floors of low-density parity-check (LDPC) Codes. Instantons a@ A common feature of all the analysis methods used in

the most probable configurations of the channel noise which derivi th tofi Its is that th derlvi
result in decoding failures. We show that the general idea 9€MVING the asymptotic results 1S thal the underlying as-

and respective optimization technique is applicable broadly to sumptions hold in the limit of infinitely long code and/or

a variety of channels, discrete or continuous, and variety of are applicable to an ensemble of codes. Hence, they are of

sub-optimal decoders. Specifically, we consider: iterative belief |imited use for the analysis of a given finite length code. The

propagation (BP) decoders, Gallager type decoders, and linear yarformance of a code under a particular decoding algorithm

programming (LP) decoders performing over the additive white . .

Gaussian noise channel (AWGNC) and the binary symmetric 'S characterized by the bit-error-rate (BER) or the_ frame-

channel (BSC). error-rate (FER) curve plotted as a function of the sigoal-t
The instanton analysis suggests that the underlying topological noise ratio (SNR). A typical BER/FER vs SNR curve consists

structures of the most probable instanton of the same code of two distinct regions. At small SNR, the error probability

but different channels and decoders are related to each other. decreases rapidly with SNR, with the curve looking like a

Armed with this understanding of the graphical structure of the terfall. The d | d t moderat | turni
instanton and its relation to the decoding failures, we suggest a wateriall. 1he decrease slows down at moderate values turning

method to construct codes whose Tanner graphs are free of tee  INt0 the error floor asymptotic at very large SNR [16]. This
structures, and thus have superior error floors. transient behavior and the error floor asymptotic originate

Index Terms—Low-density parity-check codes, error floor, from the sub-optimality of decoder, i.e., the ideal maximum
lterative Decoding, Linear Programming Decoding, Instantons, likelihood (ML) curve would not show such a dramatic change

Pseudo-Codewords, Trapping Sets in the BER/FER with the SNR increase. While the slope of
the BER/FER curve in the waterfall region is the same for
l. INTRODUCTION almost all the codes in the ensemble, there can be a huge

_ variation in the slopes for different codes in the error floor
LDPC codes [1], [2], have been the focus of intense researelio, (6], since for sufficiently long codes the error floor

over the past decade because they can approach theorefjfal)omenon manifests itself in the domain unreachable by
limits of reliable transmission over various channels eween ).+« torce Monte-Carlo (MC) simulations, analytical ek

decoded by sub-optimal low complexity algorithms. 5.0 hacessary to characterize the FER performance.
Two important classes of such algorithms are (i) iteratise d Finite length analysis of LDPC codes is well understood

coding algorithms, which include message passing algosth . jecqding over the binary erasure channel (BEC). The
(variants of the BP algorithm [3] and Gallager type algonith o6 4er fajlures in the error floor domain are governed by

[1]), and bit flipping algorithms [4] (serial and paralleBs .,mpinatorial structures known as stopping sets [17]. |Stap

well as (i) the LP decoding algorithm [5]. Chara‘Cteriz"‘tiosetdistributions of various LDPC ensembles have beenedudi
of the error performance of sub-optimal algorithms (or si'ynpb

= q,\i/ Orlitsky et al. (see [18] and references therein for related
decoders) is still an open problem, and has been addresseq,fgys) Unfortunately, such a level of understanding of the
both LDPC code ensembles, as well as for individual cod

; ! COURRCoding failures has not been achieved for other important
[6]. Error performance of LDPC codes in the asymptotic I'm'éhannels such as the BSC and the AWGNC.

of the code length is well characterized for a large class ofIn this paper, we focus on the decoding failures of LDPC

sub-optimal decoders over different channels (the intedes .o for iterative as well as LP decoders over the BSC and
reader is referred tIO [1_]h[7], [8], [9] for generalftheoré %the AWGNC. Failures of iterative decoders for graph based
message passing algorithms, [4], [10], [11], [12] for as&ly .,4es were first studied by Wiberg [19] who introduced the
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decoders using the notion of the fundamental polytope. TheyChernyaket al. [32] and Stepanowet al. [25] suggested
showed that the pseudo-codewords arising from the Tannmerpose this problem of finding the instantons as a special
graph covers are identical to the pseudo-codewords of the @ptimization problem. This optimization method was built i
decoder. Vontobel and Koetter [23] also studied the ratatidhe spirit of the general methodology, borrowed from stiatié
between the LP and the min-sum decoders. physics, guiding exploration of rare events which contebu
For iterative decoding on the AWGNC, MacKay and Postdhe most to the BER/FER. The optimization method allowed
[24] were the first to discover that certain “near codeword$d discover in [25], the set of most probable instantons for
are to be blamed for the high error floor in the Margulithe AWGNC and iterative decoder. The operational utility of
code. Richardson [16] reproduced their results and deedlap the method was illustrated on some number of moderate size
computation technique to predict the performance of a givewamples and dependence of the instanton structure on the
LDPC code in the error floor domain. He characterized thmumber of iterations was observed. The general optimizatio
troublesome noise configurations leading to the error floorethod was substantially improved and refined in [33] for
using combinatorial objects termed trapping sets and iestr the LP decoder over continuous channels (with main enabling
a technique (of a Monte-Carlo importance sampling type) example chosen to be the AWGNC). The pseudo-codeword-
evaluate the error rate associated with a particular clésssearch (PCS) algorithm of [33] was essentially exploring in
trapping sets. The method from [16] was further refined fan iterative way the Wiberg formula, treating an instanton
the AWGNC by Stepanoet al.[25] who introduced the notion configuration as a median between a pseudo-codeword and
of instantons In a nutshell, an instanton is a configuration othe zero-codeword.
the noise which is positioned in between a codeword (say o o ) o
zero codeword) and another pseudo-codeword (which is nott Was shown empirically that, initiated with a sufficiently
necessarily a codeword). Incremental shift (allowed by tH9iSy configuration, the algorithm converges to an instanto
channel) from this configuration toward the zero codewoid Sufficiently small number of steps, independent or weakly
leads to correct decoding (into the zero-codeword) whif€Pendent on the code size. Repeated multiple times, the
incremental shift in an opposite direction leads to a f&uurmethod outputs the set .of instanton configurations which ce_m
In principle, one can find this dangerous configuration of tHdrther be used to estimate the BER/FER performance in
noise by exploring the domain of correct decoding surramg]dithe transient and error floor domain. The definition of the

