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Abstract—We consider Linear Programming (LP) decoding
of a fixed Low-Density Parity-Check (LDPC) code over the
Binary Symmetric Channel (BSC). The LP decoder fails when it
outputs a pseudo-codeword which is not equal to the transmitted
codeword. We design an efficient algorithm termed the Instanton
Search Algorithm (ISA) which generates an error vector called
the BSC-instanton. We prove that: (a) the LP decoder fails for
any error pattern with support that is a superset of the support
of an instanton; (b) for any input, the ISA outputs an instanton
in the number of steps upper-bounded by twice the number of
errors in the input error vector. We then find the number of
unique instantons of different sizes for a given LDPC code by
running the ISA sufficient number of times.

Index Terms—Low-density parity-check codes, Linear Pro-
gramming Decoding, Binary Symmetric Channel, Pseudo-
Codewords, Error-floor

I. I NTRODUCTION

The significance of Low-Density Parity-Check (LDPC)
codes [1] is in their capacity-approaching performance when
decoded using low complexity iterative algorithms, such as
Belief Propagation (BP) [1], [2]. Iterative decoders operate by
passing messages along the edges of a graphical representation
of a code known as the Tanner graph [3], and are optimal
when the underlying graph is a tree. However, the decoding
becomes sub-optimal in the presence of cycles, and hence the
asymptotic analysis methods are of limited practical use for
the analysis of a fixed code. The linear programming (LP)
decoding introduced by Feldmanet al. [4], is another sub-
optimal algorithm for decoding LDPC codes, which has higher
complexity but is more amenable to analysis.

The typical performance measures of a decoder (either LP
or BP) for a fixed code are the Bit-Error-Rate (BER) or/and
the Frame-Error-Rate (FER) as functions of the Signal-to-
Noise Ratio (SNR). A typical BER/FER vs SNR curve consists
of two distinct regions. At small SNR, the error probability
decreases rapidly with the SNR, and the curve forms the so-
calledwater-fall region. The decrease slows down at moderate
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values turning into theerror-floor asymptotic at very large
SNR [5]. This transient behavior and the error-floor asymptotic
originate from the sub-optimality of the decoding, i.e., the
ideal maximum-likelihood (ML) curve would not show such
a dramatic change in the BER/FER with the SNR increase.

After the initial investigation of error floors of LDPC codes
on channels other than the binary erasure channel (BEC)
by Richardson [5], a significant effort has been devoted to
the analysis of the error floor phenomenon. Given that the
decoding sub-optimality is expressed in the domain where the
error probability is small, the troublesome noise configurations
leading to decoding failures and controlling the error-floor
asymptotic are extremely rare, and analytical rather than
simulation methods for their characterization are necessary.
It is worth noting here that most of the analytical methods
developed in the theory of iterative decoding have focused on
ensembles of codes rather than a given fixed code.

The failures of iterative decoding over the BEC are well un-
derstood in terms of combinatorial objects known as stopping
sets [6]. For iterative decoding on the Additive White Gaussian
Noise (AWGN) channel and the BSC, the decoding failures
have been characterized in terms of trapping sets [5], [7] and
pseudo-codewords [8], [9], [10]. Richardson [5] introduced
the notion of trapping sets and proposed a semi-analytical
method to estimate the FER performance of a given code on
the AWGN channel in the error floor region. The method was
successfully applied to hard decision decoding over the BSCin
[7]. The approach of [5] was further refined by Stepanovet al.
[11], usinginstantons. Pseudo-codewords were first discussed
in the context of iterative decoders using computation trees
[8] and later using graph covers [9], [10]. Pseudo-codeword
distributions were found for the special cases of codes from
Euclidean and projective planes [12]. A detailed analysis of the
pseudo-codewords was presented by Kelley and Sridhara [13],
who discussed the bounds on pseudo-codeword size in terms
of the girth and the minimum left-degree of the underlying
Tanner graph. The bounds were further investigated by Xia
and Fu [14]. Pseudo-codeword analysis has also been extended
to the convolutional LDPC codes by Smarandacheet al. [15].
(See also [16] for an exhaustive list of references for this and
related subjects.)

Pseudo-codewords can be also used to understand the fail-
ures of the LP decoder [4]. It was shown in [4] that the
LP decoding on the BEC fails if the set of erased variable
nodes contain a stopping set. Hence, in this sense, the pseudo-
codewords for the LP decoder are equivalent to stopping
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sets for the case of the BEC. For binary-input memoryless
channels, the pseudo-codewords of the LP decoder are related
to the pseudo-codewords arising from graph covers [10]. In
fact, in [10] Vontobel and Koetter have also pointed out
relations between pseudo-codewords arising from graph covers
and trapping sets.

Closely related to the pseudo-codewords and the trapping
sets are the noise configurations that lead to decoding failures
which are termed as instantons [11]. Finding the instantonsis
a difficult task which so far admitted only heuristic solutions
[7], [17]. In this regard, the most successful (in efficiency)
approach, coined the Pseudo-Codeword-Search (PCS) algo-
rithm, was suggested for the LP decoding performing over
the continuous channel in [18] (with AWGN channel used
as an enabling example). Given a sufficiently strong random
input, the outcome of the PCS algorithm is an instanton. The
resulting distribution of the instantons (or respective pseudo-
codewords) thus provides a compact and algorithmically fea-
sible characterization of the AWGN-LP performance of the
given code.

