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Abstract—We consider Linear Programming (LP) decoding
of a fixed Low-Density Parity-Check (LDPC) code over the
Binary Symmetric Channel (BSC). The LP decoder fails when it
outputs a pseudo-codeword which is not equal to the transmiéd
codeword. We design an efficient algorithm termed the Instaton
Search Algorithm (ISA) which generates an error vector caled
the BSC-instanton. We prove that: (a) the LP decoder fails fo
any error pattern with support that is a superset of the suppat
of an instanton; (b) for any input, the ISA outputs an instanton
in the number of steps upper-bounded by twice the number of
errors in the input error vector. We then find the number of
unique instantons of different sizes for a given LDPC code by
running the ISA sufficient number of times.

Index Terms—Low-density parity-check codes, Linear Pro-
gramming Decoding, Binary Symmetric Channel, Pseudo-
Codewords, Error-floor

|. INTRODUCTION

values turning into theerror-floor asymptotic at very large
SNR [5]. This transient behavior and the error-floor asyripto
originate from the sub-optimality of the decoding, i.e.eth
ideal maximum-likelihood (ML) curve would not show such
a dramatic change in the BER/FER with the SNR increase.

After the initial investigation of error floors of LDPC codes
on channels other than the binary erasure channel (BEC)
by Richardson [5], a significant effort has been devoted to
the analysis of the error floor phenomenon. Given that the
decoding sub-optimality is expressed in the domain wheze th
error probability is small, the troublesome noise configore
leading to decoding failures and controlling the error-floo
asymptotic are extremely rare, and analytical rather than
simulation methods for their characterization are neggssa
It is worth noting here that most of the analytical methods
developed in the theory of iterative decoding have focused o
ensembles of codes rather than a given fixed code.

The significance of Low-Density Parity-Check (LDPC) _ _ . .
codes [1] is in their capacity-approaching performancemnwhe The fa|l_ures of iterative d_ecodl_ng over the BEC are well un-
decoded using low complexity iterative algorithms, such &€rstood in terms of combinatorial objects known as stappin
Belief Propagation (BP) [1], [2]. Iterative decoders operay set_s [6]. For iterative decoding on the Additive Whltg Gms
passing messages along the edges of a graphical reprémentiise (AWGN) channel and the BSC, the decoding failures
of a code known as the Tanner graph [3], and are optinﬁ@ve been characterized in terms of trapping sets. [5], [d] an
when the underlying graph is a tree. However, the decodif§eudo-codewords [8], [9], [10]. Richardson [5] introddce
becomes sub-optimal in the presence of cycles, and hence f#fe notion of trapping sets and proposed a semi-analytical
asymptotic analysis methods are of limited practical uge fgi€thod to estimate the FER performance of a given code on
the analysis of a fixed code. The linear programming (LF}€ AWGN chanljel in the error flc_)or region. The method was
decoding introduced by Feldmaat al. [4], is another sub- successfully applied to hard decision decoding over the BSC

optimal algorithm for decoding LDPC codes, which has highéfl- The approach of [5] was further refined by Stepaesowl.
complexity but is more amenable to analysis. [11], usinginstantons Pseudo-codewords were first discussed

. . in_the context of iterative decoders using computationstree
The typical performance measures of a decoder (either ]
or BP) for a fixed code are the Bit-Error-Rate (BER) or/an

and later using graph covers [9], [10]. Pseudo-codeword
. g istributions were found for the special cases of codes from
:\Te. Frgmt_e-Eglc\)l;Rfj\At\et (FET)BSFS{ /;L:Ené:tlonSsN(g the Signal-ta-, ijean and projective planes [12]. A detailed analystb®
oIs€ Ratlo ( )'. ypica vs CUIVE CONSISIS< e do-codewords was presented by Kelley and Sridhara [13]
of two distinct regions. At small SNR, the error probabilit ho discussed the bounds on pseudo-codeword size in terms

decreases rapidly with the SNR, and the curve forms the ¥ the girth and the minimum left-degree of the underlying

calledwater-fall region. The decrease slows down at mOdera%nner graph. The bounds were further investigated by Xia
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and Fu [14]. Pseudo-codeword analysis has also been extende
to the convolutional LDPC codes by Smarandaehal. [15].

(See also [16] for an exhaustive list of references for thid a
related subjects.)

Pseudo-codewords can be also used to understand the fail-
ures of the LP decoder [4]. It was shown in [4] that the
LP decoding on the BEC fails if the set of erased variable
nodes contain a stopping set. Hence, in this sense, the @seud
codewords for the LP decoder are equivalent to stopping
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sets for the case of the BEC. For binary-input memoryless [27], the material in this paper presents a detailed aisly
channels, the pseudo-codewords of the LP decoder aredelaitthe ISA along with the required theorems and proofs (that
to the pseudo-codewords arising from graph covers [10]. tlo not appear in [27]). Furthermore, this paper also eluegla
fact, in [10] Vontobel and Koetter have also pointed ouhe method to estimate the FER performance of a given LDPC
relations between pseudo-codewords arising from grapérsovcode using the instanton statistics.