the zero codeword, and finding borders of this domain — tffgstantons and the instanton search method were extended in
so-called error-surface. If the channel is continuous etiner- [34] t0 the BSC. In this special case, the instanton search
surface consists of continuous patches while configuraiion 2/90rithm is provably efficient, in the sense that it outputs
the noise maximizing the error probability over a patch {&n instanton in small number of steps, and that the weight
called an instanton. The term instanton introduced imjtid  ©f the pseudo-codeword found in the intermediate steps is
the context of disordered systems is also known under tRPnotonically decreasing. (See also [35] for an exhausiste
names ofsaddle-pointor optimal fluctuation and is common ©Of réferences for this and related subjects.)
in modern theoretical physics (see [25] and referencesitier

As stated above, the instantons that affect the deCO(ég

performance in the error floor region are extremely rare, a@ rithms) as well as LP decoding over the BSC and the
hence identifying and enumerating them is a challengink tas\yGNC. We explain the notion of instanton and elaborate
However, once this difficulty is overcome, the knowledge qf, the connections between instantons and trapping sets as
the trapping set/pseudo-codeword distribution can be sed, e a5 pseudo-codewords. We then describe algorithms to
evaluate the performance of the code. It can also be u rch for instantons. By using thes5, 64, 20] Tanner code
to guide optimization of the code and design of improvefyg) a5 an enabling example, we illustrate the performance
decoding strategies. In this paper, we focus on the methqsie instanton search technique outputting the set of most
use_d to identify the most relevant noise configurations f%rrobable instantons. By identifying that all decoding dedis
various decoders and channel models. can be attributed to the presence of certain subgraphs, we
Previous investigation of the problem include the workqnsirct a code avoiding this subgraph and show that this
by Kelley and Sridhara [26] who studied pseudo-codeword e outperforms the original code. Throughout the paper, w
arising from graph covers z_ind derived bounds on the MiNiMYgl,s on the BSC and the AWGNC and while the underlying
pseudo-codeword weight in terms of the girth and the minky,roach is similar for both channels, rigorous statemests

mum left-degree of the underlying Tanner graph. The boungls made for BSC [34], while respective AWGNC statements
were further investigated by Xia and Fu [27]. Smarandache .« from experiments only.

and Vontobel [28] found pseudo-codeword distributions for

the special cases of codes from Euclidean and projectiveThe rest of the paper is organized as follows. In Section I,
planes. Pseudo-codeword analysis has also been extendedeantroduce the notation and provide the required backgtou
the convolutional LDPC codes by Smaranda@teal. [29]. material. The notions of decoding failures and instantaes a
Milenkovic et al. [30] studied the asymptotic distribution ofdiscussed in Section llI, followed by a description of imgtan
trapping sets in regular and irregular ensembles. Wetngl. search algorithms for different decoders in Section IV. We
[31] proposed an algorithm to exhaustively enumerate icertallustrate numerical results in Section V and conclude in
trapping sets. Section VI.

In this paper, we discuss failures of iterative decoders
ecifically the BP algorithm and the Gallager A/B al-



Il. PRELIMINARIES C. Decoding Algorithms

A. LDPC Codes 1) Message Passing Decoderslessage passing decoders
qrg')erate by passing messages along the edges of the Tanner
c . .

r%?ph representation of the code. Gallager in [1] proposed
two simple binary message passing algorithms for decoding
over the BSC; Gallager A and Gallager B. There exist a large
number of message passing algorithms (the BP algorithm, the
rHin-sum algorithm, quantized decoding algorithms, decode

o] . .

with erasures to name a few [7]) in which the messages belong

LDPC codes belong to the class of linear block codes whi
can be defined by sparse bipartite graphs [37]. The Tan
graph [37]G of an LDPC codeC is a bipartite graph with
two sets of nodes: the set of variable nodles- {1,2,...,n}
and the set of check nodegs = {1,2,...,m}. The check
nodes (variable nodes resp.) connected to a variable n
(check node resp.) are referred to as its neighbors. The get larger alphabet
of neighbors of a node: is denoted byN (u). The degree ’

d, of a nodew is the number of its neighbors. A vector Lety = (y{,;gl%'”’y")’ an n-tuple be the input to the
v = (v1,vs,...,v,) is & codeword if and only if for each decoder. Letv,”, denote the message passed by a variable

) —a O ) : by
check node, the modulo two sum of its neighbors is zerBd€? € V' 10 its neighboring check node € C' in the k

An (n,~, p) regular LDPC code has a Tanner graph with iteration apdw&ii den_ote th<=T messagg pasg_ed by a check

variable nodes each of degreeandn+y/p check nodes each no%ea to its neighboring varlable .node Additionally, Iet.

of degreep. This code has length and rater > 1—~/p [1]. It  @x—i denotekthe set of all incoming messages to variable

should be noted that the Tanner graph is not uniquely defing@de: and wi\)aﬁ- denote the set of all incoming messages

by the code and when we say the Tanner graph of an LDpEVariable node except from check node.