In this paper, we consider pseudo-codewords and instantons
of the LP decoder for the BSC. We define theBSC-instanton
as a noise configuration which the LP decoder decodes into
a pseudo-codeword distinct from the all-zero-codeword while
any reduction of the (number of flips in) BSC-instanton leads
to the all-zero-codeword. Being a close relative of the BP
decoder (see [19], [20] for discussions of different aspects
of this relation), the LP decoder appeals due to the following
benefits: (a) it has ML certificate i.e., if the output of the
decoder is a codeword, then the ML decoder is also guaranteed
to decode into the same codeword; (b) the output of the LP
decoder is discrete even if the channel noise is continuous
(meaning that problems with numerical accuracy do not arise);
(c) its analysis is simpler due to the readily available set of
powerful analytical tools from the optimization theory; and
(d) it allows systematic sequential improvement, which results
in decoder flexibility and feasibility of an LP-based ML for
moderately large codes [21], [22]. While slower decoding
speed is usually cited as a disadvantage of the LP decoder,
this potential problem can be significantly reduced, thanksto
the recent progress in smart sequential use of LP constraints
[23] and/or appropriate graphical transformations [22], [24],
[25] and other low complexity decoding approximations [26].

The two main contributions of this paper are: (1) char-
acterization of all the failures of the LP decoder over the
BSC in terms of the instantons, and (2) an efficient Instanton
Search Algorithm (ISA). Following the idea by Chertkov and
Stepanov [18], for a given a random binaryn-tuple, the ISA
generates a BSC-instanton, that is guaranteed to be decodedby
the LP decoder into a pseudo-codeword distinct from the all-
zero-codeword. Our ISA constitutes a significantly stronger
algorithm than the one of [18] due to its property that it
outputs an instanton in the number of steps upper-bounded
by twice the number of flips in the original configuration the
algorithm is initiated with. An overview of instanton based
techniques to analyze and reduce error floors of LDPC codes
is presented in [27]. While the ISA has also been discussed

in [27], the material in this paper presents a detailed analysis
of the ISA along with the required theorems and proofs (that
do not appear in [27]). Furthermore, this paper also elucidates
the method to estimate the FER performance of a given LDPC
code using the instanton statistics.

The rest of the paper is organized as follows. In Section II,
we give a brief introduction to the LDPC codes, LP decoding
and pseudo-codewords. In Section III, we introduce the BSC-
specific notions of the pseudo-codeword weight, medians and
instantons (defined as special set of flips), their costs, and
we also prove some set of useful lemmata emphasizing the
significance of the instanton analysis. In Section IV, we
describe the ISA and prove our main result concerning bounds
on the number of iterations required to output an instanton.
We comment on the analytical estimation of the FER using
instanton statistics in Section V. We present an illustration of
the ISA as applied to the[155, 64, 20] Tanner code [28] and
numerical results in Section VI. We summarize our results and
conclude by listing some open problems in Section VII.

II. PRELIMINARIES: LDPC CODES, LP DECODER AND

PSEUDO-CODEWORDS

In this Section, we discuss the LP decoder and the notion
of pseudo-codewords. We adopt the formulation of the LP
decoder and the terminology from [4], and thus the interested
reader is advised to refer to [4] for more details.

Let C be a binary LDPC code defined by a Tanner graph
G with two sets of nodes: the set of variable nodesV =
{1, 2, . . . , n} and the set of check nodesC = {1, 2, . . . , m}.
The bi-adjacency matrix ofG is H , a parity-check matrix ofC,
with m rows corresponding to the check nodes andn columns
corresponding to the variable nodes. In other words,Hi,j = 1
if and only if there is an edge between the check nodei and
the variable nodej in the Tanner graphG. A binary vector
c = (c1, . . . , cn) is a codeword iffcHT = 0. The support of
a vectorr = (r1, r2, . . . , rn), denoted by supp(r), is defined
as the set of all positionsi such thatri 6= 0.

We assume that a codewordy is transmitted over a dis-
crete symmetric memoryless channel and is received asŷ.
The channel is characterized byPr[ŷi|yi] which denotes the
probability thatyi is received aŝyi. The log-likelihood ratio
(LLR) corresponding to the variable nodei is given by

γi = log

(

Pr(ŷi|yi = 0)

Pr(ŷi|yi = 1)

)

.

The ML decoding of the codeC allows a convenient LP formu-
lation in terms of thecodeword polytopepoly(C) whose ver-
tices correspond to the codewords inC. The ML-LP decoder
findsf = (f1, . . . , fn) minimizing the cost function

∑n
i=1 γifi

subject to thef ∈ poly(C) constraint. The formulation is
compact but impractical because of the number of constraints
exponential in the code length.

Hence arelaxedpolytope is defined as the intersection of
all the polytopes associated with the local codes introduced for
all the checks of the original code. Associating(f1, . . . , fn)
with bits of the code we require

0 ≤ fi ≤ 1, ∀i ∈ V (1)
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For every check nodej, let N(j) denote the set of variable
nodes which are neighbors ofj. Let Ej = {T ⊆ N(j) :
|T | is even}. The polytopeQj associated with the check node
j is defined as the set of points(f ,w) for which the following
constraints hold

0 ≤ wj,T ≤ 1, ∀T ∈ Ej (2)
∑

T∈Ej
wj,T = 1 (3)

fi =
∑

T∈Ej ,T∋i wj,T , ∀i ∈ N(j) (4)

Now, let Q = ∩jQj be the set of points(f ,w) such that
(1)-(4) hold for all j ∈ C. (Note thatQ is a function of the
Tanner graphG and consequently the parity-check matrixH
representing the codeC.) The Linear Code Linear Program
(LCLP) can be stated as

min
(f ,w)

∑

i∈V

γifi, s.t. (f ,w) ∈ Q.