and trapping sets. The rest of the paper is organized as follows. In Section II,

Closely related to the pseudo-codewords and the trappig give a brief introduction to the LDPC codes, LP decoding
sets are the noise configurations that lead to decodingdailuand pseudo-codewords. In Section IlI, we introduce the BSC-
which are termed as instantons [11]. Finding the instanimnsspecific notions of the pseudo-codeword weight, medians and
a difficult task which so far admitted only heuristic soluio instantons (defined as special set of flips), their costs, and
[7], [17]. In this regard, the most successful (in efficiencywe also prove some set of useful lemmata emphasizing the
approach, coined the Pseudo-Codeword-Search (PCS) a@'gnificance of the instanton analysis. In Section IV, we
rithm, was suggested for the LP decoding performing oveescribe the ISA and prove our main result concerning bounds
the continuous channel in [18] (with AWGN channel use@n the number of iterations required to output an instanton.
as an enabling example). Given a sufficiently strong randdf¥e comment on the analytical estimation of the FER using
input, the outcome of the PCS algorithm is an instanton. Tlestanton statistics in Section V. We present an illustratf
resulting distribution of the instantons (or respectiveyso- the ISA as applied to thél55, 64,20] Tanner code [28] and
codewords) thus provides a compact and algorithmically fe@umerical results in Section VI. We summarize our results an
sible characterization of the AWGN-LP performance of theonclude by listing some open problems in Section VII.

given code.
. . . Il. PRELIMINARIES: LDPC CoDES, LP DECODER AND
In this paper, we consider pseudo-codewords and instantons PSEUDO-CODEWORDS

of the LP decoder for the BSC. We define tB8C-instanton
as a noise configuration which the LP decoder decodes intdn this Section, we discuss the LP decoder and the notion
a pseudo-codeword distinct from the all-zero-codewordavhiof pseudo-codewords. We adopt the formulation of the LP
any reduction of the (number of flips in) BSC-instanton leadiecoder and the terminology from [4], and thus the inteteste
to the all-zero-codeword. Being a close relative of the B¥eader is advised to refer to [4] for more details.
decoder (see [19], [20] for discussions of different aspect Let C be a binary LDPC code defined by a Tanner graph
of this relation), the LP decoder appeals due to the followinz with two sets of nodes: the set of variable nodés=
benefits: (a) it has ML certificate i.e., if the output of thg1l,2,...,n} and the set of check nodés = {1,2,...,m}.
decoder is a codeword, then the ML decoder is also guarantddu bi-adjacency matrix af is H, a parity-check matrix of,
to decode into the same codeword; (b) the output of the Wi#th m rows corresponding to the check nodes antblumns
decoder is discrete even if the channel noise is continuct@responding to the variable nodes. In other words; = 1
(meaning that problems with numerical accuracy do not griséf and only if there is an edge between the check nbded
(c) its analysis is simpler due to the readily available det the variable nodg in the Tanner grapltz. A binary vector
powerful analytical tools from the optimization theory;danc = (ci,...,c,) is a codeword iffcH? = 0. The support of
(d) it allows systematic sequential improvement, whiclultss a vectorr = (rq,r2,...,7,), denoted by supp), is defined
in decoder flexibility and feasibility of an LP-based ML foras the set of all positionssuch thatr; # 0.
moderately large codes [21], [22]. While slower decoding We assume that a codewosdis transmitted over a dis-
speed is usually cited as a disadvantage of the LP decodgate symmetric memoryless channel and is received.as
this potential problem can be significantly reduced, thaoks The channel is characterized B[j;]y;] which denotes the
the recent progress in smart sequential use of LP congraiptobability thaty; is received agj;. The log-likelihood ratio
[23] and/or appropriate graphical transformations [22W][ (LLR) corresponding to the variable nodes given by
[25] and other low complexity decoding approximations [26] Pr(jily; = 0)

The two main contributions of this paper are: (1) char- i = log (m) :

acterization of all the failures of the LP decoder over the, ML decoding of the cod@ allows a convenient LP formu-

BSC in terms of the instantons, and (2) an efficient Instant(P ion in terms of thecodeword
. K ) polytopgoly(C) whose ver-
Search Algorithm (ISA). Following the idea by Chertkov an@%es correspond to the codewordsdnThe IE/IL)-LP decoder

Stepanov [18], for a given a random binamytuple, the ISA findsf — (f L L sn
: ) = (f1,. -, fn) minimizing the cost function} " , v; f
generates a BSC-instanton, that is guaranteed to be debgde ubject to thef € poly(C) constraint. The formulation is

the LP decoder into a pseudo-godeword .d'SF'T“:t from the ompact but impractical because of the number of consgraint
zero-codeword. Our ISA constitutes a significantly Strcmg%xponential in the code length

algorithm than the one of [18] due to its property that it laxed polvt i defined the int " ¢
outputs an instanton in the number of steps upper—boundqﬁ‘ence arelaxed polylope 1S cetined as the intersection o

by twice the number of flips in the original configuration thé he polytopes assoua.te_d with the local c_od_es introdtoe
algorithm is initiated with. An overview of instanton base(?l.I the_ checks of the orlglnallcode. Associatitg, .. ., fn)
techniques to analyze and reduce error floors of LDPC coo\ggh bits of the code we require

is presented in [27]. While the ISA has also been discussed 0< fi <1, VieV (1)
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For every check nodg, let N(j) denote the set of variable When the channel and the decoder satisfy certain symmetry
nodes which are neighbors ¢f Let E; = {T' C N(j) : conditions (see [2] for details), we can assume, withou tafs

|T| is ever}. The polytope?); associated with the check nodegenerality, that the all zero codeword is transmitted. Tiee L

j is defined as the set of poin{§, w) for which the following decoder satisfies these conditions as shown in [4]. Hence, we

constraints hold make the assumption of the all-zero-codeword throughaut th
paper. Hence, the received vector and subsequently thé¢ inpu
0<wjr <1, VT € Ej (2)  to the LP decoder is the error vector. The process of changing
ZTGEJ_ wijr =1 (3) a bit from 0 to 1 and vice-versa is known as flipping. The
fi = Yrep, roiwir, Vi€ N() (4) BSC flips every transmitted bit with a certain probabilitye W

therefore call an error vector with support of sizes having
Now, let @ = N;Q; be the set of pointgf, w) such that £ flips.
(1)-(4) hold for allj € C. (Note that@ is a function of the
Tanner graphG and consequently the parity-check matfix
representing the codé.) The Linear Code Linear Program = { 1, ifyg,=0;