code, we only mean one possible graphical representationGallager A/B Algorithm: The Gallager A/B algorithms are
hard-decision-decoding algorithms in which all the messag
are binary. With a slight abuse of the notation, |let._.; =

B. Channel Assumptions m| denote the number of incoming messages tehich are

We assume that a binary codewayds transmitted over a €qual tom € {0,1}. Associated with every decoding round

noisy channel and is received gs The support of a vector ¥ and variable degreé; is a threshold;, 4,. The Gallager B

y = (1, Y2, - - -, yn), denoted by supy), is defined as the setalgorithm is defined as follows.

of all positionsi such thaty; # 0. In this paper, we consider 0)

binary input memoryless channels with discrete or contiisuo Yisa = Yi
output alphabet. As the channel is memoryless, we have
o®. = S W) | mod2
Pr(yly) = [ ] Pr(@:lv:) JEN @i

eV 1, If |wi<2x—>z = 1| Z bk7di
and hepce can be qharacterized}hygji|yi), the probgbility wf@a = 0, if |wi’ilﬁi = 0| > bp.a,
that ; is received given thay; was sent. The negative log- 7, otherwise
likelihood ratio (LLR) corresponding to the variable node
V' is given by The Gallager A algorithm is a special case of the Gallager B

. algorithm with b, 4, = d; — 1 for all k. At the end of each
v = log <PM> ) iteration, a decision on the value of each variable node dema
Pr(gilyi = 1) based on all the incoming messages and possibly the received

Two binary input memoryless channels of interest are t&lue. _ o _ _

BSC with output alphabef0, 1} and the AWGNC with output The BP Algorithm: A soft decision decoding algorithm,
alphabetR. On the BSC with transition probability, every which is the best possible one if the messages are calculated
transmitted bity; € {0,1} is flipped® with probability e and locally in the Tanner graph of the code, is the BP algorithm

is received agj; € {0,1}. Hence, we have (also known as the sum-product algorithm). With a moderate
_ abuse of notation, the messages passed in the BP algorithm
{ log (=) if g, =0 are described below:
Vi = € [T S
log (176) if 9, =1 Wz(i)a —
For the AWGNC, we assume that each bijt € {0,1} * . 1 1
is modulated using binary phase shift keying (BPSK) and @, .; = 2tanh” H tanh (2%%& )
transmitted agj, = 1 — 2y; and is received ag;, = y, + n;, JEN (a)\i
. 5 )
where {n;} are i.i.d. N(0,0°) random variables. Hence, we wl@a — oyt Z w((slil
have SEN i)\
2yi
Yi= -

o The result of decoding aftek iterations, denoted by(*), is

determined by the sign of!"™ = ~; R f
1The event of a bit changing frord to 1 and vice-versa is known as (k) y *) g i ?Z)JF ZaeN(%) Wa—i
flipping. m,;’ > 0thenxz;”’ =0, otherwisezr;”’ = 1.



In the limit of high SNR, when the absolute value of theodeword. The LCLP can fail, generating an output which is
messages is large, the BP algorithm becomes the min-soot a codeword.

algorithm, where the message from the checko the bit It is appropriate to mention here that the LCLP can be
looks like: viewed as the zero temperature version of BP-decoder Igokin
(k) 1 (k=1) . (k—1) for the global minimum of the so-called Bethe free energy
Wami = M@0 0] H sign(w; 2, ") functional [39].
JEN (o) \i
The min-sum algorithm has a property that the Gallager 111. DECODING FAILURES AND INSTANTONS

A/B and the LP decoders also possess — if we multiply all To ch terize th ; f dina/decodi
the likelihoodsy; by a factor, all the decoding would proceed oc ?ratlz_erlze de per ormanceto ¢ a co 'rt'g e;,o mg:
as before and would produce the same result. Note that Wes&geme or linear codes over any output Symmetric channel,
not have this “scaling” in the BP algorithm. one can assume, without loss of generality, the transnmissio

To decode the message in complicated cases (when ﬂgeth?[hall-zi.rof—.codevvtor.d, -€y :t 0, WS.?.” the degﬁ!ng
message distortion is large) we may need a large num orithm satisfies certain symmetry conditions (see m!

of iterations, although typically a few iterations would b and Lemma 1 in [7]). The iterative decoding algorithms that
’ & consider in this paper satisfy these symmetry conditions

sufficient. To speed up the decoding process one may ch% " fthe t 2 f the all de
after each iteration whether the output of the decoder idid va € assumption ot the fransmission ot the afl-zero-codewor

codeword, and if so halt decoding also holds for the LP decoding of linear codes on output
2) Line:ar Programming DecoderThe ML decoding of symmetric channels, as the polytogeis highly symmetric
the codeC allows a convenient LP formulation in terms o nd looks exactly the same from any codeword (see [5] for

the codeword polytop@oly(C) [5] whose vertices correspondprooﬂ' Heljcefor_t h, we assume that= 0. .
to the codewords inC. The ML-LP decoder findsf — A decoding failure is said to have occurred if the output of

(fh f,) minimizing the cost functiory™"_, , f; subject the decoder is not equal to the transmitted codeword (adl-ze
v Jn i=1 liJi

to thef € poly(C) constraint. The formulation is compact bu{:otdeword)f. Pr?babn;ti/hof gNdeci)d;r f;';\l;lure, orbthe frarmmnerd
impractical as the number of constraints is exponentiahe grate as aunction of the B= Ey/No) can be expresse

code length. as.