For the sake of brevity, the decoder based on the LCLP is
referred to in the following as the LP decoder. A solution
(f ,w) to the LCLP such that allfis andwj,T s are integers is
known as an integer solution. The integer solution represents
a codeword [4]. It was also shown in [4] that the LP decoder
has the ML certificate, i.e., if the output of the decoder is a
codeword, then the ML decoder would decode into the same
codeword. The LCLP can fail, generating an output which is
not equal to the transmitted codeword. For a more detailed
description of the LCLP and the interpretation of the different
variables in the above equations, the reader is referred to [4].

The performance of the LP decoder can be analyzed in terms
of the pseudo-codewords, originally defined as follows:

Definition 1: [4] Integer pseudo-codewordis a vectorp =
(p1, . . . , pn) of non-negative integers such that, for every
parity checkj ∈ C, the neighborhood{pi : i ∈ N(j)} is
a sum of local codewords.

Alternatively, one may choose to define are-scaled pseudo-
codeword, p = (p1, . . . , pn) where 0 ≤ pi ≤ 1, ∀i ∈ V ,
simply equal to the output of the LCLP. In the following, we
adopt the re-scaled definition.

A given codeC can have different Tanner graph repre-
sentations and consequently potentially different polytopes.
Hence, we refer to the pseudo-codewords as corresponding
to a particular Tanner graphG of C.

It is also appropriate to mention here that the LCLP can be
viewed as the zero temperature version of BP-decoder looking
for the global minimum of the so-called Bethe free energy
functional [19].

III. C OST AND WEIGHT OF PSEUDO-CODEWORDS,
MEDIANS AND INSTANTONS

Since the focus of the paper is on the pseudo-codewords
for the BSC, in this Section we introduce some terms, e.g.
instantons and medians, specific to the BSC. We will also
prove here some preliminary lemmata which will enable
subsequent discussion of the ISA in the next Section.

When the channel and the decoder satisfy certain symmetry
conditions (see [2] for details), we can assume, without loss of
generality, that the all zero codeword is transmitted. The LP
decoder satisfies these conditions as shown in [4]. Hence, we
make the assumption of the all-zero-codeword throughout the
paper. Hence, the received vector and subsequently the input
to the LP decoder is the error vector. The process of changing
a bit from 0 to 1 and vice-versa is known as flipping. The
BSC flips every transmitted bit with a certain probability. We
therefore call an error vector with support of sizek as having
k flips.

In the case of the BSC, the likelihoods are scaled as

γi =

{

1, if ŷi = 0;
−1, if ŷi = 1.

Two important characteristics of a pseudo-codeword are its
cost and weight. While the cost associated with decoding to
a pseudo-codeword has already been defined in general, we
formalize it for the case of the BSC as follows:

Definition 2: The cost associated with LP decoding of a
binary vectorr to a pseudo-codewordp is given by

C(r,p) =
∑

i/∈supp(r)
pi −

∑

i∈supp(r)
pi. (5)

If r is the input, then the output of the LP decoder onr is
the pseudo-codewordp which has the least value ofC(r,p).
The cost of decoding to the all-zero-codeword is zero. Hence,
the output of LP decoding of a binary vectorr is not equal
to the all-zero-codeword if there exists a pseudo-codewordp

with C(r,p) ≤ 0.

Definition 3: [13, Definition 2.10] Letp = (p1, . . . , pn) be
a pseudo-codeword distinct from the all-zero-codeword. Let
e be the smallest number such that the sum of thee largest
pis is at least

(
∑

i∈V pi

)

/2. Then, the BSCpseudo-codeword
weightof p is

wBSC(p) =

{

2e, if
∑

i∈E(p) pi =
(
∑

i∈V pi

)

/2;

2e − 1, if
∑

i∈E(p) pi >
(
∑

i∈V pi

)

/2,

whereE(p) is a set ofe largest components ofp.

The minimum pseudo-codeword weight ofG denoted by
wmin

BSC is the minimum over all the non-zero pseudo-codewords
of G. The parametere = ⌊(wBSC(p) + 1) /2⌋ can be inter-
preted as the least number of bits to be flipped in the all-
zero-codeword such that the resulting vector decodes to the
pseudo-codewordp. (See e.g. [29] for a number of illustrative
examples.)

Remark:Feldmanet al. in [4] definedweightof a pseudo-
codeword, thefractional distanceand themax-fractional dis-
tanceof a Tanner graph of a code in terms of the projected
polytopeQ (the interested reader is referred to [4] for explicit
description ofQ). To differentiate the two definitions, we term
the “weight” defined by Feldmanet al. as fractional weight
and denote it bywfrac. For a pointf in Q, the fractional
weight of f is defined as the L1-norm,wfrac(f) =

∑

i∈V fi
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and the max-fractional weight off is defined as the fractional
weight normalized by the maximumfi value i.e.,

wmax−frac(f) =
wfrac(f)

maxi fi
.

Also, if VQ denotes the set of non-zero vertices ofQ the
fractional distancedfrac of the code is defined as the minimum
weight over all vertices inVQ. The max-fractional distance
dmax

frac of a Tanner graph of the code is given by

dmax
frac = min

(f)∈VQ,f 6=0

(
∑

i∈V fi

maxi fi

)

It was shown in [4, Theorem 9] that the LP decoder is
successful if at most⌈dfrac/2⌉ − 1 bits are flipped by the
BSC, thus makingdfrac a potentially useful characteristic.
Moreover, an efficient LP-based algorithm to calculatedfrac

was suggested in [4]. However, LP decoding of the error pat-
tern with the least number of flips which the LP decoder fails
to correct does not necessarily output the pseudo-codeword
with fractional weightdfrac. Hence, we adopted the definition
of the pseudo-codeword weight from [13], however noticing
that it was discussed there in a different but related context
of the computation tree and graph covers. A slightly different
definition also first appeared in [29]. The advantage of our
approach will become evident in the subsequent Sections.

