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Abstract— In this paper we propose an analytical method to
evaluate the performance of one step majority logic decoders
constructed from faulty gates. We analyze the decoder under
the assumption that the gates fail independently. We calculate
the average bit error probability of such a decoder and apply
the method to the special case of projective geometry codes. The
method, however, applies to any regular low-density parity-check
code of girth at least six but the calculations are much simpler
for the projective geometry codes. We present results for the bit
error rate performance of four codes from projective planes.

I. INTRODUCTION

During the past four decades reducing transistor size has
been a driving force for microchip technology and has lead to
very fast, power efficient, and highly integrated silicon chips.
However, decreases in voltage and transistor capacitance have
already started affecting transistor reliability and it is widely
believed that transistor failures (temporal and permanent) will
become one of the main technological obstacles as this trend
continues.

In the traditional memory and communication models it is
assumed that the designer of a system has full control over
error correction encoders and decoders, and that errors/noise
only affect the memory or a communication link (channel).
However, digital logic in the encoder and decoder is con-
structed using non-ideal components as well, and errors can
affect the computation performed in these two devices.

Research in the area of systems constructed from faulty
gates has progressed along two directions: computation and
storage. Study of computation by circuits with faulty gates
was started by von Neumann [1]. He showed that, under
certain conditions, increased gate redundancy can lead to
increased reliability of a circuit. He introduced a technique
called multiplexing which consists of two phases. In the first
phase, the basic function of the circuit is performed in several
copies of the circuit. In the second phase, referred to as
restoration phase, errors introduced in the first phase are
corrected by random coupling of the copies, and the final
outputs are considered to be “‘1” if majority of the considered
copies are “1” and “0” otherwise.

Note that multiplexing can be seen as error control coding.
For example, Triple Modular Redundancy is nothing but a

repetition code with code rate 1/3. Restoration organ of the
multiplexing technique is in fact an error correcting decoder.
Similar observation was made by Spielman [2]; for a tutorial
on the subject see [3].

All the current fault tolerant constructions are based on
redundancy of the gates, and it was shown that, in general,
computation by faulty gates with non-zero computational
capacity is not possible (see [4], [5], [6]). Computational
capacity is the reciprocal of the minimum redundancy for
which the probability of error can be made arbitrarily small
[7]. The best known result for a general model of computation
is due to Speilman [8] who coupled ideas of von Neumann
with Reed-Solomon codes.

On the other hand, the study of storage circuits made of
unreliable components lead to much more optimistic results.
Taylor in [7] proposed construction of a storage circuit with
non-zero computation capacity (or rather storage capacity)
based on Low-Density Parity-Check (LDPC) codes (this con-
struction was further studied by Kuznetsov [9]).

It is important to stress that non-zero capacity is possible
only until the moment a codeword is transformed by some
unencodable action, such as extracting message bits. For
example, even if a systematic code is used in the construc-
tion of Taylor and Kuznetsov, at the end of the correcting
procedure information will still be confined within a multiple
of codeword copies with possibly some errors, i.e. discrepancy
in content. So, the final step, extracting user information, must
be done by a majority logic gate (or some equivalent circuit),
which is by assumption faulty, resulting in probability of error
grater than or equal to the probability of failure of the used
majority logic gate. Therefore, it is reasonable to use reliable
gates for the final step of decoding (see also [10] and [8]). Such
gates can be realized, for example, by using larger transistor
sizes. We employ such “perfect” or “golden” majority logic
gates in our decoder architecture.

In this paper we present an analytical method to evaluate
the performance of decoders constructed from faulty gates. We
consider one step majority logic decoders which are amenable
for easy analysis and moreover require very little circuitry.
These decoders do not suffer from the problem of dependence



of the messages passed, which in general is a major obstacle
for analyzing iterative decoders. The method we propose can
be applied to any LDPC code with girth at least six. However,
we will restrict our attention to the codes constructed from
projective planes which form a large class of majority logic
decodable codes and whose combinatorial properties are well
understood.

The rest of the paper is organized as follows: In Section II
we discuss some preliminaries about majority logic decoding
and projective geometry codes. In Section III we describe our
decoder architecture and present a method to calculate the
average bit error probability of a single step majority decoder.
In Section IV we provide a combinatorial interpretation of the
method. In Section V we present numerical results and we
conclude in Section VI.

II. PRELIMINARIES

Let Cs represent the LDPC code constructed based on the
family of the two-dimensional projective geometries PG(2,2s).
This code is characterized by nv = 22s + 2s + 1 variable
nodes, nc = 22s + 2s + 1 check nodes, minimum distance
dmin = 2s + 2 and column weight γ = 2s + 1. It is well
known that such a code can correct up to �γ/2� errors when
decoded using a one step majority logic decoder. Note that for
all the codes considered in this paper, γ is odd.