Hence arelaxed polytope is defined as the intersection of FER(s) = Zps(y)g(y), (5)
all the polytopes associated with the local codes introddice p
all the checks of the original code. Associatiag, .. ., f,)

with bits of the code we require where the sum goes over all the possible outputs of the

channel for the zero-codeword input. In case of a continuous
0<f;i <1, VieV (1) output channel, the sum becomes an integral— [ dg, and
the channel pr ility m function m r ilit
For every .check nod'ez, let M'(«) denote the set of variable deengit;fur?ctﬁ)r?:t}aggé(g;‘s:s 1_“;5;; inbg: (5Si:dpe§:§3
nod_es which are neighbors of. Le_t Ea - (T S Na) : to be zero, in the case of successful decoding, and is unity in
7| is ever}. The polytopeR, associated with the check nodeye ¢age of failurer, (9) is the probability of observing at
a is defined as the set of point§, w) for which the following o output of a channel characterized by the SNR

constraints hold Calculating the above sum/integral exactly is not feasible
0<war <1, VT € E,, (2) and the instanton-based approach consists of approxignatin
> we o — 1 3) the sum/integral by a finite number of terms corresponding to

T€Eq Tt the most probable failures — the instantons. This approtidma

fi=rep, r3iWar, Vi€ N(a) (4)  becomes asymptotically exact in the limit of large SNR,
Now, let @ = N, Q. be the set of pointéf, w) such that (1)- while at smaller_ SNRs, more terms are needed to obta_lin
(4) hold for alla € C. (Note thatQ, which is also referred accurate approximation for the FER_. Note that _the details

to as the fundamental polytope [38], [22], is a function o¢f the approximate evaluations are different for discretd a

the Tanner grapki” and consequently the parity-check matri)gon_tinuous channels. In the discrete case, the numberméter
H representing the cod.) The linear code linear program'S finite. We account for thé-most probable configurations,

(LCLP) can be stated as and FER(s) =~ ZﬁleBPS(yﬁ)., where the multlpllcny
factor Mg counts the number of instantons equivalent under
min Z%fi’ s.t. (f,w) € Q. bit permutations. For continuous channels, an instanton is
Ew) v a stationary point of the respective integrand. By statipna

For the sake of brevity, the decoder based on the LCLP RgiNt, we mean the local maximum of the noise probability
referred to in the following as the LP decoder. A solutiofensity function. Hence for the AWGNC, instanton is defined

(f,w) to the LCLP such that alf;s andw, 7S are integers is &S the noise 2configuration with minimal (probaply Io'caIIy)
known as an integer solution. The integer solution reprisseifalué of the = norm of y that leads to a decoding failure.
a codeword [5]. It was also shown in [5] that the LP decoder, . .

Note that for the BSC, the transition probabilityis a measure of the

has the ML certificate, i.e., if the output of the _deCOder IS 8\R. For code rate and BPSK modulated transmission over the AWGNC
codeword, then the ML decoder would decode into the samih noise variancer?, we haveE;, /Ny = 1/(2rc2).



noise

respective instanton can be restored. In fact, this inearsi in
errors the core of the pseudo-codeword/instanton search algusith
discussed in Section IV.

Point at the ES
closest to “0”

A. Trapping Sets for Iterative Decoders

In practice, we assume that the iterative decoder performs
a finite numberD of iterations. Lety = (91,92,...,0n) be
a vector which is the input to the iterative decoder and let
x®) = (2 2 2, &k < D be the output binary
vector at thek!” iteration. A variable node is said to be
Fig. 1. lllustration of error surface. eventually correctif there exists a positive integek such
that for allk > K, xﬁk) = 0 [16]. Formally, a decoder failure
is said to have occurred if there does not eXissuch that
The L? norm of a vectory is equal toy/>", ., %;%. Note that suppx*)) = 0 [16].
for the AWGNC, smaller the.? norm, the more probable the Definition 1: [16](Trapping sets for iterative decoders:) For
noise configuration is. an inputy, let T(y) denote the set of variablg nodes th_at are
The FER approximation should also include, in addition {80t €ventually correct. Iff(y) 7 0, thenT(y) is a trapping
the multiplicities, the curvature corrections around ttagisn- S€t- Ifa = [T(§)[ andb is the numb?r of odd degAree': check
ary point (e.g. within Gaussian approximation) [32], [40]. ?Ocie)zstr:pg:ﬁgsgggraph induced Yy ), we sayT(y) is an
other words FER(s) ~ > %_, N3C(93)P(93), whereC(y a, - _
is the curvature E‘a)ctor:'lghé rrfult(ipﬁ():iti((asﬁlf the ins(taﬁrzto For the BSC, since the input to the decoder as well as the
are determined by the symmetry group of the code, andf€SSages passed are discrete, it is easier to define imsganto

nothing is known about it, one may assume that the grol terms of number of bits flipped in the input to the decoder.
is trivial and all multiplicities are equal ta. In continuous ' n€ instantons with least number of flips will be the most

case, the curvatures are determined by the geometry of gaminant in the error floor region. We formalize this intoiti

error surface in the vicinity of the instanton (this subjeé?elowj i . )

was not studied numerically so far, as the most importantDef'n't'on 2: (Cr|t'|cal number for Gallager A/B algonth'm)
information about the instanton is its weight which deteresi -6t 7 be a trapping set for the Gallager A/B_algorithm
the slope of FER/s. SNR curve in the asymptotic). Intuitively, @1d €ty € GF(2)". Let Y(T) = {y|T(y) = T}. The

in the case of the ANGNC and — oo, C(g3) = O(1//3), crltlcgl nur.nberm(_T). of trapping set7” for_ the Gallager A/B
the decay of the noise correlations is exponential along ofig0rithm is the minimum number of variable nodes that have
direction (orthogonal to the error surface) and quadrdting to be |rj|t|ally in error for the decoder to end up in the trappi
the remainingV — 1 components of the noise vector (see Fig€tZ I-€- _ X

1 for an illustration of the error surface). m(T) = D |SUPHY)|-

Consistent with the above statements, instantipnsan be
also defined as special configurations of the noise resulti
in decoding failures such that any incremental (and channe
specific) shift pf the.n0|se toward the zerp—codeword re;ault An instanton is a binary vectai such thatT(i) — 7 for
correct decoding. It is thus useful to also introduce a retbpe . .