The following Lemma gives a relation betweenwmin
BSC and

dfrac.

Lemma 1:wmin
BSC ≥ 2⌈dfrac/2⌉ − 1.

Proof: The LP decoder is successful if at most
⌈dfrac/2⌉ − 1 bits are flipped by the BSC. So, the minimum
number of flips in the all-zero-codeword which can cause the
LP decoder to fail is⌈dfrac/2⌉. If e is the minimum number of
flips associated with the minimum weight pseudo-codeword,
then

e ≥ ⌈dfrac/2⌉

Since,wmin
BSC ≥ 2e − 1, we havewmin

BSC ≥ 2⌈dfrac/2⌉ − 1

The above lemma can be generalized to any pseudo-
codewordp as wBSC(p) ≥ 2⌈wfrac(p)/2⌉ − 1. We would
like to point out that Kelley and Sridhara in [13] have derived a
similar relation betweenwBSC(p) andwmax−frac(p) and that
Sridhara in [30] observed thatwBSC(p)+1 ≥ wmax−frac(p).

The interpretation of BSC pseudo-codeword weight mo-
tivates the following definition of themedian noise vector
corresponding to a pseudo-codeword:

Definition 4: The median noise vector (or simply the me-
dian)M(p) of a pseudo-codewordp distinct from the all-zero-
codeword is a binary vector with supportS = {i1, i2, . . . , ie},
such that pi1 , . . . , pie

are the e(= ⌊(wBSC(p) + 1) /2⌋)
largest components ofp.

One observes that,C (M(p),p) ≤ 0. From the definition of
wBSC(p), it follows that at least one median exists for every
p. Also, all medians ofp have⌊(wBSC(p) + 1) /2⌋ flips. The
proofs of the following two lemmata are now apparent.

Lemma 2:Let the transmitted codeword be the all-zero-
codeword and letp be the output of the LP decoder on an error
vector with support of sizek. If p 6= 0, thenwBSC(p) ≤ 2k.

Lemma 3:Let p be a pseudo-codeword with medianM(p)
whose support has cardinalityk. Then wBSC(p) ∈ {2k −
1, 2k}.

Lemma 4:Let M(p) be a median ofp with supportS.
Then the result of LP decoding of any binary vector with
supportS′ ⊂ S and |S′| < |S| is distinct fromp.

Proof: Let |S| = k. Then by Lemma 3,wBSC(p) ∈
{2k − 1, 2k}. Now, if r is any binary vector with support
S′ ⊂ S, then r has at mostk − 1 flips and therefore by
Lemma 2,wBSC(p) ≤ 2(k − 1), which is a contradiction.

Lemma 5: If the output of the LP decoder onM(p) is a
pseudo-codewordpM 6= p, then wBSC(pM ) ≤ wBSC(p).
Also, C(M(p),pM ) ≤ C(M(p),p).

Proof: According to the definition of the LP decoder,
C(M(p),pM ) ≤ C(M(p),p).

If wBSC(p) = 2k, thenM(p) hask flips and by Lemma
2, wBSC(pM ) ≤ 2k = wBSC(p).

If wBSC(p) = 2k − 1, then M(p) has k flips and
C(M(p),p) < 0. Hence,wBSC(pM ) ≤ 2k by Lemma 2.
However, if wBSC(pM ) = 2k, then C(M(p),pM ) = 0,
which is a contradiction. Hence,wBSC(pM ) ≤ 2k − 1 =
wBSC(p).

Definition 5: The BSCinstantoni is a binary vector with
the following properties: (1) There exists a pseudo-codeword
p such thatC(i,p) ≤ C(i,0) = 0; (2) For any binary vectorr
such that supp(r) ⊂ supp(i), there exists no pseudo-codeword
with C(r,p) ≤ 0. The size of an instanton is the cardinality
of its support.

In other words, the LP decoder decodesi to a pseudo-
codeword other than the all-zero-codeword or one finds a
pseudo-codewordp 6= 0 such thatC(i,p) = 0 (interpreted
as the LP decoding failure), whereas any binary vector with
flips from a subset of the flips ini is decoded to the all-zero-
codeword. It can be easily verified that ifc is the transmitted
codeword andr is the received vector such that supp(c+r) =
supp(i), where the addition is modulo two, then there exists a
pseudo-codewordp′ such thatC(r,p′) ≤ C(r, c).

The following lemma follows from the definition of the cost
of decoding (the pseudo-codeword cost):

Lemma 6:Let i be an instanton. Then for any binary vector
r such that supp(i) ⊂ supp(r), there exists a pseudo-codeword
p satisfyingC(r,p) ≤ 0.

Proof: Since i is an instanton, there exists a pseudo-
codewordp such thatC(i,p) ≤ 0. From Definition 2 we
have,

∑

i/∈supp(i)
pi −

∑

i∈supp(i)
pi ≤ 0.

Since, supp(i) ⊂ supp(r) andpi ≥ 0, ∀i, we have
∑

i/∈supp(r)
pi −

∑

i∈supp(r)
pi ≤ 0,

thus yielding
C(r,p) ≤ 0.
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The above lemma implies that if the all-zero-codeword is
transmitted over the BSC and the support of the received
vector is a superset of an instanton, then the LP decoder fails
to decode the received vector to the all-zero-codeword. We
now have the following corollary:

Corollary 1: Let r be a binary vector with supportS. Let p
be a pseudo-codeword such thatC(r,p) ≤ 0. If LP decoding
of all binary vectors with supportS′ ⊂ S such that|S′| =
|S| − 1, outputs0, thenr is an instanton.