In the case of the BSC, the likelihoods are scaled as

(LCLP) can be stated as -1, ify, =1
(ngl) Z Yifir st.(f,w) € Q. Two important characteristics of a pseudo-codeword are its
Ciev cost and weight. While the cost associated with decoding to

For the sake of brevity, the decoder based on the LCLP aspseudo-codeword has already been defined in general, we
referred to in the following as the LP decoder. A solutiofermalize it for the case of the BSC as follows:

(f,w) to the LCLP such that alf;s andw; rs are integers is  Definition 2: The cost associated with LP decoding of a

known as an integer solution. The integer solution reprsseRinary vectorr to a pseudo-codeworg is given by
a codeword [4]. It was also shown in [4] that the LP decoder

has the ML certificate, i.e., if the output of the decoder is a Cr,p)= > pi— >, pi (5)
codeword, then the ML decoder would decode into the same igSUPQAr) i€SUPQr)

codeword. The LCLP can fail, generating an output which is

not equal to the transmitted codeword. For a more detailéfdr is the input, then the output of the LP decoder ois
description of the LCLP and the interpretation of the diéfer the pseudo-codewond which has the least value @f(r, p).
variables in the above equations, the reader is referred]to [The cost of decoding to the all-zero-codeword is zero. Hence

The performance of the LP decoder can be analyzed in terfi§ output of LP decoding of a binary vecteris not equal
of the pseudo-codewords, originally defined as follows: to the all-zero-codeword if there exists a pseudo-codeword

o . with C(r,p) <0.
Definition 1: [4] Integer pseudo-codewold a vectorp =

(p1,...,pn) Of non-negative integers such that, for every Definition 3:[13, Definition 2.10] Letp = (p1, ..., p.) be
parity checkj € C, the neighborhoodp; : i € N(j)} is @ pseudo-codeword distinct from the all-zero-codeword. Le

e be the smallest number such that the sum of dHargest
pisis atleas(}", .y pi) /2. Then, the BSQrseudo-codeword
weightof p is

a sum of local codewords.

Alternatively, one may choose to definerexscaled pseudo-
codeword p = (p1,...,pn) Where0 < p, < 1,Vi € V,
simply equal to the output of the LCLP. In the following, we 2, if e i = (Diey i) /2
adopt the re-scaled definition. wpsc(P) = { 2¢—1, if ZiGE(p) pi > (Zievpi) /2,
A given codeC can have different Tanner graph repre-
sentations and consequently potentially different pggt where E(p) is a set ofe largest components gf.
Hence, we refer to the pseudo-codewords as correspondingha minimum pseudo-codeword weight 6f denoted by
to a particular Tanner grapli of C. whi, is the minimum over all the non-zero pseudo-codewords
It is also appropriate to mention here that the LCLP can lo¢ G. The parametee = |(wpsc(p) + 1) /2] can be inter-
viewed as the zero temperature version of BP-decoder Igokipreted as the least number of bits to be flipped in the all-
for the global minimum of the so-called Bethe free energgero-codeword such that the resulting vector decodes to the

functional [19]. pseudo-codeworg. (See e.g. [29] for a number of illustrative
examples.)
l1l. COST AND WEIGHT OF PSEUDO-CODEWORDS Remark:Feldmanet al. in [4] definedweightof a pseudo-
MEDIANS AND INSTANTONS codeword, thdractional distanceand themax-fractional dis-

tanceof a Tanner graph of a code in terms of the projected
Since the focus of the paper is on the pseudo-codewomislytope@ (the interested reader is referred to [4] for explicit
for the BSC, in this Section we introduce some terms, e.description ofQ). To differentiate the two definitions, we term
instantons and medians, specific to the BSC. We will alshe “weight” defined by Feldmaet al. as fractional weight
prove here some preliminary lemmata which will enablend denote it bywy,... For a pointf in @, the fractional
subsequent discussion of the ISA in the next Section. weight of f is defined as the L1-normyy,...(f) = > ..\ fi
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and the max-fractional weight dfis defined as the fractional
weight normalized by the maximurfy value i.e.,

Wyrac(f)
max; fz '

Wmaz— frac (f) =

Also, if Vo denotes the set of non-zero vertices @fthe
fractional distance s, of the code is defined as the minimu
weight over all vertices in5. The max-fractional distance
dmer of a Tanner graph of the code is given by

frac
_ min Ziev fi
(f)EV57f5£O

max; f;

max
frac

2008

Lemma 3:Let p be a pseudo-codeword with mediafi(p)

whose support has cardinality. Then wgsc(p) € {2k —

1,2k}.

Lemma 4:Let M (p) be a median ofp with supports.
Then the result of LP decoding of any binary vector with
supportS’ ¢ S and|S’| < |S] is distinct fromp.

Proof: Let |S| = k. Then by Lemma 3wpsc(p) €

k — 1,2k}. Now, if r is any binary vector with support
S’ c S, thenr has at mostk — 1 flips and therefore by
Lemma 2,wpsc(p) < 2(k — 1), which is a contradictionm

Lemma 5:If the output of the LP decoder o (p) is a

m

It was shown in [4, Theorem 9] that the LP decoder igseudo-codeworg,s # p, thenwpsc(pm) < wpsc(p)-

successful if at mosfdy,../2] — 1 bits are flipped by the
BSC, thus makingis,.. a potentially useful characteristic.
Moreover, an efficient LP-based algorithm to calculdje,.

