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Abstract—In this paper, we study state transitions, induced by a classification is used to characterize failures of the decoder.
low-density parity-check codes, of the Gallager B algorithm in  Finally, we use this knowledge to semi-analytically estimate

order to characterize failures of the decoder. The failures of the o performance of LDPC codes from a class of designs.
decoder depend on the properties of the underlying graph of the

code. Two classes of sets, nametyapping setsand propagating
sets of variables of the code are defined to categorize failures of Il. PRELIMINARIES
the decoder. Such a categorization helps to establish a connectionp_ Gallager B Decoder

between size and population of these sets in the code and the ) ) o )
frame error rate performance of the decoder. This connection  The iterative hard-decision decoder for the BSC is a sub-

is explored to develop a semi-analytical method to estimate the optimal decoder, and it is one of the simplest decoders that
frame error rate of a class of codes from balanced incomplete belong to the category ofnessage-passing decodefBhis
block designs. decoder, known as the Gallager B decoder, works on the
Tanner graphg of the parity-check matri¥ of the code by
I. INTRODUCTION sending binary messages over the edges. Since the input and

. : . . tput alphabet bi , all ti f the decod
Since Gallager's thesis [1] on low-density parlty-checggfﬁ]idao?/e}fs are binary, all operations of the decoder are

(LDPC) codes and iterative decoding algo_rithms, researchersl.he decoding algorithm [8] is described as follows. In
Pave "developed a whole array of techniques to COI’]StI‘L} hnd 0, the variable nodes send their received values to the
good” LDPC codes and analyze the performance threshql gighboring checks over the incident edges. In rounthe

[2] of LDPC ensembles under the assumption that the gir essage sent from a check to a neighboring variable is the

goes to infinity. Unfortunately, the same level of maturit)éum of all incoming messages except the one arriving from

has not been attained in the characterization of iteratiyﬁ\e variable. After receiving messages from the check, each
decodmg of f|n|te-!ength LDPC cpdes. Wiberg [3] qeveIOpe\gariable sends a new message to the neighboring checks. The
techniques by defining computation trees that achieved so

Essage sent from a variable to a neighboring check is the
success in the regime of finite-length analysis. Fetgl. used 55age S ' var 9 g 'S

: . . : majority (if it exists) among all incoming messages except the
computation trees to characterize decoding boundaries % Y ( ) g g 9 P

docod s of iterative decod Th docod arriving from the check. If a majority does not exist, then
pseudocodewords ot lteralive decoders. The pSEUdOCOUEWQIRS q cajved value corresponding to the variable is sent to the
include words that are not codewords and are local mini

"Weck. In the decoding stage, a variable takes a value that is the

of the decod_ln.g algorithm. Vontobel and Koetter. [4] h?\./Fhajority among all incoming messages. If a majority does not
analyzed all finite covers of Tanner graphs to explain demsu%

! . . Qist, then the variable is assigned the corresponding received

boundaries of linear programming decoders and to character] e,
local minima of message-passing decoders. Chermyahl.
[5] used an instanton approach to analyze finite-length LDPC .
codes. B. Balanced Incomplete Block Design

Richardson [6], with an aim to estimate the performance of A balance incomplete block desigBIBD) is defined as a
LDPC codes developed a semi-analytical technique that religdlection of k-subsets of a-set P, k < v, such that pair of
on combinatorial objects called trapping sets. The idea ofeéements of” occur together in exactly of the blocks. Each
trapping set is similar to that of near codewords defined in [-subset is called dlock and each element oP is called
In this paper, we focus on understanding and characteriziagoint A BIBD is referred to as a design with parameters
the dynamics of an iterative decoder, namely the Gallager2B(v, k, A). Theincidence matriof a 2-(v, &, \) design with
decoder, for the binary symmetric channel. The state trangiblocks is ab x v matrix A = (a;;) such thata;; is 1 if the
tions of the decoder are classified into two groups and suéf block contains thej’" point or 0 otherwise. The parity-

check matrixH of a code from BIBD is the transpose of the
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weight of a PG2, ¢q) code isq + 1 and its minimum distance
iS dmin = ¢ + 2. The column weight of an A@®, ¢) is ¢ and
its minimum distance igmnin = ¢ + 1.

It is easy to show that one iteration of the Gallager B
algorithm is similar to a majority-logic decoder and the
number of estimates used in the decoding stage is clarified
in the following facts.

