Reliable Memories Built from Unreliable

Components Based on Expander Graphs

Shashi Kiran Chilappagartudent Member, IEEEBnd Bane VasicMember, IEEE

Abstract

In this paper, memories built from components subject tasient faults are considered. A fault-tolerant
memory architecture based on low-density parity-checlesad proposed and the existence of reliable memories
for the adversarial failure model is proved. The proof et the expansion property of the underlying Tanner graph
of the code. An equivalence between the Taylor-Kuznetsd{) @cheme and Gallager B algorithm is established
and the results are extended to the independent failurelmbiealso shown that the proposed memory architecture

has lower redundancy compared to the TK scheme. The resalifustrated with specific numerical examples.

. INTRODUCTION

During the past four decades, the decrease in transisterasid the increase in integration factor
have led to very small, fast, and power efficient chips. Asdbmand for power efficiency continues, a
wide range of new nano-scale technologies is being activelgstigated for processing and storage of
digital data. Although it is difficult to discern which of tke approaches will become a technological
basis for computers in the future, it is widely recognizedtttue to their miniature size and variations
in technological process, the nano-components will be retityy unreliable. Even in more traditional

Manuscript received April 30, 2007. This work is funded by the N®Ear grant CCF-0634969

S. K. Chilappagari is with the Department of Electrical and Computer Eeging, University of Arizona, Tucson, AZ, 85721 USA
(e-mail: shashic@ece.arizona.edu).

B. Vasic is with the Department of Electrical and Computer Engineeringyddsity of Arizona, Tucson, AZ, 85721 USA (e-mail:

vasic@ece.arizona.edu).

semiconductor technologies, reducing transistor sizeahaady started affecting circuit reliability, and
it is widely believed that transistor failures (both traerdi and permanent) will become one of the main
technological obstacles as the trend of increasing thgnaten factor continues. In this paper, we consider
storage circuits built from such unreliable (faulty) compats. We consider an unreliable component (a
logic gate or a memory element) to be a component that is sutgetransient faults i.e., faults that
manifest themselves at particular time steps but do notssac#y persist for later times [1].

Von Neumann [2] was the first to study computation using faghtes. In [2], he showed that, under
certain conditions, increased gate redundancy can leatttedsed reliability of a circuit. However, it was
shown that, in general, computation by faulty gates with-nero computational capacity is not possible
(see [3], [4]). The study of storage circuits made of unt#éacomponents led to much more optimistic
results. Taylor in [5] proved that a memory has an associg@dmation storage capacity;, such that
arbitrarily reliable information storage is possible fdr memory redundancies greater thapC'. The
methodology of the proof, however, does not allow one toiekfy calculate the storage capacity. Taylor
considered two models of component failures and proposestraetion of fault-tolerant memories based
on low-density parity-check (LDPC) codes. In the first modle¢ failures of a particular component are
assumed to be statistically independent from one use tchanaind is referred to as the independent
failure model. In the second model, the components fail paently but bad components are replaced
with good ones at regular intervals. The failures in differeomponents are assumed to be independent in
both the models. This construction was further studied byn€tsov in [6] and we will refer to it as the
Taylor-Kuznetsov (TK) scheme. Hadjicostis [1] was able emegralize Taylor's scheme to fault tolerant
linear finite state machines. Spielman [7] obtained the kesilt for a general model of computation, by
marrying the ideas of von Neumann with Reed-Solomon (RS) codes

The fundamental contribution of this paper is to show eristeof reliable memories built entirely from
unreliable components and which have finite redundanciesctMsider the adversarial failure model in

which only a fixed fraction of the components fail at any givtme and extend our results to the

independent failure model using Chernoff bounds [8]. Our wwmarchitecture has lower redundancy
compared to the TK scheme. Our fault tolerant memory archite is also based on LDPC codes but
differs from the TK scheme in the decoding algorithm emptby€he TK scheme can be shown to be
an implementation of the Gallager B decoding algorithm f@PAC codes (the proof will be given in
Section V). We use the parallel bit flipping decoding aldomtproposed in the context of expander codes
by Sipser and Spielman [9]. Expander codes are a class ofpasiioally good error correcting codes
with linear time decoding algorithms which can correct &#éinfraction of errors. Expander graph based
arguments have been successfully applied for messageg@adgorithms by Burshtein and Miller in [10]
as well as for linear programming decoding by Feldraaalin [11]. At the time of their discovery, explicit
construction of graphs with expansion required for pakaileflipping algorithm were not known. Capalbo
et al [12] recently gave an explicit construction of expandeapdis based on randomness constructors.
Hence, our method can be seen as a constructive proof inasbotdr Taylor's method which is an existence
proof.