Also, C(M(p),pm) < C(M(p), p).

Proof: According to the definition of the LP decoder,
C(M(p),pm) < C(M(p),p).

was suggested in [4]. However, LP decoding of the error pat- | wpsc(p) = 2k, then M(p) hask flips and by Lemma
tern with the least number of flips which the LP decoder failg wesc(pa) < 2k = wpsc (p).

to correct does not necessarily output the pseudo—codewohljf i hen M has & fi d
with fractional weightd ... Hence, we adopted the definition MwBSC(p) H2 — 1, then (Ii) 2l<:a?3 . IPS an2
of the pseudo-codeword weight from [13], however noticing (M (P).P) < 0. Hence,wpsc(par) < y Lemma .

that it was discussed there in a different but related cant E\_Nﬁv_er’ i wBSC((jPM) :sz’ then O(M(p)’pl‘é) - 9
of the computation tree and graph covers. A slightly differe V€N 1S @ contradiction. Henceypsc(pam) < 2k -1 =
definition also first appeared in [29]. The advantage of oﬁl‘fBSC(p)' u

Definition 5: The BSCinstantoni is a binary vector with
the following properties: (1) There exists a pseudo-coadwo
dfrac. p such thatC(i, p) < C(i,0) = 0; (2) For any binary vector

such that supfr) C supfi), there exists no pseudo-codeword

Lemma 1:wiist, > 2[dgrac/2] - I _ with C(r,p) < 0. The size of an instanton is the cardinality
Proof: The LP decoder is successful if at moshf jts support.

[drrac/2] — 1 bits are flipped by the BSC. So, the minimun]
number of flips in the all-zero-codeword which can cause the

LP decoder to fail i d ./2]. If ¢ is the minimum number of codeword other than the all-zero-codeword or one finds a

, . ; L . i eudo-codeworg # 0 such thatC(i,p) = 0 (interpreted
Ilr'f; associated with the minimum weight pseudo °°deW°’§§ the LP decoding failure), whereas any binary vector with

¢ > [drrae/?] flips from a subset of the flips ihis decoded to the all-zero-
= |8frac codeword. It can be easily verified thatdfis the transmitted
Since,wifi, > 2e — 1, we havewBit, > 2[dsq./2] —1 W codeword and: is the received vector such that sgppr) =

The above lemma can be generalized to any pseuddHi), where the/addition is modullo two, then there exists a
codewordp as wpsc(p) > 2[wyrae(p)/2] — 1. We would Pseudo-codeworg’ such thatC'(r, p’) < C(r, c).
like to point out that Kelley and Sridhara in [13] have dedvee  The following lemma follows from the definition of the cost
similar relation betweetwgsc (p) andw,q.— rrac(p) and that  of decoding (the pseudo-codeword cost):
Sridhara in [30] observed thatpsc(p) +1 > Wmaz— frac(P)- Lemma 6:Leti be an instanton. Then for any binary vector
The interpretation of BSC pseudo-codeword weight me-such that supfi) C supfr), there exists a pseudo-codeword
tivates the following definition of themedian noise vector p satisfyingC(r, p) < 0.
corres-p.o.ndlng toa pseu.do—co<.jeword: . Proof: Sincei is an instanton, there exists a pseudo-
Definition 4: The median noise vector (or simply the mecodewordp such thatC(i,p) < 0. From Definition 2 we
dian) M (p) of a pseudo-codeworl distinct from the all-zero- have,
codeword is a binary vector with suppdft= {i1,12,...,%.}, Z pi — Z p; < 0.
igSUPRI) icSUpRi)

such thatp;,,....p;, are thee(= |(wpsc(p)+1)/2])
Since, supfi) C supgr) andp; > 0, Vi, we have

largest components qf.
One observes that; (M (p),p) < 0. From the definition of

doopi— Y., m<o,
igSUpPQr) ieSUpPQr)

wpsc(p), it follows that at least one median exists for every
p- Also, all medians op have| (wpsc(p) + 1) /2] flips. The
proofs of the following two lemmata are now apparent. S
) thus yielding
Lemma 2:Let the transmitted codeword be the all-zero-
codeword and lep be the output of the LP decoder on an error
vector with support of sizé. If p # 0, thenwpsc(p) < 2k.

approach will become evident in the subsequent Sections.
The following Lemma gives a relation betweerf 4t and

n other words, the LP decoder decodego a pseudo-

C(r,p) <0.
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The above lemma implies that if the all-zero-codeword isontaining sufficient number of flips so that the LP decoder
transmitted over the BSC and the support of the receivddcodes it into a pseudo-codeword different from the aibze
vector is a superset of an instanton, then the LP decodsr faibdeword. Apply the LP decoder toand denote the pseudo-
to decode the received vector to the all-zero-codeword. Wedeword output of LP by'.

now have the following corollary: 1 > 1 step Take the pseudo-codewopd (output of the(i—1)

Corollary 1: Letr be a binary vector with suppoft. Letp  Step) and calculate its media (p'). Apply the LP decoder
be a pseudo-codeword such titér, p) < 0. If LP decoding t© M(p') and denote the output byx,. By Lemma 5, only
of all binary vectors with suppor§’ C S such that|s’| = WO cases arise:
|S| — 1, outputs0, thenr is an instanton. e wpsc(pa,) < wpse(p!). Thenp!*! = py, becomes

The above lemmata lead us to the following lemma which  the-th step output/ + 1) step input.
characterizes all the failures of the LP decoder over the:BSC » wssc(pam,) = wpsc(p'). Let the support of\/ (p') be
S = {i1,...,ig}. LetS;, = S\{i,} for somei, € S.
Let r;, be a binary vector with suppof;,. Apply the
LP decoder to allr;, and denote th&,-output by p;,.
If p;, = 0,Yi;, then M(p') is the desired instanton
and the algorithm halts. Elsgy;, # 0 becomes thé-
th step outputl + 1) step input. (Notice, that Lemma 4
guarantees that any;, # p', thus preventing the ISA
from entering into an infinite loop.)

