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Abstract— In this paper, we study state transitions, induced by
low-density parity-check codes, of the Gallager B algorithm in
order to characterize failures of the decoder. The failures of the
decoder depend on the properties of the underlying graph of the
code. Two classes of sets, namelytrapping setsand propagating
sets, of variables of the code are defined to categorize failures of
the decoder. Such a categorization helps to establish a connection
between size and population of these sets in the code and the
frame error rate performance of the decoder. This connection
is explored to develop a semi-analytical method to estimate the
frame error rate of a class of codes from balanced incomplete
block designs.

I. I NTRODUCTION

Since Gallager’s thesis [1] on low-density parity-check
(LDPC) codes and iterative decoding algorithms, researchers
have developed a whole array of techniques to construct
“good” LDPC codes and analyze the performance thresholds
[2] of LDPC ensembles under the assumption that the girth
goes to infinity. Unfortunately, the same level of maturity
has not been attained in the characterization of iterative
decoding of finite-length LDPC codes. Wiberg [3] developed
techniques by defining computation trees that achieved some
success in the regime of finite-length analysis. Freyet al. used
computation trees to characterize decoding boundaries and
pseudocodewords of iterative decoders. The pseudocodewords
include words that are not codewords and are local minima
of the decoding algorithm. Vontobel and Koetter [4] have
analyzed all finite covers of Tanner graphs to explain decision
boundaries of linear programming decoders and to characterize
local minima of message-passing decoders. Chernyaket al.
[5] used an instanton approach to analyze finite-length LDPC
codes.

Richardson [6], with an aim to estimate the performance of
LDPC codes developed a semi-analytical technique that relies
on combinatorial objects called trapping sets. The idea of a
trapping set is similar to that of near codewords defined in [7].
In this paper, we focus on understanding and characterizing
the dynamics of an iterative decoder, namely the Gallager B
decoder, for the binary symmetric channel. The state transi-
tions of the decoder are classified into two groups and such
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a classification is used to characterize failures of the decoder.
Finally, we use this knowledge to semi-analytically estimate
the performance of LDPC codes from a class of designs.

II. PRELIMINARIES

A. Gallager B Decoder

The iterative hard-decision decoder for the BSC is a sub-
optimal decoder, and it is one of the simplest decoders that
belong to the category ofmessage-passing decoders. This
decoder, known as the Gallager B decoder, works on the
Tanner graphG of the parity-check matrixH of the code by
sending binary messages over the edges. Since the input and
output alphabets are binary, all operations of the decoder are
defined overF2.

The decoding algorithm [8] is described as follows. In
round 0, the variable nodes send their received values to the
neighboring checks over the incident edges. In roundi, the
message sent from a check to a neighboring variable is the
sum of all incoming messages except the one arriving from
the variable. After receiving messages from the check, each
variable sends a new message to the neighboring checks. The
message sent from a variable to a neighboring check is the
majority (if it exists) among all incoming messages except the
one arriving from the check. If a majority does not exist, then
the received value corresponding to the variable is sent to the
check. In the decoding stage, a variable takes a value that is the
majority among all incoming messages. If a majority does not
exist, then the variable is assigned the corresponding received
value.

B. Balanced Incomplete Block Design

A balance incomplete block design(BIBD) is defined as a
collection ofk-subsets of av-setP , k < v, such that pair of
elements ofP occur together in exactlyλ of the blocks. Each
k-subset is called ablock and each element ofP is called
a point. A BIBD is referred to as a design with parameters
2-(v, k, λ). The incidence matrixof a 2-(v, k, λ) design with
b blocks is ab× v matrix A = (aij) such thataij is 1 if the
ith block contains thejth point or 0 otherwise. The parity-
check matrixH of a code from BIBD is the transpose of the
incidence matrix. The parity-check matrix obtained from the
design has uniform column and row weights.

The projective geometry PG(2,2m) and affine geometry
AG(2,2m) codes considered in this paper are constructed from
the incidence matrix of2−(q2+q+1, q+1, 1) and2−(q2, q, 1)
BIBDs, respectively, whereq is a power of prime. The column
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weight of a PG(2, q) code isq + 1 and its minimum distance
is dmin = q + 2. The column weight of an AG(2, q) is q and
its minimum distance isdmin = q + 1.

It is easy to show that one iteration of the Gallager B
algorithm is similar to a majority-logic decoder and the
number of estimates used in the decoding stage is clarified
in the following facts.

Fact 1: For a code with column weightγ, the decoding
decision for a variable after one iteration is based onγ
estimates, ifγ is odd, andγ + 1 estimates (including the
received value of the bit), ifγ is even.