Consider transmission over a binary symmetric channel
(BSC) characterized by transition probability α. For a variable
node v (check node c), let E(v) (E(c)) denote the edges
incident on v (c). Also, let r(v) denote the received value
of node v.

A one step majority logic decoder can be implemented in
one of the following two ways:

A. Syndrome Based Decoder

The syndrome based decoder performs the following steps
to decode a received vector.

• Each variable node v sends r(v) along each edge in E(v).
• Each check node c sends m(e) along each edge in E(c)

where

m(e) = (
∑

e′∈E(c)

m(e′)) mod 2

• At each v an estimate of the error e(v) is made

e(v) =
{

1, |{e′ ∈ E(v) : m(e′) = 1}| ≥ �γ/2�
0, otherwise

• Each node is decoded as (r(v) + e(v))mod2

Such a decoder needs a γ-input XOR gate at each of the
check nodes and a γ-input majority logic gate and a two-input
XOR gate at each variable node. As is clear from the decoder
implementation, a check node tells its neighboring variable
node if the check is satisfied or not. If majority of checks
connected to a variable node are unsatisfied then the variable

node is flipped. Also, a check node sends the same message
to all its neighboring variable nodes. This implementation is
attractive from a practical point of view.

B. Message Passing Decoder

A message passing decoder differs slightly from the syn-
drome based decoder. The following steps are involved in this
decoder.

• Each variable node v sends r(v) along each edge in E(v).
• Each check node c sends m(e) along each edge in E(c)

where

m(e) = (
∑

e′∈E(c)\{e}
m(e′)) mod 2

• At each v an estimate of the value of v is made

v̂ =

⎧⎨
⎩

1, |{e′ ∈ E(v) : m(e′) = 1}| ≥ �γ/2�
0, |{e′ ∈ E(v) : m(e′) = 0}| ≥ �γ/2�

r(v), otherwise

This decoder needs γ of (γ − 1)-input XOR gates at each
check node and a γ-input majority logic gate at each variable
node. In this implementation the check node makes an estimate
of the value of a variable node based on the values of other
variable nodes. The value of the variable node is itself not
used in its estimation. The final decision is made on the basis
of majority of the estimates.

It should be noted that the both the decoders are equivalent
for one step majority logic decoding when constructed from
perfect gates. However, when built from faulty gates their
performance can be quite different. In this paper we consider
the message passing decoder. This is mainly because of the
fact that the decoder architecture in this case agrees well
with our assumption of “golden” majority logic decoders. The
syndrome based decoder needs “golden” XOR gates also, as
the final step in the decoding is that of bit flipping. Otherwise,
the bit error probability will be bounded below by the failure
probability of that 2-input XOR gate. Moreover, a gate failure
in the message passing like decoder affects only one variable
node whereas the effect is more drastic in a syndrome based
decoder.

III. ANALYSIS OF THE DECODER

The decoder is assumed to be built of faulty XOR gates
which are used on the check node end and “golden” majority
logic gates which are used at the variable node end. It is
assumed that the each of the (γ − 1)-input XOR gate fails
independently with a probability ε. By gate failure we mean
that the correct output of the gate is flipped with a fixed
probability ε. We use the term perfect check to denote the
checks in a perfect decoder and faulty check to denote the
checks in a faulty decoder. Typically ε is of order 10−6−10−3.

Let α denote the transition probability of the BSC. Let the
received bits be (r(v1), r(v2), . . . , r(vn)) where n is length of
the code.



In the analysis which follows we consider a particular vari-
able node and calculate the probability that it is miscorrected.
Since a check node sends an estimate of the variable node,
we say that a message sent by check node is incorrect if
the estimate made by the check node is wrong. In a perfect
decoder the check node sends an incorrect message when odd
number of errors are present in the estimation. In a faulty
decoder the check may send a wrong message either due
to wrong estimate or due to a correct estimate followed by
gate failure. We will make use of these facts in the analysis.
The theorem below is useful in finding error configurations
of received bits and checks that are most likely to lead to
a miscorrection of the considered bit. Corollaries that follow
lead to the formula for the probability that a bit is miscorrected
during decoding.