Fact 1: For a code with column weight, the decoding
decision for a variable after one iteration is based on

Bit error rate (BER)

estimates, ify is odd, andy + 1 estimates (including the 07 : - Eggf@

received value of the bit), ify is even. ! - Po2)
Using the derivation given in [9] by Rudolph, it is possible 10l = S reer) .

to compute the error correction capability of one iteration of 1 Channel Sror rate 10

the Gallager B algorithm (or a one-step majority logic decodelg) L Analviically calculated BER f des from AGA)Znd PG(2.2)
. 1g. 1. nalytically calculate or coaes from n ,
Workmg on a code frqm - (v, k, 1) BIBD. when decoded using one-step majority logic decoder
Theorem 2 (Extension of Rudolph’s Resulpr a code
from 2 — (v,k,1) BIBD with column weighty, a single
iteration of the Gallager B decoder can correct UpX® |||, STATE TRANSITIONS OF THEGALLAGER B DECODER

errors, ify is odd, andZ errors, ify is even.l h
Therefore, for codes from R@.q = 2™), the decoder Let the:" state of the Gallager B decoder be the decoded

(in one step) can correct all error patterns up to weigH\ford obtained after the!" round or iteration. The transition
fo— (OHL _ dml| E des f A _ omy from an i state to an(i + 1) state, given an initial state,
= [%~] = |"™—]. For codes from A®,q = 2™), X
depends on the Tanner graph representation of the code. The

the decoder can correct all error patterns up to weight o f the decod iodi odi
4] = Ldmm;”. In fact, for error patterns of higher WeightS,State transitions of the decoder cang®iodic or aperiodic

2
the behavior of the decoder can be completely characterized
for codes from projective plane and consequently the bit errgr periodic Transitions
rate can be analytically determined. The probability of a bit

being in error after decoding can be determined as follows A periodic transition of states with peridd 7 0 is said to

occur if the(i +kT)™" states, for some> iq and¥ k > 0, are
Db = Z Pr(bit decoded incorrect|W, errorgPr(N, errors. equal. Let us first focus on the periodic transition with= 1.
N The initial state of the decoder that causes periodic transition
(1) with T =1 andig = 0 is referred to as théixed point A
For sake of simplicity, letb, andb, be the channel and fixed point of the decoder is characterized by defining a set
decoder output of the bit and let its transmitted valueObe called thetrapping set The trapping set of a decoder with a

Then, given graph representation is the support of an initial state that
. is a fixed point of the decoder. For example, supports of all
Db = Z {Pr (bo = 1|{Nc — 1 other errorsby = 1}) : codewords are trapping sets of the decoder. But there are also
Ne other trapping sets as shown in the example beloww )

Pr(bo = 1|N, error§ + pr<z,0 = 1|{N, errorsby = 0}) . trapping set7 is a set ofv variable nodes whose induced
subgraph has unsatisfied checks.
Pr(byg = 0| N, errors)] - Pr(N, errorg, Example 1 Consider th€2640, 1320) Margulis code which
(2) has girth 8 and column weight 3. From the structure of the
code we can calculate the number of eight-cycles in the graph
The expression Phit decoded incorrect|yV, errorg can to be 1320. Fig. 2(a) illustrates the structure of an eight-
be calculated combinatorially for these codes. Since, any twycle. Let the support of the initial state of the decoder be the
elements ofP occur together in exactly 1 block, every variablerariable nodes of the eight cycle. Each variable node receives
node is connected to every other variable node through exaalynessage af from two check nodes and a messagé &fom
one check node. Specifically, the check equations used toone check node. If majority logic is used for decoding, these
decode variable nodg, comprises of all the other variablevariable nodes will be decoded &sThe same messages are
nodes. Therefore, any error pattern of a given weight has pessed at every iteration and the decoder fails to correct these
be distributed in some way among the nodes associatedetoors. Hence, an eight cycle is(d,4) trapping set for the
these~ check equations. This specific characteristic of tHdargulis code. Similarly, Fig. 2(b) illustrates another trapping
code enables a purely combinatorial evaluation of the aboset of the code. Thél2, 4) trapping set for the AWGN channel
expression. The BER for various codes derived from projectif®®m [6] is also a trapping set for the Gallager B algorithm.
geometry is shown in Fig. 1. Unfortunately, this analytical A minimal trapping setly of a code is a trapping set with
technique cannot be easily extended to characterize decadttier smallest possible cardinality. A bound on the cardinality
behavior for 2 or more iterations, since the errors patterns areminimal trapping set of a regular code with girthand
highly correlated after the®1iteration. column weighty is given in (3), wherexr = ~ if v odd and



2 g=414
[$]1+1 g==6
z =
(IER S | g=8 3)
X xr i
L+ 51051 -1 g >10,% odd
9-8 . g—4
L+ 20,5 (51151 - D) + (5] - DT g > 10, feven
TABLE |
SMALL TRAPPING SETS OFREGULAR CODES
Code No. of | No. of Checks | Girth Trapping Sets No. of Trapping Sets
Variables