Using the derivation given in [9] by Rudolph, it is possible
to compute the error correction capability of one iteration of
the Gallager B algorithm (or a one-step majority logic decoder)
working on a code from2− (v, k, 1) BIBD.

Theorem 2 (Extension of Rudolph’s Result):For a code
from 2 − (v, k, 1) BIBD with column weight γ, a single
iteration of the Gallager B decoder can correct up toγ−1

2
errors, if γ is odd, andγ

2 errors, if γ is even.¥
Therefore, for codes from PG(2, q = 2m), the decoder

(in one step) can correct all error patterns up to weight
t = b q+1

2 c = bdmin−1
2 c. For codes from AG(2, q = 2m),

the decoder can correct all error patterns up to weightt =
b q

2c = bdmin−1
2 c. In fact, for error patterns of higher weights,

the behavior of the decoder can be completely characterized
for codes from projective plane and consequently the bit error
rate can be analytically determined. The probability of a bit
being in error after decoding can be determined as follows

pb =
∑

Ne

Pr(bit decoded incorrectly|Ne errors)Pr(Ne errors).

(1)
For sake of simplicity, letb0 and b̂0 be the channel and
decoder output of the bit and let its transmitted value be0.
Then,

pb =
∑

Ne

[
Pr

(
b̂0 = 1|{Ne − 1 other errors, b0 = 1}

)
·

Pr(b0 = 1|Ne errors) + Pr
(
b̂0 = 1|{Ne errors, b0 = 0}

)
·

Pr(b0 = 0|Ne errors)
]
· Pr(Ne errors),

(2)

The expression Pr(bit decoded incorrectly|Ne errors) can
be calculated combinatorially for these codes. Since, any two
elements ofP occur together in exactly 1 block, every variable
node is connected to every other variable node through exactly
one check node. Specifically, theγ check equations used to
decode variable nodeb0 comprises of all the other variable
nodes. Therefore, any error pattern of a given weight has to
be distributed in some way among the nodes associated to
theseγ check equations. This specific characteristic of the
code enables a purely combinatorial evaluation of the above
expression. The BER for various codes derived from projective
geometry is shown in Fig. 1. Unfortunately, this analytical
technique cannot be easily extended to characterize decoder
behavior for 2 or more iterations, since the errors patterns are
highly correlated after the 1st iteration.
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Fig. 1. Analytically calculated BER for codes from AG(2,24) and PG(2,24)
when decoded using one-step majority logic decoder

III. STATE TRANSITIONS OF THEGALLAGER B DECODER

Let the ith state of the Gallager B decoder be the decoded
word obtained after theith round or iteration. The transition
from an ith state to an(i + 1)th state, given an initial state,
depends on the Tanner graph representation of the code. The
state transitions of the decoder can beperiodic or aperiodic.

A. Periodic Transitions

A periodic transition of states with periodT 6= 0 is said to
occur if the(i+kT )th states, for somei ≥ i0 and∀ k ≥ 0, are
equal. Let us first focus on the periodic transition withT = 1.

The initial state of the decoder that causes periodic transition
with T = 1 and i0 = 0 is referred to as thefixed point. A
fixed point of the decoder is characterized by defining a set
called thetrapping set. The trapping set of a decoder with a
given graph representation is the support of an initial state that
is a fixed point of the decoder. For example, supports of all
codewords are trapping sets of the decoder. But there are also
other trapping sets as shown in the example below. A(v, c)
trapping setT is a set ofv variable nodes whose induced
subgraph hasc unsatisfied checks.

Example 1: Consider the(2640, 1320) Margulis code which
has girth 8 and column weight 3. From the structure of the
code we can calculate the number of eight-cycles in the graph
to be 1320. Fig. 2(a) illustrates the structure of an eight-
cycle. Let the support of the initial state of the decoder be the
variable nodes of the eight cycle. Each variable node receives
a message of1 from two check nodes and a message of0 from
one check node. If majority logic is used for decoding, these
variable nodes will be decoded as1. The same messages are
passed at every iteration and the decoder fails to correct these
errors. Hence, an eight cycle is a(4, 4) trapping set for the
Margulis code. Similarly, Fig. 2(b) illustrates another trapping
set of the code. The(12, 4) trapping set for the AWGN channel
from [6] is also a trapping set for the Gallager B algorithm.