Lemma 7:Let the transmitted codeword be the all-zero-
codeword and letr be a binary error vector such that the
output of LP decoding om is a pseudo-codeword different
from the all-zero-codeword. Then, the supportro€ontains
the support of an instanton as a subset.

The most general form of the above lemma can be stated
as following: if ¢ is the transmitted codeword andis the
received vector, then result of LP decodingois a pseudo-
codeword different frome iff the supgr + c), where the  Fig. 1 illustrates different scenarios arising in the execu
addition is modulo two, contains the support of an instantd¥ the ISA. Here, the squares represent pseudo-codewodds an
as a subset. the circles represent binary vectors (noise configura}idmgo

From the above discussion, we see that the BSC instantGgares of the same color have identical pseudo-codeword
are analogous to the minimal stopping sets for the ca‘é’g'ght and t_WO C|_rcles of the same color consist of same
of iterative/LP decoding over the BEC. In fact, Lemma ﬁumber of fI_|ps. Fig. 1(a)_ showsl the case where the result
characterizes all the decoding failures of the LP decoder 0\95 I_‘P decoding of a median}/(p’), of a pseuqio-codewo_rd
the BSC in terms of the instantons and can be used to derlve'S atl+leseudo-codgworﬂMl ,Of a smaller weight. In this
analytical estimates of the code performance given thehteig@Se:P '~ = Pas. Fig. 1(b) |Illustrates the case wherel the
distribution of the instantons. In this sense, the instastare -+ decoding of a median}/(p’), of a pseudo-codeword

more fundamental than the minimal pseudo-codewords [1%“,_'1tputs a pseudo-codewopd,, of the same weight. I_:|g.ll(c)
[13] for the BSC (note, that this statement does not hol strates the case Wherle the LP decoding of a mediéfp’),
in the case of the AWGN channel). Two minimal pseudQQf a pseudo-codeworg” outputs thg pseudo-co.dewogd
codewords of the same weight can give rise to different nwmﬂg‘elf' In the two latter cases, we consider all the binargtees

l
of instantons. This issue was first pointed out by Foreegl. VNOS€ support sets are subsets of the support séf (gf')
in [29]. (See Examples 1, 2, 3 for the BSC case in [29] nd the vectors contain one flip less. We run the LP decoder

It is also worth noting that the result of LP decoding on acétget/r\]/gr\(/jesdgrr?eaf) ;rlﬁ:tsng:?zfe'fg :ohsG:ngE::?)Sdpe?/Cgrlgg ?:5:3 o
instanton is a minimal pseud9-09deword. _chosen at random gs*!. This is illustrated in Fig. 1(d). Fig.

It should be noted that finding pseudo-codewords wilfyg) shows the case when LP decoding of all the subsets of
frac_:tlonal weightd ¢, iS not equivalent to finding minimum M (p') (reduced by one flip) outputs to the all-zero-codeword.
weight pseudo-codewords. The pseudo-codewords with frq_cp decoding ofM (p!) itself could outputp! or some other
tional weightdy,.. can be used to derive some inSta”tonﬁ’seudo-codeword of the same weight. In this cddép!) is

but not necessarily the ones with the least number of fling, instanton constituting the output of the algorithm.
However, asdy,.. provides a lower bound on the minimum . .
We now prove that the ISA terminates (i.e., outputs an

pseudo-codeword weight, it can be used as a test if the ISA .
actually finds an instanton with the least number of flipér.'Stanto.n) n 'Fh.e. numper of ;teps .Of the order the number
In other words, if the number of flips in the lowest weighP]c flips in the initial noise configuration. )
instanton found by the ISA is equal tal;,,./2], then the ~ Theorem liwpsc(p') and [supgM(p'))| are monotoni-
ISA has indeed found the smallest size instanton. cally decreasing. Also, the ISA terminates in at nitisf steps,
wherek is the number of flips in the input.
Proof: If p'*! = pyy,, thenwpsc(p'™) < wpsc(p).

Consequentlyjsupg M (p'*1))| < |supM (p"))|.

In this Section, we describe the Instanton Search Algorithm |f p!+! = p, | then wsc(ps,) < 2(|supdM(p'))| —
The algorithm starts with a random binary vector with somg) <  wpsc(p!). Consequently, [supdM (pt!))| <
number of flips and outputs an instanton. |supg M (p'))].

Instanton Search Algorithm Since wpsc(p?) is strictly decreasing, the weight of
Initialization (I = 0) step Initialize to a binary input vector pseudo-codeword at stémlecreases by at least one compared

IV. INSTANTON SEARCH ALGORITHM AND ITS ANALYSIS
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Fig. 1. Squares represent pseudo-codewords and circlessezp medians or related noise configurations (a) LP dsecodmlian of a pseudo-codeword
into another pseudo-codeword of smaller weight (b) LP desogiedian of a pseudo-codeword into another pseudo-codegfothe same weight (c) LP
decodes median of a pseudo-codeword into the same pseddevaal (d) Reduced subset (three different green circles) mise configuration (e.g. of a
median from the previous step of the ISA) is decoded by the &ébder into three different pseudo-codewords (e) LP decduz median (blue circle) of a
pseudo-codeword (low red square) into another pseudoaadeof the same weigh (upper red square). Reduced subske ofi¢dian (three configurations
depicted as green circles are all decoded by LP into all-egedeword. Thus, the median is an instanton.