The rest of the paper is organized as follows. In Section lljpn@vide the necessary definitions and a
brief overview of LDPC codes. We explain the proposed menaochitecture and characterize it in terms
of complexity and redundancy. In Section Il we introduce thodel of failure of the components and
prove our main result showing the existence of memorieshvtén tolerate failures in all the components.
In Section IV we provide a few numerical examples. In Sechbwe establish an equivalence between
the TK scheme and Gallager B algorithm and extend our resalthe independent failure model. In

Section VI we discuss open questions and conclude with soteeesting remarks.

Il. THE SYSTEM DESCRIPTION

In this section, we give a detailed description of the memsygtem. We start by introducing the
terminology used to characterize memories and proceedstuss the importance of LDPC codes. We
explain the coding scheme and the error correction schermpéoged in the proposed memory architecture.

We then calculate the redundancy and complexity associsitidthe memories.

A. Definitions

A memory is a device in which information is stored at someetiand retrieved at a later time
[5]. The memories under consideration store informatiorform of bits and are built from registers
(memory elements) each of which can store a single bit. Tfegnmation storage capability of a memory
is the number of information bits it stores. Consider a menmijt out of reliable registers. To build a
memory with information storage capability bfbits requires: registers. Such a memory is termed as an
irredundant memory. Now, consider the problem of infororastorage with unreliable memory elements.
Due to the component failures, the information read out ef mhemory may not be identical to the
information stored originally. Hence, to ensure relialitgage, the information needs to be stored in coded
form (see [5] for an excellent discussion on the importarfa®ded form). Initially, a codeword from some
error correcting code is stored in the memory. The unradiafature of the memory elements introduces
errors in the registers and the contents of the memory diften the initial state. To ensure reliability, a
correcting circuit is employed which performs error coti@t and updates the contents of the registers
with an estimate of the original codeword. Hence, a faurtmt memory system (referred to as memory
system or simply memory henceforth) consists of memory efgm(referred to as storage circuit) and a
correcting circuit. The correcting circuit is also built efireliable components. The coding of information
along with the correcting circuit introduce redundancyitite memory system. Such redundant memories
are characterized by two closely related parameters, yagmhplexity and redundancy. Tle®mplexity
of a memory is the number of components within the memory fapmment is a device which either
performs an elementary operation or stores a single bit @vherelementary operation is any Boolean
function of two binary operands [5]). Thedundancyof a memory is the ratio of the complexity of the
memory to the complexity of an irredundant memory which Hesgame information storage capability
[5]. It should be noted that there can be many memory ardhites with different complexities but the
same information storage capability.

Another important characteristic of a memory is reliaildVe say that arbitrarily reliable information

storage is possible in a memory if the probability of memaijure can be made arbitrarily small. To
guantify the reliability of a memory system, it is importatat first define what constitutes a memory
failure. Let a memory failure be defined as an event in whieéhword read out of memory is not equal
to the original codeword. Arbitrarily reliable informaticstorage is not possible with such a definition of
memory failure. This is due to the fact that the probabilityfailure is lower bounded by the probability
of failure of components in the final step of extracting thimation bits. Hence, we define a failure
in the following manner. Associated with each codeword irpdecis a decoding equivalence class, i.e.,
the set of words which decode to that particular codewordmderoded with a decoder built of reliable
components. If the contents of the memory do not belong tal#dmeding equivalence class of the original
codeword, we say a memory failure has occurred. §tbeage capacityC', of a memory is a number such

that for all memory redundancies greater than’, arbitrarily reliable information storage is possible.[5]

B. LDPC Codes

The memories under consideration store information in farfrbits and therefore we restrict our
attention to binary codes in this paper. An k) binary block code maps a message block afformation
bits to a binaryn-tuple [13]. The rate- of the code is given by = k/n. An (n, k) binary linear block
code,C, is a subspace aff F'(2)" of dimensionk [13]. A parity check matrixH of C is a matrix whose
columns generate the orthogonal complementof.e., an elementv of GF'(2)" is a codeword ofC
iff wH? = 0 [14]. The information storage capability of a memory depend the type of the code
employed in the correcting circuit. Hence, a memory empigyan (n, k) block code has information
storage capability of: bits.