A minimal trapping setTM of a code is a trapping set with
the smallest possible cardinality. A bound on the cardinality
of minimal trapping set of a regular code with girthg and
column weightγ is given in (3), wherex = γ if γ odd and
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|TM | ≥





2 g = 4
dx

2 e+ 1 g = 6
2dx

2 e g = 8

1 +
∑ g−6

4
i=0 dx

2 e(dx
2 e − 1)i g ≥ 10, g

2 odd

1 +
∑ g−8

4
i=0 dx

2 e(dx
2 e − 1)i + (dx

2 e − 1)
g−4
4 g ≥ 10, g

2even,

(3)

TABLE I

SMALL TRAPPINGSETS OFREGULAR CODES

Code No. of
Variables

No. of Checks Girth Trapping Sets No. of Trapping Sets

MacKay-1 1008 504 6 (3,3);(4,4);(5,3) 165; 1215; 14
MacKay-2 816 408 6 (3,3);(4,4);(5,3) 132; 1372; 41
Margulis code 2640 1320 8 (4,4);(5,5) 1320; 11088
Tanner code 155 93 8 (5,3) 155
QC code one 900 450 8 (5,3);(4,4) 50;675
QC code two 900 450 6 (4,2);(4,4) 150;1125
QC code three 900 450 6 (6,2);(4,4);(3,3); 150;1025;200

(a) A (4, 4) trapping set (b) A (5, 3) trapping set

Fig. 2. Illustration of Trapping sets

x = γ +1 if γ even. In Table I, we show the size and number
of small trapping sets of certain(3, 6) regular codes.

Note that subgraphs induced by trapping sets are either
simple cycles or unions of simple cycles. For example, a
(12, 4) trapping set of the(2640, 1320) Margulis code [6] is a
set of12 variable nodes and the induced subgraph has4 odd-
degree check nodes. The illustration of the subgraph induced
by the trapping set (see Fig. 3), shows that the subgraph
can be factored into a set of four simple12 cycles, namely
{v1−v2−v3−v4−v5−v6, v1−v2−v3−v7−v8−v9, v7, v8−
v9− v10− v11− v12, v4− v5− v6− v10− v11− v12}. Also, it
can be visualized as the interaction of two simple eight cycles,
namely{v1 − v9 − v12 − v6} and{v3 − v7 − v10 − v4}.

The periodic transitions withT > 1 can be explained based
on trapping sets. An initial state that induces such a periodic
transition has the support which is a subset of some trapping
set. Also, the union of supports of decoder states over an entire
period of an oscillation (or transition) is a trapping set.

B. Aperiodic Transitions

Any sequence of state transitions that do not exhibit peri-
odicity is classified asaperiodic. Note that if the support of
the initial state is a codeword, then aperiodic state transitions
are not possible. Thus if a channel error vector, also the

Fig. 3. A (12, 4) trapping set of the(2640, 1320) Margulis code

initial state, is nonzero, then aperiodic transitions lead to
the propagation of errors across iterations. The support of
an initial state that propagates errors is called apropagating
set. Quite contrary to popular belief, subgraphs induced by
minimal propagating sets have been observed to be cycle-
free. For example, at high SNR most decoder failures of
a (3195, 2844) array code withγ = 5 are due to cycle-
free subgraphs isomorphic to those illustrated in Fig. 4. The
variable nodes of these cycle-free subgraphs form propagating
sets.
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Fig. 4. A (5, 25) propagating set of a regular LDPC code withγ = 5
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IV. FAILURES OF THEGALLAGER B DECODER

A decoding failure is said to have occurred when the
decoded word is different from the transmitted codeword. The
characterization of failure events is essential to quantify the
performance of a decoder. For example, a maximum likelihood
decoder fails if and only if the received word is closer to a
codeword that is not the same as the transmitted one. The
analysis of failures in Gallager B decoder is dependent on
the properties of the code and its graph representation. The
failures of the decoder can be due to minimum distance error
patterns or low (relative to minimum distance) weight error
patterns. These failures can be characterized using trapping
sets and propagating sets.

Assume that the all-zero codeword is transmitted over the
channel. An error vector (introduced by the channel) can result
in one of the following possibilities at the decoder.

1) The decoder, after a finite number of iterationsl, corrects
the error and arrives at the all-zero state. This is a
favorable situation where the decoder exhibits a periodic
state transition withT = 1 from i = l.

2) The decoder, after a finite number of iterationsl, exhibits
a periodic state transition withT ≥ 1 from i = l and it
never reaches the all-zero state. This is not a favorable
situation because this constitutes a decoder failure. Such
failures are characterized, as discussed in Section III-A,
by trapping sets.

3) The decoder, after a finite number of iterationsl, exhibits
an aperiodic state transition fromi = l and it does not
reach the all-zero state. Such a failure is characterized,
as discussed in Section III-A, by a propagating set.