to the weight of the pseudo-codeword at step1. Since by pseudo-codeword for the case when more than one noise con-
Lemma 2,wpsc(p!) < 2ko, the algorithm can run for at figurations from the subsat;, decode to pseudo-codewords
most 2k, steps. B distinct from the all-zero-codeword. In this degeneratseca

Remarksi(1) By “sufficient number of flips”, we mean thatwe again choose a pseudo-codeword for the next iteration
the initial binary vector should be noisy enough to for the LRt random. Note that one natural deterministic generadaat
decoder to output a pseudo-codeword other than the all-ze® the randomized algorithm consists of exploring all the
codeword. While LP decoding of any binary vector with ®ossibilities at once. In such a scenario, a tree of solstion
large number of flips is almost guaranteed to output a pseud@n be built, where the root is associated with one set of
codeword different from the all-zero-codeword, such a choiinitiation flips, any branch of the tree relates to a given set
might also lead to a longer running time of the ISA (fron®f randomized choices (of medians and pseudo-codewords),
Theorem 1). On the other hand, choosing a binary vector wighd any leaf corresponds to an instanton.

a few number of flips might lead to decoding to the all-zero-
codeword very often, thereby necessitating the need toh@in t V. ANALYTICAL PREDICTION OF THEFER

ISA for a large number of tme_s. i _ In [11], [31], it was shown that the slope of the (log-log)
_(2_) Theorem 1 does not claim that the glgorlthm f|n_ds the=R curve in the asymptotic limit oft — 0 is equal to the
minimum weight pseudo-codeword or the instanton with thg, ¢ of the smallest weight instanton. In other words, mést o

smallest number of flips. However, it is sometimes possible fo gecoding failures in the error floor region are due to low-
verify if the algorithm has found the minimum weight pseudqejght instantons. Hence, the instanton statistics cansee u

codeword. Letoyg’; denote the weight of the minimum weighty, preqict the FER performance for small valuescof For
pseudo-codeword found by the ISA.Ufs’; = 2[dsrac/2] = |arge values ofv (near the threshold), the FER performance

1, thenw?in = wpi ; -
' ISA BSC: _ can be estimated with very good accuracy by Monte-Carlo
(3) At some steql, it is possible to havevssc(pam,) = simulations. The FER estimates in this region can be made

wpsc(p') and incorporating such pseudo-codewords into theith a fixed complexity (the details of which will be explaihe
algorithm could lead to lower weight pseudo-codewords & thsubsequently). The region in which it is the most difficult
next few steps. However, this inessential modification wats nto predict the performance is for intermediate valuesaof
included in the ISA to streamline the analysis of the algonit  Analytical estimates cannot be made as the instantontatatis
(4) While we have shown thatvpsc(p!) decreases by for higher weight instantons are not complete. This is due to
at least unity at every step, we have observed that in mdise fact that the number of instantons grows with the size
cases, it decreases by at least two. This is due to the fact taad the ISA needs to run for a large number of instantiations
the pseudo-codewords with odd weights outnumber pseudo-gather reliable statistics about higher weight instasto
codewords with even weights. As a result, in most cases, @@ the other hand Monte-Carlo estimates cannot be made
algorithm converges in less thag steps. (For illustration of due to prohibitive complexity. Hence, we make use of an
this point see example discussed in the next Section.) approach that is a combination of Monte-Carlo simulations
(5) At any step, there can be more than one median, ai@d analytical approach.
the ISA does not specify which one to pick. Our current Observe that a decoder failure for a pattern witkerrors
implementation suggests to pick a median at random. Algo, tban occur due to the presence of an instanton (or instantdns)
algorithm does not provide clarification on the choice of thsize less than or equal fo Let Pr(r|k) denote the probability
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Fig. 2. lllustration for the example of ISA execution on tHé&5, 65, 20] Tanner code discussed in Section VI.

that an instanton of sizeis present in an error pattern of size VI. NUMERICAL RESULTS
k. If the number of instantons of sizeis denoted byr’. then,
it can be seen that In this Section, we present results illustrating different

N aspects and features of the ISA.
T
Pr(r|k) = ) . (6)

Now, let Pr(decoder failurg: errorg denote the probability A- lllustration of the ISA

that the decoder fails when the channel makesrors. Since, ] ]
a decoder failure occurs if and only if an instanton is presen We use the[155,64,20] Tanner code [28] for illustration

we have purposes. We begin with an actual (and rather typical) exam-
& ple. The reader is advised to follow this example with an eye
Pr(decoder failurg: errorg ~ ZPr(r|k), (7) onFig. 2.
r=i Example 1:The algorithm is initiated with a binary vecter

where i is the size of the smallest weight instanton. Fowhose support set has cardinality. In this case, Lp decoding

a sufficiently large value oft, using Monte-Carlo simu- of r outputs a pseudo-codeword of weight 17 (Lemma 2
lations, the relative frequencies of different instanta@ guarantees thavpsc(pt) < 24). The MedianM (p!) of the

be found and consequentlyr(r|k) for different »r can be pseudo-codeworg' has9 flips. The output of LP decoding
estimated. Using Eq. 6, the values &f can be estimated on M (p!) is a pseudo-codeworngl,;, of weight11, marked as
approximately. These statistics can then be used to estimp?, whose mediad/ (p?) containss flips. M (p?) decodes to
Pr(decoder failurg: errorg for intermediate values df using a pseudo-codeword,;, of weight11 and hence we consider
Eq. 7. all vectors whose support sets consist of one flip less than