- N some trapping sef and for any binary vecto# such that
output,ys = dedys), called a pseudo-codeword. It should beu dr) C supi(i), T(r) = 0. The size of an instanton is the
noted that this informal definition of the pseudo-codewords P PR, o

is generic and applicable to any channel and decoder. Whi erdmallty of its support.

the output for the LP decoder is well defined and does notGIVen a trapping set, one can consider vectors whose sup-

suffer from numerical issues. the iterative decoder catibixh port is a subset of the trapping set as input to the decoder and

oscillations i.e., the bits which are decoded wrongly cdfedi see if such vectors are instantons. While rigorous statesment

from one iteration to another. As a way to streamline thcannot be made about finding smallest size instantons, the

description of decoding failures in the presence of rougdi sbove method gives instantons in most of the cases (see [41]

. . A . r%or some illustrations). Intuitively, this seems reasdaas we
and iterative uncertainties, Richardson [16] suggestebayp ) .
. . L ; ; . do not expect inputs to the decoder which do not have errors
notion of the trapping set, which is a combinatorial obj&ettt . : . . . .
. . in variable nodes involved in a trapping set to end up in a
accounts for the decoder output over iterations. In thee}ub? .
. . . . apping set.
guent discussion, we formally define trapping sets and puseuJ
codewords and also provide some BSC-specific definitions. If
an instanton of a channel/decoder is known, the respectfe Pseudo-codewords for LP Decoders
pseudo-codeword can be easily found, and conversely if aln contrast to the iterative decoders, the output of the LP
pseudo-codeword is given (i.e. we know for sure that thedecoder is well defined in terms of pseudo-codewords.
exists a configuration of the noise which is sandwiched in Definition 4: [5] An integer pseudo-codewori$ a vector
between the pseudo-codeword and the zero-codeword) the- (py,...,p,) of non-negative integers such that, for every

Error Surface (ES)
(decoding specific)

The most relevant trapping set in the error floor region is
trapping set with the least critical number.
Definition 3: (Instanton for Gallager A/B over the BSC)



parity checka € C, the neighborhoodp; : i € N(«)} is a decoding over the BSC) [34]. This important property is in
sum of local codewords. fact used in searching for instantons.

The interested reader is referred to Section V in [5] for To summarize, evaluating FER vs SNR approximately re-
more details and examples. Alternatively, one may chooseduoces to finding the set of most probable instantons and eval-
define are-scaled pseudo-codeworg = (p1,...,p,) Where uating their probabilities, multiplicities and, in the ¢omous

0 < p; < 1,¥i € V, simply equal to the output of thecase, also respective curvatures. Specifically, for LP diago
LCLP. In the following, we adopt the re-scaled definitioneThover the BSC and the Gallager algorithm, the slope of the FER
cost associated with LP decoding of a vecjoto a pseudo- curve in the error floor region is equal to the cardinality of

codewordp is given by the smallest size instanton (see [42] for a formal desonpti
~ Understanding that the knowledge of the instantons allows
cos(y. p) = ) b efficient approximation of FER vs SNR dependence (which
eV

is our main task), we now discuss approaches to finding the
For an inputy, the LP decoder outputs the pseudo-codewoggt of instantons for a given error-correction setting int®e

p with minimum costy, p). Since the cost associated withy,

LP decoding ofy to the all-zero-codeword is zero, a decoder

failure occurs on the inpu§ if and only if there exists a IV. SEARCHING FORINSTANTONS
pseudo-codeworg with cos{y,p) < 0.

. . As explained above in Section lll, instantons that control
A given codeC may have different Tanner graph "ePrChe large SNR asymptotic of the FER are the most probable
sentations and consequently potentially different funelatal g ymp P

noise configurations corresponding to decoder failureste8t
polytopes. Hence, we refer to the pseudo-codewords as-corfe - :
! . is way the problem of finding an instanton becomes an
sponding to a particular Tanner graphof C.

Definition 5: [21] Let p = (p ) be a pseudo- optimization problem, and all the remaining details of this
codeword dist'inct from the aII—zelr;).—.c.c;dgword of the catle s_eqtion are _rel_a te(.j to efficient implementation of this egaly
represented by Tanner gragh. Then, thepseudo-codeword difficult, optimization problem.
weightof p is defined as follows:

« wpsc(p) for the BSC is A. Instanton search for iterative decoding over continuous

] channels
wpsc(p) = { ) 25’1 'I Zep@: - ZiEfo’) /g; A straightforward optimization method for finding instan-
e—1 it 3opi> (XievPi) /2 tons in the case of a continuous channel is based on the
wheree is the smallest number such that the sum of theandard (amoeba) optimization [43] and was discussed by
e largestp;s is at least(>", . pi) /2. Stepanov and Chertkov in [40]. The main idea of the direct
o wawan(p) for the AWGNC is technique is as follows. One draws randomly a unit length
9 configuration of the noise and finds a scale-up value which
(p1+p2+-~-+pn) " X X .
wawen(P) = V35— 5 positions the re-scaled configuration of the noise exadily a
(i +p3+...+pp) the error-surface. Thus, incremental increase/decrefifigeo