The above lemmata lead us to the following lemma which
characterizes all the failures of the LP decoder over the BSC:

Lemma 7:Let the transmitted codeword be the all-zero-
codeword and letr be a binary error vector such that the
output of LP decoding onr is a pseudo-codeword different
from the all-zero-codeword. Then, the support ofr contains
the support of an instanton as a subset.

The most general form of the above lemma can be stated
as following: if c is the transmitted codeword andr is the
received vector, then result of LP decoding onr is a pseudo-
codeword different fromc iff the supp(r + c), where the
addition is modulo two, contains the support of an instanton
as a subset.

From the above discussion, we see that the BSC instantons
are analogous to the minimal stopping sets for the case
of iterative/LP decoding over the BEC. In fact, Lemma 7
characterizes all the decoding failures of the LP decoder over
the BSC in terms of the instantons and can be used to derive
analytical estimates of the code performance given the weight
distribution of the instantons. In this sense, the instantons are
more fundamental than the minimal pseudo-codewords [12],
[13] for the BSC (note, that this statement does not hold
in the case of the AWGN channel). Two minimal pseudo-
codewords of the same weight can give rise to different number
of instantons. This issue was first pointed out by Forneyet al.
in [29]. (See Examples 1, 2, 3 for the BSC case in [29].)
It is also worth noting that the result of LP decoding on an
instanton is a minimal pseudo-codeword.

It should be noted that finding pseudo-codewords with
fractional weightdfrac is not equivalent to finding minimum
weight pseudo-codewords. The pseudo-codewords with frac-
tional weight dfrac can be used to derive some instantons,
but not necessarily the ones with the least number of flips.
However, asdfrac provides a lower bound on the minimum
pseudo-codeword weight, it can be used as a test if the ISA
actually finds an instanton with the least number of flips.
In other words, if the number of flips in the lowest weight
instanton found by the ISA is equal to⌈dfrac/2⌉, then the
ISA has indeed found the smallest size instanton.

IV. I NSTANTON SEARCH ALGORITHM AND ITS ANALYSIS

In this Section, we describe the Instanton Search Algorithm.
The algorithm starts with a random binary vector with some
number of flips and outputs an instanton.

Instanton Search Algorithm
Initialization (l = 0) step: Initialize to a binary input vectorr

containing sufficient number of flips so that the LP decoder
decodes it into a pseudo-codeword different from the all-zero-
codeword. Apply the LP decoder tor and denote the pseudo-
codeword output of LP byp1.
l ≥ 1 step: Take the pseudo-codewordpl (output of the(l−1)

step) and calculate its medianM(pl). Apply the LP decoder
to M(pl) and denote the output bypMl

. By Lemma 5, only
two cases arise:

• wBSC(pMl
) < wBSC(pl). Thenpl+1 = pMl

becomes
the l-th step output/(l + 1) step input.

• wBSC(pMl
) = wBSC(pl). Let the support ofM(pl) be

S = {i1, . . . , ikl
}. Let Sit

= S\{it} for someit ∈ S.
Let rit

be a binary vector with supportSit
. Apply the

LP decoder to allrit
and denote theit-output bypit

.
If pit

= 0, ∀it, then M(pl) is the desired instanton
and the algorithm halts. Else,pit

6= 0 becomes thel-
th step output/(l + 1) step input. (Notice, that Lemma 4
guarantees that anypit

6= pl, thus preventing the ISA
from entering into an infinite loop.)

Fig. 1 illustrates different scenarios arising in the execution
of the ISA. Here, the squares represent pseudo-codewords and
the circles represent binary vectors (noise configurations). Two
squares of the same color have identical pseudo-codeword
weight and two circles of the same color consist of same
number of flips. Fig. 1(a) shows the case where the result
of LP decoding of a median,M(pl), of a pseudo-codeword
pl is a pseudo-codewordpMl

of a smaller weight. In this
case,pl+1 = pMl

. Fig. 1(b) illustrates the case where the
LP decoding of a median,M(pl), of a pseudo-codewordpl

outputs a pseudo-codewordpMl
of the same weight. Fig. 1(c)

illustrates the case where the LP decoding of a median,M(pl),
of a pseudo-codewordpl outputs the pseudo-codewordpl

itself. In the two latter cases, we consider all the binary vectors
whose support sets are subsets of the support set ofM(pl)
and the vectors contain one flip less. We run the LP decoder
with the vectors as inputs and find their corresponding pseudo-
codewords. One of the non-zero pseudo-codewords found is
chosen at random aspl+1. This is illustrated in Fig. 1(d). Fig.
1(e) shows the case when LP decoding of all the subsets of
M(pl) (reduced by one flip) outputs to the all-zero-codeword.
LP decoding ofM(pl) itself could outputpl or some other
pseudo-codeword of the same weight. In this case,M(pl) is
an instanton constituting the output of the algorithm.

We now prove that the ISA terminates (i.e., outputs an
instanton) in the number of steps of the order the number
of flips in the initial noise configuration.

Theorem 1:wBSC(pl) and |supp(M(pl))| are monotoni-
cally decreasing. Also, the ISA terminates in at most2k0 steps,
wherek0 is the number of flips in the input.

Proof: If pl+1 = pMl
, thenwBSC(pl+1) < wBSC(pl).

Consequently,|supp(M(pl+1))| ≤ |supp(M(pl))|.

If pl+1 = pit
, then wBSC(pit

) ≤ 2(|supp(M(pl))| −
1) < wBSC(pl). Consequently, |supp(M(pl+1))| ≤
|supp(M(pl))|.