Theorem 1: Let the variable node v be connected to checks
c1, c2, . . . , cγ . Let fi be number of variable nodes in error
(excluding v) connected to check ci and let

G(e1, . . . , eγ , x1, . . . , xγ) =
γ∏

i=1

[
(1 − ε)M (i)

c + εM (i)
w

+ xi

(
(1 − ε)M (i)

w + εM (i)
c

) ]
where

M (i)
w =

γ−1
2∑

k=1

(
γ − 1
2k − 1

)
α2k−1(1 − α)γ−2ke2k−1

i

M (i)
c =

γ−1
2∑

k=0

(
γ − 1
2k

)
α2k(1 − α)γ−1−2ke2k

i

The coefficient of ef1
1 ef2

2 . . . e
fγ
γ xj1xj2 . . . xjk

, k ≤ γ is the
probability that the node v will receive incorrect messages
from the checks cj1 , cj2 . . . cjk

if fi nodes (excluding v)
connected to the check ci are in error (i = 1, . . . , γ).

To prove this theorem the following lemma is used.

Lemma 1: Probability that a faulty check will send a correct
message is

(1 − ε)
∑ γ−1

2
k=0

(
γ − 1
2k

)
α2k(1 − α)γ−1−2k

+ ε
∑ γ−1

2
k=1

(
γ − 1
2k − 1

)
α2k−1(1 − α)γ−2k

and probability that this check will send an incorrect message
is

ε
∑ γ−1

2
k=0

(
γ − 1
2k

)
α2k(1 − α)γ−1−2k

+ (1 − ε)
∑ γ−1

2
k=1

(
γ − 1
2k − 1

)
α2k−1(1 − α)γ−2k

Proof of Lemma 1: Notice that a perfect check will send
a correct message if number of variable nodes connected to
the check (excluding v) that are in error is even. Considering
that the check itself can produce an error with probability ε
statement of the lemma follows.

Proof of Theorem 1: The degree of the variables ei (i =
1, . . . , γ) in G is the number of erroneous received bits that
are used in calculation of the check ci, that is, this degree is
fi. In G, the expression for the probability that check ci will
send an incorrect message (from Lemma 1) is multiplied with
xi, completing the theorem.

Theorem 1 gives the probabilities of specific error config-
urations of received bits and checks. Assuming BSC, all bit
configurations with i errors (excluding v) are equally likely
(αi(1−α)(n−1)−i). Also, within our model, any configuration
of k check failures is equally likely (εk(1−ε)γ−k). Therefore,
we can talk about average probability that i channel and errors
and k check failures will lead to a miscorrection. For this
purpose we define:

G(e, x) =
n−1∑
i=0

γ∑
k=0

bi,keixk def= G(e, e, . . . , e︸ ︷︷ ︸
γ

, x, x, . . . , x︸ ︷︷ ︸
γ

)

(1)

It should be noted that for codes with girth at least six, all
the variable nodes connected to the check node neighbors of
a variable node v are distinct. The PG codes have the extra
property that the variable node neighbors of all the check node
neighbors of v contain all the other variable nodes exactly
once. Hence we can say that the parameter i is in fact the total
number of errors in locations other than v. For all other codes
a similar analysis can be carried out with slight modifications
for the parameter i.

Corollary 1: The average probability that the node v re-
ceives k incorrect messages if i errors have occurred in nodes
other than v is equal to bi,k (as given in Equation 1).

Proof of Corollary 1: Note that the coefficient of eixk in
G(e, x) is the sum of probabilities for all the received bit
configurations with i erroneous bits and all the possible ways
k out of γ checks can fail.

Corollary 2: The average probability that node v receives
k incorrect messages, given the channel introduced i errors is

P i,k
v (α, ε) = (1 − α)bi,k + (α)bi−1,k

Proof of Corollary 2: (1 − α) is the probability that the
node v is not in error initially and bi,k is the probability that
v receives k incorrect messages when there are i errors are
outside v. Similarly α is the probability that v is in error
initially and bi−1,k is the probability that v receives k incorrect
messages when there are i− 1 errors are outside v. The result
now follows from total probability theorem. Note that P 0,k

v =
(1 − α)b0,k and Pn,k

v = αbn−1,k.

Corollary 3: The Probability that node v is miscorrected is

Pv(α, ε) =
n∑

i=0

γ∑
k=� γ

2 �+1

P i,k
v

=
n−1∑
i=0

γ∑
k=� γ

2 �+1

bi,k



Proof of Corollary 3: A node will be miscorrected if it
receives incorrect messages from more than half of the checks.
Hence the second summation starts at �γ

2 � + 1.

IV. COMBINATORIAL INTERPRETATION

The focus of this section is to provide a combinatorial
interpretation of the values of bi,k for Cs for different values
of s.