MacKay-1 1008 504 6 (3,3);(4,4);(5,3) 165; 1215; 14
MacKay-2 816 408 6 (3,3);(4,4);(5,3) 132; 1372; 41
Margulis code 2640 1320 8 (4,4);(5,5) 1320; 11088
Tanner code 155 93 8 (5,3) 155
QC code one 900 450 8 (5,3);(4,4) 50;675
QC code two 900 450 6 (4,2);(4,4) 150;1125
QC code three | 900 450 6 (6,2);(4,4);(3,3); 150;1025;200

Rl

a) A (4,4) trapping set b) A (5,3) trapping set . . .
(&) A (4,4) trapping (b) A (5,3) trapping Fig. 3. A(12,4) trapping set of th€2640, 1320) Margulis code

Fig. 2. lllustration of Trapping sets

initial state, is nonzero, then aperiodic transitions lead to

x = v+1if v even. In Table |, we show the size and numbedhe propagation of errors across iterations. The support of
of small trapping sets of certaif8, 6) regular codes. an initial state that propagates errors is callegr@pagating

Note that subgraphs induced by trapping sets are eitts®t Quite contrary to popular belief, subgraphs induced by
simple cycles or unions of simple cycles. For example, rinimal propagating sets have been observed to be cycle-
(12, 4) trapping set of th¢2640, 1320) Margulis code [6] is a free. For example, at high SNR most decoder failures of
set of 12 variable nodes and the induced subgraphsadd- a (3195,2844) array code withy = 5 are due to cycle-
degree check nodes. The illustration of the subgraph indudeele subgraphs isomorphic to those illustrated in Fig. 4. The
by the trapping set (see Fig. 3), shows that the subgrapdriable nodes of these cycle-free subgraphs form propagating
can be factored into a set of four simplé cycles, namely sets.
{v1 —v2 —v3—v4—v5—vg, V1 —V2—V3—V7 —Vg— Vg, V7,Vg—

Vl v, V. \ \7

Vg — V19 — V11 — V12, U4 — U5 — Ug — V19 — V11 — V12 }. AlSO, it 2 Vs Ve Vs
can be visualized as the interaction of two simple eight cycle A4
namely{m — Vg — V12 — 116} and {’U3 — U7 — V10 — ’U4}. "f:‘:‘:’@\

The periodic transitions witfli’ > 1 can be explained based /,/,%"("‘V’\'\\\
on trapping sets. An initial state that induces such a perioc // »,’“\ \
transition has the support which is a subset of some trappi / /‘
set. Also, the union of supports of decoder states over an en /

period of an oscillation (or transition) is a trapping set.

B. Aperiodic Transitions

Any sequence of state transitions that do not exhibit pes, s, s,
odicity is classified asperiodic Note that if the support of
the initial state is a codeword, then aperiodic state transitiofig- 4. A (5,25) propagating set of a regular LDPC code with= 5
are not possible. Thus if a channel error vector, also the

.................................... S, Sy



IV. FAILURES OF THE GALLAGER B DECODER the performance. The reduction in complexity is achieved by

A decoding failureis said to have occurred when thddentifying that in the regime of high signal-to-noise ratio
decoded word is different from the transmitted codeword. THeNR), performance of the decoder is dominated by trapping
characterization of failure events is essential to quantify tfféd Propagating sets of smaller sizes. Similar approaches
performance of a decoder. For example, a maximum likeliho8@Vve been used in estimating the performance of conventional
decoder fails if and only if the received word is closer to gecoders with parameters relating to minimum distance code-
codeword that is not the same as the transmitted one. T#@rds in the regime of high SNR.
analysis of failures in Gallager B decoder is dependent on
the properties of the code and its graph representation. ThePerformance of3,6) LDPC Codes
failures of the decoder can be due to minimum distance erronn [10], we presented a semi-analytical method to estimate
patterns or low (relative to minimum distance) weight errafie performance of a class @f,6) LDPC codes whose decod-
patterns. These failures can be characterized using trappifg failures are dominated by small trapping sets. For example,
sets and propagating sets. the performance of the Margulis code, listed in Table |, is

Assume that the all-zero codeword is transmitted over ti@minated by(4,4) and (5,5) trapping sets. Similarly, the
channel. An error vector (introduced by the channel) can resgirformance of one of the quasi cyclic codes is dominated by
in one of the following possibilities at the decoder. (5,3) and (4, 4) trapping sets. It is not difficult to identify the

1) The decoder, after a finite number of iteratiénsorrects dominant trapping sets by running short simulations that track

the error and arrives at the all-zero state. This is decoder state transitions. The total number of the dominant
favorable situation where the decoder exhibits a periodi@pping sets in the code can be easily computed, owing to
state transition withl’ =1 from i = [. the small sizes of these sets, by running a search algorithm.