Since wBSC(pj) is strictly decreasing, the weight of
pseudo-codeword at stepl decreases by at least one compared
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(a) (b) (c)

(d)

0

(e)

Fig. 1. Squares represent pseudo-codewords and circles represent medians or related noise configurations (a) LP decodes median of a pseudo-codeword
into another pseudo-codeword of smaller weight (b) LP decodes median of a pseudo-codeword into another pseudo-codeword of the same weight (c) LP
decodes median of a pseudo-codeword into the same pseudo-codeword (d) Reduced subset (three different green circles) of a noise configuration (e.g. of a
median from the previous step of the ISA) is decoded by the LP decoder into three different pseudo-codewords (e) LP decodes the median (blue circle) of a
pseudo-codeword (low red square) into another pseudo-codeword of the same weigh (upper red square). Reduced subset of the median (three configurations
depicted as green circles are all decoded by LP into all-zero-codeword. Thus, the median is an instanton.

to the weight of the pseudo-codeword at stepl − 1. Since by
Lemma 2,wBSC(p1) ≤ 2k0, the algorithm can run for at
most2k0 steps.

Remarks:(1) By “sufficient number of flips”, we mean that
the initial binary vector should be noisy enough to for the LP
decoder to output a pseudo-codeword other than the all-zero-
codeword. While LP decoding of any binary vector with a
large number of flips is almost guaranteed to output a pseudo-
codeword different from the all-zero-codeword, such a choice
might also lead to a longer running time of the ISA (from
Theorem 1). On the other hand, choosing a binary vector with
a few number of flips might lead to decoding to the all-zero-
codeword very often, thereby necessitating the need to run the
ISA for a large number of times.

(2) Theorem 1 does not claim that the algorithm finds the
minimum weight pseudo-codeword or the instanton with the
smallest number of flips. However, it is sometimes possible to
verify if the algorithm has found the minimum weight pseudo-
codeword. Letwmin

ISA denote the weight of the minimum weight
pseudo-codeword found by the ISA. Ifwmin

ISA = 2⌈dfrac/2⌉−
1, thenwmin

ISA = wmin
BSC .

(3) At some stepl, it is possible to havewBSC(pMl
) =

wBSC(pl) and incorporating such pseudo-codewords into the
algorithm could lead to lower weight pseudo-codewords in the
next few steps. However, this inessential modification was not
included in the ISA to streamline the analysis of the algorithm.

(4) While we have shown thatwBSC(pl) decreases by
at least unity at every step, we have observed that in most
cases, it decreases by at least two. This is due to the fact that
the pseudo-codewords with odd weights outnumber pseudo-
codewords with even weights. As a result, in most cases, the
algorithm converges in less thank0 steps. (For illustration of
this point see example discussed in the next Section.)

(5) At any step, there can be more than one median, and
the ISA does not specify which one to pick. Our current
implementation suggests to pick a median at random. Also, the
algorithm does not provide clarification on the choice of the

pseudo-codeword for the case when more than one noise con-
figurations from the subsetrit

decode to pseudo-codewords
distinct from the all-zero-codeword. In this degenerate case,
we again choose a pseudo-codeword for the next iteration
at random. Note that one natural deterministic generalization
of the randomized algorithm consists of exploring all the
possibilities at once. In such a scenario, a tree of solutions
can be built, where the root is associated with one set of
initiation flips, any branch of the tree relates to a given set
of randomized choices (of medians and pseudo-codewords),
and any leaf corresponds to an instanton.

V. A NALYTICAL PREDICTION OF THEFER

In [11], [31], it was shown that the slope of the (log-log)
FER curve in the asymptotic limit ofα → 0 is equal to the
size of the smallest weight instanton. In other words, most of
the decoding failures in the error floor region are due to low-
weight instantons. Hence, the instanton statistics can be used
to predict the FER performance for small values ofα. For
large values ofα (near the threshold), the FER performance
can be estimated with very good accuracy by Monte-Carlo
simulations. The FER estimates in this region can be made
with a fixed complexity (the details of which will be explained
subsequently). The region in which it is the most difficult
to predict the performance is for intermediate values ofα.
Analytical estimates cannot be made as the instanton statistics
for higher weight instantons are not complete. This is due to
the fact that the number of instantons grows with the size
and the ISA needs to run for a large number of instantiations
to gather reliable statistics about higher weight instantons.
On the other hand Monte-Carlo estimates cannot be made
due to prohibitive complexity. Hence, we make use of an
approach that is a combination of Monte-Carlo simulations
and analytical approach.

Observe that a decoder failure for a pattern withk errors
can occur due to the presence of an instanton (or instantons)of
size less than or equal tok. Let Pr(r|k) denote the probability
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p3

0

r p1 M(p1) p2 M(p2)

M(p3)

pM2

0

Fig. 2. Illustration for the example of ISA execution on the[155, 65, 20] Tanner code discussed in Section VI.

that an instanton of sizer is present in an error pattern of size
k. If the number of instantons of sizer is denoted byTr then,
it can be seen that

Pr(r|k) ≈

(

k
r

)

Tr
(

n
r

) . (6)

Now, letPr(decoder failure|k errors) denote the probability
that the decoder fails when the channel makesk errors. Since,
a decoder failure occurs if and only if an instanton is present,
we have

Pr(decoder failure|k errors) ≈
k

∑

r=i

Pr(r|k), (7)

where i is the size of the smallest weight instanton. For
a sufficiently large value ofk, using Monte-Carlo simu-
lations, the relative frequencies of different instantonscan
be found and consequentlyPr(r|k) for different r can be
estimated. Using Eq. 6, the values ofTr can be estimated
approximately. These statistics can then be used to estimate
Pr(decoder failure|k errors) for intermediate values ofk using
Eq. 7.