The minimum pseudo-codeword weight ¢f denoted by rescaling factor leads to decoding failure or recovery.hSaic

ﬁff/AWGN is the minimum over all the non-zero pseudoeonfiguration and its probability are recorded, and thisrape
codewords ofG. tion is repeatedN —2) times, thus generatiny —1 vertices of
We now give definitions specific to the BSC. a simplex with respective probabilities assigned. Them,rag

Definition 6: (Median for LP decoding over the BSC) Theto find a more probable point in the interior of the simplex th
median noise vector (or simply the mediadd) p) of a pseudo- current point is transformed according to the standard &mnoe
codewordp distinct from the all-zero-codeword is a binaryrules. The process is repeated until the size of the simplex
vector with supporS = {iy,is,...,i.}, such thap;,,...,p;, becomes smaller than a preset accuracy, and the resulting
are thee(= [(wpsc(p) + 1) /2]) largest components @f.  most probable configuration outputs an instanton. The whole

Note that for inputy = M (p) for some non-zero pseudo-optimization is repeated multiple number of times, eacletim
codewordp, we have cos¥,p) < 0 and hence leads to agenerating an instanton. The main advantage of the method
decoding failure (the output of the decoder, however, nexd 1is in its generality (it can be used for any continuous channe
be the pseudo-codeword we start with). and any soft decoding algorithm). However, implementing th

Definition 7: (Instanton for LP decoding over the BSC)method is costly. Although one can use amoeba optimization
The BSCinstantoni is a binary vector with the following method for LP decoding too, because of a certain property of
properties: (1) There exists a pseudo-codewprduch that LP decoding (it is easy to find an instanton (noise realizjtio
cos{i,p) < costi,0) = 0; (2) For any binary vector such corresponding to the output of the decoding which is a pseudo
that suppr) C suppi), there exists no pseudo-codeword witltodeword), the PCS method described in Section IV-C is a lot
cos{r,p) < 0. The size of an instanton is the cardinality omore effective.
its support. The instanton-amoeba method easily finds the instantons

An attractive feature of LP decoding over the BSC ifor a code if the number of iterations in decoding is not
that any input whose support contains an instanton leadsldoge (less tharz0). Increase of the number of iterations;,

a decoding failure (which is not the case for Gallager Aimply means longer computations. The other more important



effect is associated with enhancement of irregular, s&taha The idea of the method of [33] consists of throwing a
component in decoding observed with increase. One finds sufficiently strong configuration of the noise (so that the
that already a slight variation in the noise can drasticallesulting decoding is erroneous), decode it into a pseudo-
change results. That makes the function that we have dodeword, and then assume that the pseudo-codeword shares
optimize very irregular, which dramatically slows down than error-surface with the zero-codeword. Then the prajecte
optimization process. instanton is reconstructed using Eg. (6), even though tieeno

In the case of large number of iterations in the decodemnfiguration, especially after the first iteration, is noaatual
with the check for a codeword in each iteration, it is nahstanton. This procedure is repeated until the input ard th
easy to come up with good starting point for the amoeba. Tbatput for an iteration give the same result. It was emplisica
configurations from amoeba with small number of iteratiorshown in [33] that such scheme formulated for the LP decoder
(when the method is quite effective) are not very useful as tbutputs the sequence of noise configurations with proliasili
decoder eventually outputs a codeword. The following twmonotonically increasing with the number of iterations and
ways to find such configurations were developed. Both atenverging in a small number of iterations to an instanton.
based on observations from numerical experiments.
1) Input an instanton for LP decoder to the min-SUr | stanton search for LP decoding over the BSC
iterative decoder. The instantons for LP decoding (as tlaee h i
low weight) serve as good seeding noise configurations for! "€ PCS was extended to the case of LP decoding over the

amoeba, as they are in erroneous domain in noise space evgq PY Chilappagart al.in [34]. The algorithm proposed in
for a decoder with a very large number of iterations. [34] termed as the instanton search algorithm (ISA) is pva

2) Limit the noise configuration on bits where the instantofiicient and_outputs an instanton in bounded number of steps
e summarize the algorithm below.

for low number of iterations is supported. Work then with a X
ISA for LP Decoding over the BSC

optimization problem on these bits only, setting the noslee s = il . )
on all other bits to zero. In this way, the number of variabld8itialization (I=0) step Initialize to a binary input vector

is much lower, so the optimization procedure is a lot easiEPNt@ining sufficient number of flips so that the LP decoder
to proceed with. The smaller is the dimension of the spa@§c0des itinto a pseudo-codeword different from the aibze

in which the amoeba optimization is done, the easier is th@deword. Apply the LP delcoder toand denote the pseudo-

problem. The instantons for low number of iterations usualf°deword output of LP by

have noise in a few bit locations. One can hope that if oke> L Step Take the pseudo-_codewopﬂ (output of the(/—1)

increases the noise level on these selected bits (whileiigepSt€P) and calculate its media¥ (p'). Apply the LP decoder

the noise at all other bits being exactly zero) then the noik&M (p') and denote the output gy, Only two cases arise:

configuration will “survive” a lot more iterations. Thi2.45 o wpsc(pPum,) < wpsc(p'). Thenp!™ = py;, becomes

weight instanton (supported b2 bits) for AWNGNC and410 the [-th step output/ + 1) step input.

iterations decoder that is reported in [40] was found thig.wa * wssc(Pa,) = wssc(p'). Let the support of\/ (p') be
S = {i1,... i} Let S;, = S\{i;} for somei; € S.