2) The decoder, after a finite number of iteratiénexhibits For more details, see [10].

a periodic state transition witl’ > 1 from i =1 and it

never reaches the all-zero state. This is not a favorale performance of Codes from BIBDs

situation because this constitutes a decoder failure. Suc
failures are characterized, as discussed in Section IlI-
by trapping sets.

3) The decoder, after a finite number of iteratidnexhibits

an aperiodic state transition froin= [ and it does not

r'n Section I, the analytical expression for calculating BER

f8 codes derived from affine and projective planes when

decoded using a one-step majority logic decoder (or a Gallager

B algorithm with 1 iteration) was shown. It was pointed out

. ) ._that the methodology could not be extended to Gallager B
reac_h the all-z_ero sta_lte. Such a failure is ch_aracterlzea gorithm with 2 or more iterations. In this paper, we focus on
as discussed in Section IIl-A, by a propagating set. the problem of estimating the FER of codes from(BP@™)

The situation described in Item 2 occurs when errors ag@d AG2,2™). The FER estimatpcy for such codes aftelr

located (as a result of the channel, ile= 0) or transferred jterations of the Gallager B algorithm can be written as
(as a result of iteration) to a set of variable nodes that is

contained in a trapping set. For example, it is sufficient for n
a select three variable nodes of(& 3) trapping set to be Pow = Z Pr(decoding failur@Ve)Pr(Nela),  (4)
in error to result in periodic state transition with = 2. Ne—tt1

Although minimum distance errors are accounted for in th{ﬁherea is the parameter of the binary symmetric channel and

categqry, “good” codes gxhibit trapping set failu.r'es that ar « IS the number of errors introduced by the channel. The size
not minimum distance failures. Thus the probability of suc ¢

fail d d he si f . d minimal trapping sets of these codeg is 1. For example,
ailures depends on the size of trapping sets and on subgraph induced by one such minimal trapping set is
population of trapping sets.

illustrated in Fig. 5, where each line corresponds to a variable

The situation described in Item 3 occurs when errors aﬁ%de of the code from P@, 2*) and each point corresponds

located in a set of variable nodes that contains a propagatild. check node of the code. From simulations we observe

set. It s common for propagqtmg set failures to corr'gqhat the dominant error events are due to propagating sets
approxma_tely half of all the varlable nodes. The _probabllltgn not trapping sets. Due to the large sizes of trapping and
of such fallure_s depends on the size of propagating sets ?ﬂéjpagating sets, it is not possible to count them and hence,
on the population of propagating sets. we resort to a semi-analytical method (SAM) to estimate the
FER of these codes.
V. APPLICATION OFFAILURE ANALYSIS The conditional probability of decoding failures is obtained
The application of our interest is the estimation of framfom simulations. A fixed number of errors, sa¥e, is

error rate (FER) performance of the Gallager B algorithnmtroduced at random bit positions of a codeword, and the
We have shown that such an estimation is dependent on sigsultant word is decoded using the Gallager B algorithm.
and population of trapping and propagating sets. Althougdtote that these simulations are independentvaind hence,
identifying all trapping sets and propagating sets of a codeese probabilities can be applied to estimate FERs at very
is a daunting task, especially if the code is moderately lotggh SNRs. This experiment is repeated to compute the
and pseudo-randomly constructed, we will show that it i{grobability of decoder failure for different values éf.. In
possible to considerably reduce the complexity of estimatifdg. 6, observe that conditional probabilities for @5) and



Fig. 5. A minimal trapping set of P@, 24)

AG(2,25) codes approach unity for values df ~ t+4. This

behavior holds for all codes from projective and affine planes.

Therefore, the FER in (4) is modified as
Pow = ZANi:tH Pr(decoding failuréNg)Pr( Ne|a) +
Z%e:M—&-l 1 Pr(Nel|av),
for some value of\/ in the neighborhood of.
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Fig.

(2]

(3]
(4]

[5]

In Fig. 7, we illustrate the success of this approach in

long codes such a$1057,813) projective plane code and
(1056, 813) affine plane code. The estimates from the semi-

6]

analytical method agree with those obtained from simulation$7]

VI. CONCLUSION

(8]

In this paper, we successfully applied the knowledge 0|[19]
decoder state transitions to estimate the performace of tjw0] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
class of LDPC codes. The error events in these classes are ldpc codes on binary symmetric channel,”IBEE Intl. Conference on
dominated by trapping sets or propagating sets. An extension
of this work to other classes of LDPC codes whose error events

are dominated by both trapping and propagating sets.
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