The FER at a givenα can then be estimated using

FER(α) =

n
∑

k=1

Pr(decoder failure|k errors) Pr(k errors)

Since the channel under consideration is the BSC, we have

Pr(k errors) =

(

n

k

)

(α)k(1 − α)(n−k)

Note that the FER for large values ofα is dominated by
higherk. The values ofPr(decoder failure|k errors) for large
k can be estimated with a fixed complexity by running a
predetermined number of pattern withk errors and recording
the number of failures. Hence, the FER over a large range of
α can be estimated by the above approach.

Remark: It should be noted that while there are a large
number of instantons of large size, the error floor performance
is dominated by the instantons of smallest size which are very
rare. Hence, estimates made using the above method may not
be very reliable. This fact underlies the importance of the
ISA which is successful in finding all the smallest weight
instantons.

VI. N UMERICAL RESULTS

In this Section, we present results illustrating different
aspects and features of the ISA.

A. Illustration of the ISA

We use the[155, 64, 20] Tanner code [28] for illustration
purposes. We begin with an actual (and rather typical) exam-
ple. The reader is advised to follow this example with an eye
on Fig. 2.

Example 1:The algorithm is initiated with a binary vectorr

whose support set has cardinality12. In this case, Lp decoding
of r outputs a pseudo-codewordp1 of weight 17 (Lemma 2
guarantees thatwBSC(p1) ≤ 24). The MedianM(p1) of the
pseudo-codewordp1 has9 flips. The output of LP decoding
onM(p1) is a pseudo-codewordpM1

of weight11, marked as
p2, whose medianM(p2) contains6 flips. M(p2) decodes to
a pseudo-codewordpM2

of weight11 and hence we consider
all vectors whose support sets consist of one flip less than
in the support set ofM(p2). There are6 such vectors and5
of them decode to the all-zero-codeword (we do not show all
the six vectors in Fig .2). The remaining vector decodes to
a pseudo-codeword of weight9, marked asp3. The pseudo-
codewordp3 has only one medianM(p3) which is decoded to
the same pseudo-codewordp3. Hence, we consider all (five)
vectors built from the medianM(p3) removing a single flip
and observe that the LP decoder decodes all these vectors into
the all-zero-codeword. We conclude that the median is actually
an instanton of size5.

B. Performance Prediction Results

We first present the instanton statistics for the following two
codes (1) The (3,5) regular Tanner code of length 155 [28] and
(2) A (3,6) regular random code of length 204 from MacKay’s
webpage [32]. Table I shows the number of instantons found
when the ISA is initiated with 20 flips and run for 10000
different instantiations. The total number of instantons of each
size as well as the total number of unique instantons of each
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TABLE I
INSTANTON STATISTICS OBTAINED BY RUNNING THEISA WITH 20 RANDOM FLIPS FOR10000INITIATIONS FOR THE TANNER CODE AND THEMACKAY

CODE

Code Number of instantons of weight
4 5 6 7 8 9 10 11 12 13

Tanner code
Total 3506 1049 1235 1145 1457 1024 369 66 7

Unique 155 675 1028 1129 1453 1024 369 66 7

MacKay code
Total 213 749 2054 2906 2418 1168 332 55 6

Unique 26 239 1695 2864 2417 1168 332 55 6

TABLE II
Pr(DECODER FAILURE|k ERRORS) OBTAINED BY MONTE-CARLO SIMULATIONS.

Code
Number of Errors

8 9 10 11 12 13 14 15 16 17 18 19 20
Tanner code 3.3 e-5 1.2 e-4 5.3 e-4 2.2 e-3 7.7 e-3 2.6 e-2 7.5 e-2 0.178 0.358 0.582 0.806 0.932 0.985

MacKay code 1.4 e-4 5.1 e-4 1.9 e-3 6.2 e-3 1.9 e-2 5.5 e-2 0.124 0.265 0.449 0.674 0.853 0.947 0.991

size are recorded1. It can be seen that the size of the smallest
instanton is 5 for the Tanner code and 4 for the random
MacKay code. Hence, the slope of the FER curve in the error
floor region for these codes is 5 and 4 respectively.

Note that the smallest weight instanton found by the ISA
for the Tanner code is5 (We have observed that all the
instantons of size5 are in fact the(5, 3) trapping sets described
in [7]. Further investigation of the topological structureof
instantons will be dealt with in future work). The accuracy of
this estimate can be verified (indirectly) by finding thedfrac

of the code. Using the method outlined in [4], we observed
that dfrac of the Tanner code is8.3498. This implies that
wmin

BSC ≥ 9 (by Lemma 1), which in turn implies that the
size of any instanton cannot be less than5. This proves that
here5 is, indeed, the smallest instanton size, and respective
minimum pseudo-codeword weight is9. Note also that the
fractional weight of all the155 pseudo-codewords of BSC
weight 9 is 9.95, while the weight of the pseudo-codeword
with the minimal fractional weight of8.3498 is 19. The remark
illustrates that minimality of the fractional weight does not
imply minimality of the pseudo-codeword weight (and thus
minimality of the respective instanton size).