Taylor in [5] argues that no decoding scheme other thantierdecoding of LDPC codes can achieve
non-zero storage capacity. LDPC codes [15] are a class ediblock codes which can be defined by
sparse bipartite graphs [16]. Létbe a bipartite graph with two sets of nodesvariable (bit) nodes and
m check (constraint) nodes. The check nodes (variable nades)ected to a variable node (check node)

are referred to as its neighbors. The degree of a node is timderuof its neighbors. This graph defines

a linear block code of length and dimension at least— m in the following way: Then variable nodes
are associated to the coordinates of codewords. A vector= (vy, vy, ..., v,) iS a codeword if and only
if for each check node, the sum of its neighbors is zero. Suptaphical representation of an LDPC code
is called the Tanner graph [17] of the code. The adjacencyixnalt G gives H, a parity check matrix of
C. An (n,~, p) regular LDPC code has a Tanner graph witlrariable nodes each of degreeandn~/p
check nodes each of degreeThis code has length and rater > 1 —~/p [16]. It should be noted that
the Tanner graph is not uniquely defined by the code and whesayehe Tanner graph of an LDPC

code, we only mean one possible graphical representation.

C. The Proposed Fault Tolerant Memory Architecture

The complexity and redundancy of a fault-tolerant memoryetel on the coding scheme as well as
the decoding algorithm employed in updating the contentthefmemory. We now explain our memory
architecture in detail.

At time ¢t = 0, a codeword from afn, v, p) regular binary LDPC code is written into the storage circuit
consisting ofn registers each of which can store a single bit. Theits of the codeword correspond to
the n variable nodes in the Tanner gragh, of the code. The contents of the registers are updated at
timesr,27,..., L7, L € IN. The update rules can be explained by defining messages #dlengdges
in G. For a variable node (check noder), let E(v) (E(c)) denote the edges incident an(c). Each
edgee is associated with a variable nodeand a check node. Let m, (e) and ‘m, (e) represent the
messages passed on an eddsom variable node to check node and check node to varialide abtime
t respectively. Let(¢) denote the value of variable nodeat time¢. Then the update at timeis given
by the following algorithm:

Algorithm A

« For each edge and corresponding variable node

m; (e) = v(t7)

« For each edge and corresponding check node

me (e)=(Y m (¢)] mod2
e’€E(c)\{e}
« For each variable node

LY my (o) > [v/2)

e€E(v)

o) =00 = Y e () > /2

e€E(v)

v(t™), otherwise

The algorithm can be interpreted in the following mannerefigwariable node sends an estimate of its
value to the neighboring check nodes. A check node calautaiestimate of a neighboring variable node
by computing the modulo two sum of all the remainifag— 1) neighboring variable nodes. Each variable
node receiveg estimates, one from each neighboring check and the majofithese estimates is the
updated value of the node.

Remarks:We assume that the update is instantaneous andus¢ and v(¢*) to denote the value of
variablev just before and after the update respectively. We note tieatgorithm presented above is a

slight modification of the parallel bit flipping algorithm ggosed in [9].

D. Complexity and Redundancy

LDPC codes can achieve non-zero capacity due to the factthleatedundancy of the LDPC codes
memory increases linearly with the information storageatilfty. The complexity of the logic gates needed
to perform decoding depend only erandp and not on the length of the code. So the redundancy remains
bounded even as the code length tends to infinity.

We now calculate the complexity and redundancy associaitixdowr fault-tolerant memory architecture.
The storage circuit consists ef registers each of which can store a single bit and hence haplerity

n. The correcting circuit consists of logic gates (built frammponents) needed to implement the update

algorithm. The message sent from a check node to variable malves computing the modulo two
sum of (p — 1) bits which requires d&p — 1)-input XOR gate which can be implemented usiipg— 2)
two input XOR gates (a two input XOR gate calculates modulo sam of two bits). Each check node

needs to computg such estimates. Therefore, the total number of two input XJaes is

(ny/p) x px (p—2) =nvy(p—2)

Each variable node is updated based on the majority of testimates received from its neighbors. This
requires ay-input majority logic gate for every variable node whose pterity we denote byD.,. Hence,

the complexity of the memory system is
S=n(l+Dy+~(p—2))

The memory has information storage capabilityrofbits and the complexity of an irredundant memory
with the same information storage capability 7is. The redundancy of the fault-tolerant memory is

therefore
R = n(1+D,+~(p—2))/rn

< (I+Dy+79(p—=2)/(1=7/p)

[Il. ANALYSIS OF THEMEMORY SYSTEM

The storage capacity of a memory depends on the type of dailur the components. A logic gate is
said to have failed if its output is flipped. A register is stochave failed if the bit stored in it is flipped.
In this paper we consider the adversarial failure model ed$erred to as bit flipping channel model. In
the adversarial model, the failures occur in the worst caskidén but no more than a fixed fraction of the
components fail at any given time. In other words, the nundbdailures is bounded for a given number
of components. As the number of components increases sotleeasimber of failures. We denote the

fraction of memory element failures in a time intervaby «,,, fraction of two input XOR gate failures

for every use byyg, and fraction ofy-input majority logic gate failures for every use by. As mentioned
before, the component failures are transient and indepericem one use to another.