The FER at a givemr can then be estimated using in the support set o/ (p?). There are6 such vectors and
of them decode to the all-zero-codeword (we do not show all

FER(a) = ZPr(decoder failurg: errorg Pr(k errorg the six vectors in Fig .2). The remaining vector decodes to
i 3
1 a pseudo-codeword of weight marked agp”. The pseudo-

Since the channel under consideration is the BSC, we hay&odewordp® has only one mediaf/ (p®) which is decoded to
the same pseudo-codewopd. Hence, we consider all (five)
Pr(k error§ = (") (a)k(l _ a)("_k) vectors built from the mediad/ (p?) removing a single flip
k and observe that the LP decoder decodes all these vectors int
Note that the FER for large values of is dominated by the all-zero-codeword. We conclude that the median is dgtua

higherk. The values ofr(decoder failurg: errorg for large an instanton of sizé.

k can be estimated with a fixed complexity by running a

predetermined number of pattern witherrors and recording

the number of failures. Hence, the FER over a large range ®f performance Prediction Results
« can be estimated by the above approach.

Remark: It should be noted that while there are a large We first present the instanton statistics for the followiwg t
number of instantons of large size, the error floor perforteancodes (1) The (3,5) regular Tanner code of length 155 [28] and
is dominated by the instantons of smallest size which arg veR) A (3,6) regular random code of length 204 from MacKay'’s
rare. Hence, estimates made using the above method maywebpage [32]. Table | shows the number of instantons found
be very reliable. This fact underlies the importance of thehen the ISA is initiated with 20 flips and run for 10000
ISA which is successful in finding all the smallest weighdifferent instantiations. The total number of instantoheach
instantons. size as well as the total number of unique instantons of each
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TABLE |
INSTANTON STATISTICS OBTAINED BY RUNNING THEISA WITH 20 RANDOM FLIPS FOR10000INITIATIONS FOR THE TANNER CODE AND THEMACKAY
CODE

Number of instantons of weight

Code Z 5 3 7 3 9 10 [ 1T [ 12| 13
Tanner code | T0@ 3506 | 1049 | 1235 | 1145 | 1457 | 1024 | 369 | 66 | 7
Unique 155 | 675 | 1028 | 1129 | 1453 | 1024 | 369 | 66 | 7

Total 213 | 749 | 2054 | 2906 | 2418 | 1168 | 332 55 6
Unique | 26 239 | 1695 | 2864 | 2417 | 1168 | 332 55 6

MacKay code

TABLE I
Pr(DECODER FAILUREAK ERRORS OBTAINED BY MONTE-CARLO SIMULATIONS.

Code Number of Errors

8 9 10 11 12 13 14 15 16 17 18 19 20
Tanner code | 3.3 e-5| 1.2e-4| 5.3e-4| 22e-3| 7.7e-3| 26e-2| 75e-2| 0.178 | 0.358 | 0.582 | 0.806 | 0.932 | 0.985
MacKay code| 1.4 e-4| 5.1e-4| 19e-3| 6.2e-3| 1.9e-2| 55e-2| 0.124 0.265 | 0.449 | 0.674 | 0.853 | 0.947 | 0.991

size are recordell It can be seen that the size of the smallestrious instantons is found by examining the subsets of the
instanton is 5 for the Tanner code and 4 for the rando&error patterns and finding the instantons. Note that some
MacKay code. Hence, the slope of the FER curve in the errerror patterns can consist multiple instantons and henee th

floor region for these codes is 5 and 4 respectively. estimates made are only approximate. For the Tanner code, it

Note that the smallest weight instanton found by the ISE found that there are approximately 2300 instantons @& siz

for the Tanner code i$ (We have observed that all the®: 6:4 > 10° instantons of size 7 and.8 x 107 instantons
instantons of sizé are in fact the(5, 3) trapping sets described®' Sizé 8. For the MacKay code, it is found5that there are
in [7]. Further investigation of the topological structupg aPProximately 112? instantons of size15) x 10” instantons
instantons will be dealt with in future work). The accurady o/ Sizé 6,9-2 < 10° instantons of size 7 and instantons of
this estimate can be verified (indirectly) by finding thg.. S2€ 8
of the code. Using the method outlined in [4], we observed Fig. 3(a) and Fig. 3(b) show the comparison between the
that dj,q. of the Tanner code i8.3498. This implies that FER curves obtained using the semi-analytical approach de-
whE, > 9 (by Lemma 1), which in turn implies that thescribed above and the Monte-Carlo simulations. Itis clezmf
size of any instanton cannot be less tHarThis proves that the plots that the proposed method predicts the performance
here5 is, indeed, the smallest instanton size, and respectiecurately. The plots also show the predicted performance a
minimum pseudo-codeword weight & Note also that the the values ofa which are beyond the reach of the Monte-
fractional weight of all thel55 pseudo-codewords of BSCCarlo simulations. The FER in this region is dominate by the
weight 9 is 9.95, while the weight of the pseudo-codeworcgmallest weight instantons and the calculated slopes agtiee
with the minimal fractional weight of.3498 is 19. The remark the theoretical prediction. It is worth noting that Tabld il
illustrates that minimality of the fractional weight doestn are sufficient to obtain the FER estimate for the Tanner and
imply minimality of the pseudo-codeword weight (and thuMacKay codes.
minimality of the respective instanton size). A Note on Other Possible Algorithm®ne can imagine
Table I shows the data corresponding t@ther simple algorithms that converge to an instanton in a

Pr(decoder failurg: errorg for the Tanner and the MacKay finite number of stepzs. One such algorithm can be formulated
code fromk = 8 to k = 20. For k > 20, we can assume N the following way=.