Table II shows the data corresponding to
Pr(decoder failure|k errors) for the Tanner and the MacKay
code fromk = 8 to k = 20. For k > 20, we can assume
that Pr(decoder failure|k errors) = 1. Table III shows the
relative frequencies of various weight instantons for the
Tanner code and the MacKay code. The results are obtained
by simulating107 error patterns with 8 errors for the Tanner
code resulting in 331 decoder failures. The contributions of

1The standard way to find out whether our instanton search exhausted all
the unique configurations is as follows. Assume that there are N unique
instantons of a given weight and in each trial ISA finds all of them with equal
probability. To estimate the number of ISA runs required forfinding all theN
instantons, one notice that ifN − 1 instantons are already found the number
of trails required to find to the last instanton is≈ N . If all but two instantons
are already found the number of ISA trials required isN/2. Therefore, the
average number of ISA trials required to find all the instantons is estimated as
N+N/2+N/3+· · ·N/(N−1)+1 = N(1+1/2+1/3+· · ·+1/N) turning
to N ln N at N → ∞, i.e.N ln N trials ISA reliably findsN instantons (this
is also known as the “coupon collector’s problem”). From this discussion, it
is clear that the statistics for smallest size instantons for both the codes are
very reliable.

various instantons is found by examining the subsets of the
8 error patterns and finding the instantons. Note that some
error patterns can consist multiple instantons and hence the
estimates made are only approximate. For the Tanner code, it
is found that there are approximately 2300 instantons of size
6, 6.4 × 105 instantons of size 7 and3.8 × 107 instantons
of size 8. For the MacKay code, it is found that there are
approximately 1120 instantons of size 5,1.6× 105 instantons
of size 6, 9.2 × 106 instantons of size 7 and instantons of
size 8.

Fig. 3(a) and Fig. 3(b) show the comparison between the
FER curves obtained using the semi-analytical approach de-
scribed above and the Monte-Carlo simulations. It is clear from
the plots that the proposed method predicts the performance
accurately. The plots also show the predicted performance at
the values ofα which are beyond the reach of the Monte-
Carlo simulations. The FER in this region is dominate by the
smallest weight instantons and the calculated slopes agreewith
the theoretical prediction. It is worth noting that Tables I,II,III
are sufficient to obtain the FER estimate for the Tanner and
MacKay codes.

A Note on Other Possible Algorithms:One can imagine
other simple algorithms that converge to an instanton in a
finite number of steps. One such algorithm can be formulated
in the following way2.

1) Start with a binary input vectorr with many bit flips,
and letp be the output of the LP decoder applied tor.
If p = 0, then start again.

2) For anyi, let s = s(i) be such thatsi = 0 and ri = 1
for somei, andsj = rj for all j 6= i. Let p(i) be the
result of application of the LP decoder tos(i).

3) If there is i such thatp(i) 6= 0, then setr = s(i) and
go to step 2. Otherwise,r is minimal and so it is an
instanton.

The above simple algorithm can also find an instanton in
a finite number of steps. However, such an algorithm finds
only instantons that are subsets of the support of the initial
error vector. This implies that the algorithm needs to be run

2We would like to thank the anonymous reviewer for pointing out this
simple alternative algorithm.
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for a large number of instantiations to find a small weight
instanton. As an illustration, consider the Tanner code that
contains 155 instantons of weight five. The probability thatan
error pattern witht ≥ 5 errors contains a weight-five instanton
is approximately155 ×

(

t
5

)

/
(

155
t

)

. It follows that if t = 20,
the above simple algorithm needs to be run about

(

155
20

)

/
(

155
15

)

times (in the order of 10’s of thousands) to find a weight-
five instanton. In contrast, the ISA finds weight-five instantons
3506 times in 10000 trials, which implies that the ISA needs
to be run only three times to find the lowest weight instanton.
This clearly illustrates the advantage of the ISA in finding low
weight instantons. The advantage of the ISA comes from the
fact that given a pseudo-codeword, the median step finds the
lowest weight error vector that could decode to the pseudo-
codeword.

VII. SUMMARY AND OPEN PROBLEMS

In this paper, we characterized failures of the LP decoder
over the BSC in terms of the instantons and respective pseudo-
codewords. We then provided an efficient algorithm for finding
the instantons. The ISA is guaranteed to terminate in the
number of steps upper bounded by twice the number of flips
in the original input (Theorem 1). Repeated sufficient number
of times, the ISA outcomes the Instanton-Bar-Graph showing
the number of unique instantons of different sizes. We also
proved that the LP decoding of any configuration of the input
noise which includes an instanton leads to a failure (Lemma
7). This Lemma arguably suggests to use the Instanton-Bar-
Graph derived with the ISA algorithm as a metric for code
optimization.

Finally, we conclude with an incomplete list of open prob-
lems and directions for future research following from this
study:

(1) One would like to understand how to choose initiation
of the ISA which guarantees convergence to the smallest size
instanton.

(2) When can one be reasonably certain that all instantons
of a given weight are found? Or stating it differently, how
many trials of the ISA are required to find all the instantons
of the given size? Does the number of trials scales linearly
with the size of the code?

(3) We have noticed that difficulty of finding an instanton
grows with its size. Once the ISA finds all the instantons of
certain weight, can one optimize initiation strategy for the
algorithm to find instantons of larger size more efficiently?

(4) Can one utilize knowledge of the code structure (e.g.
for highly structured codes) to streamline discovery of the
Instanton-Bar-Graph, especially in the part related to thelarger
size instantons?

(5) Some studies have explored connections between
pseudo-codewords and stopping sets (see e.g. [13]). Are there
any (similar?) relationships between trapping sets of the BSC
(for Gallager like algorithms) and BSC-LP instantons?

(6) Are instantons of a code performing over the BSC
related to instantons of the same code over the AWGN channel

TABLE III
RELATIVE FREQUENCIES OF DIFFERENT SIZE INSTANTONS OBTAINEDBY

ANALYZING ERROR PATTERNS WITH8 ERRORS.

Code # error events # instantons of weight
4 5 6 7 8

Tanner code 331 130 37 139 58
MacKay code 87 10 14 36 24 16

(or other soft channels)? Can we use one to deduce the other?
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