The situation described in Item 2 occurs when errors are
located (as a result of the channel, i.e.l = 0) or transferred
(as a result ofl iteration) to a set of variable nodes that is
contained in a trapping set. For example, it is sufficient for
a select three variable nodes of a(5, 3) trapping set to be
in error to result in periodic state transition withT = 2.
Although minimum distance errors are accounted for in this
category, “good” codes exhibit trapping set failures that are
not minimum distance failures. Thus the probability of such
failures depends on the size of trapping sets and on the
population of trapping sets.

The situation described in Item 3 occurs when errors are
located in a set of variable nodes that contains a propagating
set. It is common for propagating set failures to corrupt
approximately half of all the variable nodes. The probability
of such failures depends on the size of propagating sets and
on the population of propagating sets.

V. A PPLICATION OFFAILURE ANALYSIS

The application of our interest is the estimation of frame
error rate (FER) performance of the Gallager B algorithm.
We have shown that such an estimation is dependent on size
and population of trapping and propagating sets. Although
identifying all trapping sets and propagating sets of a code
is a daunting task, especially if the code is moderately long
and pseudo-randomly constructed, we will show that it is
possible to considerably reduce the complexity of estimating

the performance. The reduction in complexity is achieved by
identifying that in the regime of high signal-to-noise ratio
(SNR), performance of the decoder is dominated by trapping
and propagating sets of smaller sizes. Similar approaches
have been used in estimating the performance of conventional
decoders with parameters relating to minimum distance code-
words in the regime of high SNR.

A. Performance of(3, 6) LDPC Codes

In [10], we presented a semi-analytical method to estimate
the performance of a class of(3, 6) LDPC codes whose decod-
ing failures are dominated by small trapping sets. For example,
the performance of the Margulis code, listed in Table I, is
dominated by(4, 4) and (5, 5) trapping sets. Similarly, the
performance of one of the quasi cyclic codes is dominated by
(5, 3) and(4, 4) trapping sets. It is not difficult to identify the
dominant trapping sets by running short simulations that track
decoder state transitions. The total number of the dominant
trapping sets in the code can be easily computed, owing to
the small sizes of these sets, by running a search algorithm.
For more details, see [10].

B. Performance of Codes from BIBDs

In Section II, the analytical expression for calculating BER
for codes derived from affine and projective planes when
decoded using a one-step majority logic decoder (or a Gallager
B algorithm with 1 iteration) was shown. It was pointed out
that the methodology could not be extended to Gallager B
algorithm with 2 or more iterations. In this paper, we focus on
the problem of estimating the FER of codes from PG(2, 2m)
and AG(2, 2m). The FER estimatepCW for such codes afterl
iterations of the Gallager B algorithm can be written as

pCW =
n∑

Ne=t+1

Pr(decoding failure|Ne)Pr(Ne|α), (4)

whereα is the parameter of the binary symmetric channel and
Ne is the number of errors introduced by the channel. The size
of minimal trapping sets of these codes ist+1. For example,
the subgraph induced by one such minimal trapping set is
illustrated in Fig. 5, where each line corresponds to a variable
node of the code from PG(2, 24) and each point corresponds
to a check node of the code. From simulations we observe
that the dominant error events are due to propagating sets
and not trapping sets. Due to the large sizes of trapping and
propagating sets, it is not possible to count them and hence,
we resort to a semi-analytical method (SAM) to estimate the
FER of these codes.

The conditional probability of decoding failures is obtained
from simulations. A fixed number of errors, sayNe, is
introduced at random bit positions of a codeword, and the
resultant word is decoded using the Gallager B algorithm.
Note that these simulations are independent ofα and hence,
these probabilities can be applied to estimate FERs at very
high SNRs. This experiment is repeated to compute the
probability of decoder failure for different values ofNe. In
Fig. 6, observe that conditional probabilities for PG(2, 25) and
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Fig. 5. A minimal trapping set of PG(2, 24)

AG(2, 25) codes approach unity for values ofNe ≈ t+4. This
behavior holds for all codes from projective and affine planes.
Therefore, the FER in (4) is modified as

pCW ≈ ∑M
Ne=t+1 Pr(decoding failure|Ne)Pr(Ne|α) +∑n

Ne=M+1 1 Pr(Ne|α), (5)

for some value ofM in the neighborhood oft.
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Fig. 6. Probabilities of decoding failures givenNe channel errors

In Fig. 7, we illustrate the success of this approach in
long codes such as(1057, 813) projective plane code and
(1056, 813) affine plane code. The estimates from the semi-
analytical method agree with those obtained from simulations.

VI. CONCLUSION

In this paper, we successfully applied the knowledge on
decoder state transitions to estimate the performace of two
class of LDPC codes. The error events in these classes are
dominated by trapping sets or propagating sets. An extension
of this work to other classes of LDPC codes whose error events
are dominated by both trapping and propagating sets.
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