B. Instanton search for Gallager A/B decoders over the BSC Let r;, be a binary vector with suppor§;,. Apply the

In contrast to iterative decoding with continuous alphabet LP decoder.to alk;, an(? Qenote the_t-ou'Fput by pi,.
the trapping sets and instantons for the Gallager A/B dacode ! Pii = 0 Vir, thenM(p') is the desired instanton and
can be found using certain combinatorial considerationishvh the algorithm halts_. Elsgp;, # 0 becomes thé-th step
were first pointed out by Richardson [16] and later inveséda output(l + 1) step input.
in detail in [41], [44], [45], [46]. The trapping sets for Gager The interested reader is referred to [34] for a discussion of
type decoders are C|ose|y related to trapping sets for the ‘gﬁu’ious issues that arise in the implementation of the ISA.
flipping decoders.

V. NUMERICAL RESULTS

C. Instanton search for LP decoding over the AWGNC This section summarizes statistics of instantons found for
For the LP decoding over the AWGNC, another suggethe [155,64,20] Tanner code [36] performing over the BSC
tion for solving the difficult optimization problem fasteraw and the AWGNC and decoded by iterative and LP decoders.

formulated in [33] by Chertkov and Stepanov. This pseudd-e Tanner code is €3,5) regular code whose Tanner graph
codeword search (PCS) algorithm , originally stated for tHeas girth8 [36].

continuous channel model, is based on the aforementioned

relation between instantons and respective pseudo-cadewWoa |nstanton Statistics for the Tanner Code

Specifically, if a pseudo-codeworgy corresponding to an
instanton, is known, then reconstructing the respective i
stantonp is equivalent to maximizing the probability of the
noise under the condition that the probabilities of the @ois
configuration counted from the zero-codeword and from thTe?]
pseudo-codewordp, are identical, i.e.

Gallager A algorithm: The most dominant trapping set in
the error floor domain is the5, 3) trapping set which has
ritical number3. There are a total of55 (5, 3) trapping sets
ch of which has an instanton of weigid1] (see Fig. 2(a)).
ere ared65 (4,4) trapping sets each with critical number
4. Hence, the slope of the FER curve in the error floor region
p = argmax, P(n)| () p(nip): pro- (6) is dominated by thé5,3) trapping sets and it is equal &
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Fig. 2. lllustration of the topological structure of instan for different channels and decoders. Note thiatepresents an even degree check node lind
represents an odd degree check node. (a) A (5,3) trappingitbetritical number 3 for Gallager A algorithm. Heredenotes a correct variable amdlenotes
a corrupt variable node. (b) An (8,2) trapping set for iteetlecoding over the AWGNC. (c) The support of an instantoeiné 5 for LP decoding over the
BSC. (d) The support of the lowest weight pseudo-codeword Fodecoding over the AWGNC. Note that the figure illustratalydhe variable nodes with
the largest components.

The trapping sets for the Gallager A algorithm are found byfar a given decoder on a given channel based on the knowledge

combination of simulations and combinatorial considerati of instantons for another already analyzed decoder, whach ¢

(see [16], [41] for more details). even be performing over another channel. This relationss al
Iterative BP: The instantons for 4 iterations decoder wersuggestive for design of a better code, the idea substedtiat

analyzed by the instanton-amoeba method in [25]. Thei8the next subsection.

lowest instantons were found, all of which contained a djeci

characteristic 12 bit structure. It turns out that this hitisture B. Code Design for Increasing the Smallest Instanton Size

is what is responsible for errors even for very large number|n [26], [45], it was shown that the minimum pseudo-
of iterations [40] MC simulations show that the error flOOEodeword We|ght (for LP decoding) and the minimum critical
asymptotic for the Tanner code under iterative decoder wiymber (for Gallager A/B decoding) of a code increase with
large number of iterations is determined by these strustuie increase in the girth of the underlying Tanner graph.
(resulting in effective distance of 12.45 [40]). All thepEng  while girth optimized codes are known to perform better
sets corresponding to the lowest weight instantons cont@in general, the code length and degree distribution place
an (8,2) trapping set which is shown in Fig. 2(b). For morg fundamental restriction on the best achievable girth. Ob-
details on the FER curves for different number of iteratiorgferving that the instantons for different decoding aldonis
and relevant discussion, the interested reader is refaoredperforming over different channels have a common undeglyin
[40]. topological structure (e.g. thé, 3) trapping set in the case
LP decoder over BSC:The ISA described in Section IV of the [155,64,20] code), it is natural to discuss design of
found 155 distinct instantons of sizé (the corresponding a similar but new code which excludes these troublesome
pseudo-codewords have BSC weight The support of each structures. In fact, this suggests a natural code optiizat
of these instantons is @, 3) trapping set shown in Fig. 2(c) technique with an improved instanton distribution. Stayti
(from the symmetry of the Tanner code it can be verified thafith a reasonably good code (constructed either algebiaica
there are exactlyl55 such structures present in the Tannesr by the progressive edge growth (PEG) method [47]),
graph). The ISA also discovered higher weight instantoes (Swe find the most damaging instantons and their underlying
[34] for more details), but the instantons of sizare the most topological structure. We then construct a new code avgidin
dominant ones in the error floor region. such subgraphs (either by swapping edges, by increasirgy cod
LP decoder over AWGNC: The PCS algorithm of [33] length, or utilizing a combination of both). We iterate this
found many low-weight pseudo-codeword$ (037 being the procedure till the code can no longer be optimized or reagchin
least weight pseudo-codeword as found by the PCS). TAe&omputationally unbearable complexity.
weighted-median noise configurations (instantons) (s&§ [3 For the Gallager A decoding, it has been proved in [48] that
corresponding to various low-weight pseudo-codewords hagodes with Tanner graphs of girth which avoid the(5, 3)
high noise at5 variable nodes corresponding to tlig,3) trapping set and weigtt codewords can correct all the error
trapping sets. In fact, the respective BSC weighpseudo- patterns of weights or less. While proving a similar result
codewords have low weight on the AWGNC also (but not th@ight be difficult for the iterative decoder over the AWGNC
absolute lowest!). The support of each of the lowest-weighhd the LP decoder, such considerations nonetheless play a
pseudo-codewords is large but the components in the variafille in our code design strategy. An algorithm, suggesting
nodes corresponding to the (5,3) trapping set have maximaanstruction of a code meeting the Gallager A-related con-
value (illustrated in Fig. 2(d)). ditions, was provided in [48]. This algorithm can be seen
An important insight gained from this comparison is that thas a generalization of the PEG algorithm [47]. Given a list
decoding failures for various algorithms on different amels of forbidden subgraphs, at every step of the algorithm, an
are closely related and are dependent on only a few top@bgiedge is established such that the resulting graph at thge sta
structures. These relations can be exploited to find instent does not consist of any of the forbidden subgraphs. (The PEG
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Fig. 6. Comparison of the FER performance of the Tanner codettand
new code under LP decoding over the BSC. Plotted also is the@stic