Let pγ(i) denote the number of partitions of i with at
most γ parts and no part exceeding γ − 1. Let λj

i =
(λ1, λ2, . . . , λl), l ≤ γ, j ∈ {1, . . . , pγ(i)} denote a specific
partition of i. Let (1fi,j

1 2fi,j
2 3fi,j

3 ) denote the frequency rep-
resentation of a partition λj

i = (λ1, λ2, . . . , λl) where exactly
f i,j

t of λm,m ∈ 1, . . . , l are equal to t. Any configuration of
i errors in nodes other than a given node v can be associated
with a λj

i for some j. The partition λj
i completely determines

the number of incorrect messages sent to node v by a perfect
decoder.

Lemma 2: The number of i error configurations corre-
sponding to λj

i = (λ1, λ2, . . . , λl) is

N(λj
i ) =

(
γ

l

)(
γ − 1
λ1

)(
γ − 1
λ2

)
· · ·

(
γ − 1

λl

)
Perms(λj

i )

where Perms(λj
i ) is the number of permutations on entries of

λj
i

Note that
(
γ−1
λ1

)(
γ−1
λ2

) · · · (γ−1
λl

)
Perms(λj

i ) is the number of
compositions (ordered partitions) corresponding to λj

i .

Lemma 3: The number of incorrect messages Ii,j
p sent to a

node v by a perfect decoder in a configuration corresponding
to λj

i is

Ii,j
p =

2t−1≤γ∑
t=1

f i,j
2t−1

Proof of Lemma 3: Note that in a perfect decoder, a check
c sends an incorrect message to a neighboring variable v if
odd number of errors have occurred in the variable nodes
(excluding v) connected to c.

So corresponding to a partition λj
i , a node v receives Ii,j

p

incorrect messages and Ci,j
p = γ − Ii,j

p correct messages.

Lemma 4: The probability that a node v receives k incorrect
messages in a configuration corresponding to λj

i in a faulty
decoder is

P (k, λj
i ) =

k∑
u=0

Pw{u, Ii,j
p }Pc{k − u,Ci,j

p }

where

Pw(u, Ii,j
p ) =

(
Ii,j
p

u

)
(ε)Ii,j

p −u(1 − ε)u

Pc(k − u,Ci,j
p ) =

(
Ci,j

p

k − u

)
(ε)k−u(1 − ε)Ci,j

p −(k−u)

Proof of Lemma 4: Pw(u, Ii,j
p ) is the probability that u

of the Ii,j
p incorrect messages remain incorrect and Pc(k −

u,Ci,j
p ) is the probability that k − u of the Ci,j

p correct
messages become incorrect. The product hence accounts for a
total of k incorrect messages.

Theorem 2:

bi,k = αi(1 − α)(n−1−i)

pγ(i)∑
j=1

N(λj
i )P (k, λj

i )

Proof of Theorem 2: Follows from Lemma 2, Lemma 3 and
Lemma 4 and the fact that each i error configuration occurs
with probability αi(1 − α)(n−1−i).

V. NUMERICAL RESULTS

The average bit error probabilities for different values of ε
can be calculated and compared to the case of ε = 0, i.e., a
perfect decoder. However even for the PG code of length 73,
the number of values of bi,k to be calculated is very large.
Since we are generally interested in the performance of the
decoder for low values of α we can consider only the first
few values of i and neglect the higher values. For example,
for the PG code of length 73 at values of α < 10−2 the
probability of more than 9 errors is of the order 10−9. So the
bit error probability for this code can be estimated as

BERf (α, ε) ≈
9∑

i=0

9∑
k=5

P i,k
v (α, ε)

A perfect decoder for the above code can correct up to 4 errors.
So, the bit error for this decoder is given by

BERp(α) ≈
9∑

i=5

9∑
k=5

P i,k
v (α, 0)

In general we calculate the BER using the formula

BERf (α, ε) ≈
γ∑

i=0

γ∑
k=� γ

2 �+1

P i,k
v (α, ε)

The BERs for different PG codes are plotted for different
values of ε in Figs. 1(a)-1(d). Notice that even for large
probability of gate failures (10−3), the performance loss is
small.

VI. CONCLUSION

In this paper we have proposed an analytical method to
compute the bit error probability of a faulty one step majority
logic decoder. The method was applied to a class of PG
codes and approximate BER performance was calculated.
This method is a first step towards the analysis of iterative
decoders constructed from faulty gates. The analysis presented
in Section III can be applied to any regular LDPC code of girth
at least six, and in principle it is possible to calculate the bit
error probability after the first iteration. Future work involves
extending the method to multi-step majority logic decoders,
deriving tight bounds on frame error rate (FER) performance
by analyzing dependence of node failures and investigating
schemes to achieve non-zero computational capacity.
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Fig. 1. Performance of Faulty Decoders for Different PG Codes
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