that Pr(decoder failurg: errorg = 1. Table Il shows the 1) Start with a binary input vectar with many bit flips,
relative frequencies of various weight instantons for the  and letp be the output of the LP decoder appliedrto
Tanner code and the MacKay code. The results are obtained |f p = (, then start again.

by simulating10” error patterns with 8 errors for the Tanner 2) For anyi, lets = s(i) be such thas; = 0 andr; = 1

code resulting in 331 decoder failures. The contributiohs o for somei, ands; = r; for all j # i. Let p(i) be the

result of application of the LP decoder $¢:).
1The standard way to find out whether our instanton searchusidw all 3) If there isi such thatp(i) # 0, then setr = S(Z) and

the unique configurations is as follows. Assume that theee Mrunique . . . .
instantons of a given weight and in each trial ISA finds alltefrh with equal go to step 2. Otherwise; is minimal and so it is an

probability. To estimate the number of ISA runs requiredfioding all the N Instanton.

instantons, one notice that if — 1 instantons are already found the number . . . . .
of trails required to find to the last instantonss N If all but two instantons ~ 1N€ above simple algorithm can also find an instanton in
are already found the number of ISA trials requiredNig2. Therefore, the a finite number of steps. However, such an algorithm finds
average number of ISA trials required to find all the instasts estimated as ; it
NANJ20N/3be o NJ(N 1)1 = N(1+1/2-41 /34 --+1/N) turning only mstantons_thgt are subsets of the_ support of the linitia
to Nln N at N — oo, i.e. NIn N trials ISA reliably findsN instantons (this €TOr vector. This implies that the algorithm needs to be run
is also known as the “coupon collector’s problem”). FronstHiscussion, it

is clear that the statistics for smallest size instantomsbfith the codes are  2We would like to thank the anonymous reviewer for pointing this

very reliable. simple alternative algorithm.
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. L . . TABLE Il
for a large number of instantiations to find a small weighke, arive FrReQUENCIES OF DIFFERENT SIZE INSTANTONS OBTAINEBY

instanton. As an illustration, consider the Tanner codé tha ANALYZING ERROR PATTERNS WITH8 ERRORS
contains 155 instantons of weight five. The probability tuat # instantons of weight
error pattern witht > 5 errors contains a weight-five instantor S 161 7 |8
. ; o 7155 : 130 139 | 58
is approximatelyl55 x (z)/(*}°). It follows that if ¢ = 20, 12 >4 116
the above simple algorithm needs to be run aldjit) / ()
times (in the order of 10's of thousands) to find a weightor other soft channels)? Can we use one to deduce the other?
five instanton. In contrast, the ISA finds weight-five instargt

3506 times in 10000 trials, which implies that the ISA needs
to be run only three times to find the lowest weight instanton.
This clearly illustrates the advantage of the ISA in findiog |

weight instantons. The advantage of the ISA comes from the.l_he authors would like to thank M. G. Stepanov for his

fact that given a pseudo-codeword, the median step finds hq . . ; .
) elp with the numerical simulation results. The authors ldou
lowest weight error vector that could decode to the pseu

codeword ke tq thank P. Vpntobt_al_ for_his comme_nts and suggestiods an

' D. Sridhara for his clarifications regarding Lemma 1. Thekvor
by S. K Chilappagari was performed when he was a summer
GRA at LANL. The work at LANL, by S. K. Chilappagari

. . . and M. Chertkov, was carried out under the auspices of
In this paper, we characte_rlzed failures of the LP decodg{ée National Nuclear Security Administration of the U.S.
over the BSC in terms of t_he Instantons and respective pseu partment of Energy at Los Alamos National Laboratory
codewords. We then provided an efficient algorithm for f"gd'nunder Contract No. DE-AC52-06NA25396. B. Vasic would

HRe to acknowledge the financial t of the NSF and
number of steps upper bounded by twice the number of ﬂi%%eag(;t:?rerlivxslogi © financial support ot the an

Code

# error events

331
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37
36

Tanner code
MacKay code
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VII. SUMMARY AND OPEN PROBLEMS

in the original input (Theorem 1). Repeated sufficient numbe
of times, the ISA outcomes the Instanton-Bar-Graph showing
the number of unique instantons of different sizes. We also
proved that the LP decoding of any configuration of the input
noise which includes an instanton leads to a failure (Lemm%
7). This Lemma arguably suggests to use the Instanton-Bapj
Graph derived with the ISA algorithm as a metric for code
optimization. 3]

Finally, we conclude with an incomplete list of open prob-
lems and directions for future research following from thisl*
study:

(1) One would like to understand how to choose initiatior!
of the ISA which guarantees convergence to the smallest size
instanton.

(2) When can one be reasonably certain that all instantor@
of a given weight are found? Or stating it differently, how
many trials of the ISA are required to find all the instanton
of the given size? Does the number of trials scales linear
with the size of the code?

v

(3) We have noticed that difficulty of finding an instantong;
grows with its size. Once the ISA finds all the instantons of
certain weight, can one optimize initiation strategy foe th [°]
algorithm to find instantons of larger size more efficiently?

(4) Can one utilize knowledge of the code structure (e.§%
for highly structured codes) to streamline discovery of the
Instanton-Bar-Graph, especially in the part related tddhger [11]
size instantons?

(5) Some studies have explored connections betwefen]
pseudo-codewords and stopping sets (see e.g. [13]). Are the
any (similar?) relationships between trapping sets of t8€B [13]
(for Gallager like algorithms) and BSC-LP instantons?

(6) Are instantons of a code performing over the 8884]
related to instantons of the same code over the AWGN channel
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