prediction using instanton statistics for the Tanner cdet®. the new code,
as the total number of instantons of weight six is unknowrfedéht curves
are plotted (labeled 1,2,3) assuming different (200,200@)5respectively)

algorithm is a special case forbidding cycles shorter than"gnber of instantons of weight six.
given threshold.)

Using the algorithm proposed in [48], we constructed a new _ o
code of length155 with uniform left degree3 and with most code under the LP decoder over the BSC is shown in Fig.
check nodes with degree By construction, this code avoids6. While all the lowest-weight instantons for the Tanner code
(5,3) trapping sets. This results in a steeper FER slope bave been found by the ISA, the same gannot be said of for
4 in the error floor domain under the Gallager A decodethe new codé’. Hence, we can only predict the slope of the
as shown in Fig. 3. The dominant trapping set for the nelRER curve in the error floor region and not the exact value.
code with critical numbet is the (4, 4) trapping set (an eight This can be remedied by running more trials of the ISA or by
cycle) and has multiplicity62. Fig. 3 also shows the predictedstudying the automorphism group of the code and exploiting
performance at very low (the method to predict the errorthe structure of the code to find the multiplicity of the lowes
floor performance using the trapping set statistics is desdr weight instantons. In Fig. 6, we have plotted the predicted
in detail in [41]). FER curve assuming different values (200, 2000 and 5000

The minimum weight instanton for LP decoding of théespectively) for the number of instantons of weight sixl Al
new code over the BSC found by the ISA Gs(we have the above statistics illustrate the superiority of the nedec
independently verified that the code is in fact capable of
correcting error patterns With up to five errqrs by exhaestiv 3The standard way to find out whether our instanton searchuskéa all
search). Table | shows the instanton statistics for the @anmhe unique configurations is as follows. Assume that there Nirenique
code and the new code found by running the ISA with Jipstantons of a given weight and in each trial ISA finds allfrh with equal

. . L robability. To estimate the number of ISA runs required fodifig all the N
random flips and 2000 times. The statistics of number E\ﬁtamons, one notice that ¥ — 1 instantons are already found the number

unique instantons for the two codes as a histogram is illitestir of trails required to find to the last instantonds N. If all but two instantons
in Fig. 4. The pseudo-codeword Weight distribution for Lpre already found the number of ISA trials requiredNig2. Therefore, the
. . .average number of ISA trials required to find all the instasterestimated as
decoding over the AWGNC for the two codes is shown iRy oy N/3 .. N/(N—1)+1 = N(14+1/2+1/3+---+1/N) turning
Fig. 5. The FER performance of the Tanner code and the new In N at N — oo, i.e. NIn N trials ISA reliably findsN instantons.

Fig. 4. Instanton weight distribution for the Tanner code #me new code
for LP decoding over the BSC as found by running the ISA 206G:4.



TABLE |

10

INSTANTON STATISTICS OBTAINED BY RUNNING THEISA WITH 20 RANDOM FLIPS AND 2000INITIATIONS FOR THE TANNER CODE AND THE NEW CODE

Code Number of instantons of weight
5 6 7 8 9 10 11| 12 | 13
Total 715 | 194 | 248 | 230 | 295 | 201 | 74 | 10 1
Tanner code e 155 | 177 [ 238 [ 228 | 295 [ 201 | 74 [ 10 | 1
New code Total 106 | 409 | 622 | 508 | 247 | 62 | 11 | 1
Unique 80 | 397 | 617 | 508 | 247 | 62 | 11 1
VI. CONCLUSION [4] V. V. Zyablov and M. S. Pinsker, “Estimation of the errasreection

In this paper, we presented a comprehensive descript
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of various instanton based techniques for the analysis arl
reduction of error floors of LDPC codes. The most powerful
method discussed is the pseudo-codeword/instanton seaggh
algorithm, designed specifically for the LP decoder. Ushng t
instanton-based technique for analysis of sample (intdiate
size) codes, e.q155,64,20] Tanner code, we conclude that
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the decoding failures leads to a method to construct codes
whose Tanner graphs are free of these structures. Thetosta
technique, applied to this code and also complemented by the
direct Monte Carlo simulations, confirm the success of tH&!!
new code improvement strategy.
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and applying them to longer codes, (2) developing improved
semi-analytical methods for FER estimation, more spedlfica
combining instantons and MC in order to obtain a good
approximation of the entire FER curve, (3) optimization of
decoders to reduce error floors, and (4) finding other combjz,
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point-line incidence matrix free of trapping sets.
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