A memory system is said to tolerate a constant fraction afrerm all components if at any time at
most a constant fraction of components can fail and no merfalyre occurs in the system at all times
t < oo. Recall that, from our definition, a memory failure occurshé tcontents in the memory do not
belong to the decoding class of the originally stored coddwim this section, we prove that the memory
architecture proposed in Section Il can tolerate a condtaation of failures in all the components. Our
proof is based on the expansion property of the underlyinthn@agraphg, of the code.

Definition 1: [9] A Tanner graphG of a (n,v,p) LDPC code is a(v, p,«,d) expander if for every
subsetS of at most anun variable nodes, at leastS| check nodes are incident 6.

The definition of expander is much more general but we régiric attention to Tanner graphs of LDPC
codes.

Sipser and Spielman in [9] proposed a class of asymptoticadbd error correcting codes based on
expander graphs known as expander codes. They proposedmpte Dit flipping algorithms, namely,
serial and parallel and showed that when the underlyinghghegs sufficient expansion, these algorithms
can correct a fixed fraction of errors. LDPC codes are a spease of expander codes in which the
expander graph is the Tanner graph of the LDPC code.

We describe the parallel bit flipping algorithm and inteeelsteaders are referred to [9] for details about
serial bit flipping. We say that a constraint is satisfied btiirsg of variables if the sum of the variables
in the constraint is even; otherwise, the constraint is usfgad. The set of variable nodes (bits) which
differ from their original value are known as corrupt vateg

Parallel Bit Flipping Algorithm

. In parallel, flip each variable that is in more unsatisfiechtsatisfied constraints.

« Repeat until no such variable remains.

The following theorem from [9] gives the sufficient condit®for the parallel bit flipping algorithm to

correct a constant fraction of errors.

Lemma 1 ([9], Theorem 11)Let G be a(v, p, o, (3/4 + €)y) expander over variable nodes, for any
e > 0. Then, the simple parallel decoding algorithm will corraaly oy < «(1 + 4¢)/2 fraction of error
after log,_,.(agn) decoding rounds. Also, i/ denotes the set of corrupt variables in the input and
V| < an(1 + 4¢)/2, then the parallel decoding algorithm produces a word witlmast |V'|(1 — 4¢)
corrupt variables after one decoding round.

Proof: See [9] [|

From Lemma 1, it is clear that a word belongs to the decodiagscbf a codeword as long as the
fraction of corrupt variables (bits) is less thafl + 4¢) /2. Note that Algorithm A is a slight modification
of one iteration of the parallel bit flipping algorithm of [9n the parallel bit flipping algorithm, every
check node indicates to its neighboring variable node & gatisfied or not. In Algorithm A every check
node gives an estimate of the variable node. Theoretidadltyy the algorithms are equivalent but we use
the Algorithm A as it has lesser redundancy. We now state aodepour main theorem.

Theorem 1:Let G be a(v, p, a, (3/4+¢)vy) expander for any > 0. The proposed memory architecture

can tolerate constant fraction of errors in all the comptsén
am +7(p — 2)ag + a, < al + 4e)(4e) /2

Proof: At ¢ =0, a codeword from arin,~, p) LDPC code with Tanner grap@ is written into the
memory. The contents are updated at time®r,..., L7, L € IN, by running Algorithm A. We bound
the number of corrupt variables at timeLet a,(¢f) denote the fraction of corrupt variables at tirhe
We establish bounds on,(¢) for all . We first prove the following. Let > 0, denote an infinitesimal
duration of time. If

(Il = 1)1 — 8) < a1 + 4€)/2,

then,

a, (It = 6) < a(l +4¢)/2

Let V(¢) denote the set of corrupt variables at time
V(=11 =9)] =a,((l—1)T —d)n.

Sincea,((I — 1)7 —0) < a(l + 4¢)/2, a decoder built with reliable gates outputs a word with asimo
[V((I—1)T—9)|(1—4e) corrupt variables (by Lemma 1). We now bound the number afrerintroduced
due to the faulty nature of the decoder. Each XOR gate fatarecorrupt at most one variable and each
majority logic gate failure can corrupt at most one varialde,

VU =D7)| < V(U =17 —0)|(1 - 4e)

+ v(p—2)agn + ayn (1)

Eq. 1 bounds the number of corrupt variables at the enf ef1)!" correcting cycle. However, in the
time interval[(l — 1)7 [7), at mostw,,,n variables can get corrupted due to failures in memory elésnen
Therefore, the time at which there are maximum number ofupdrvariables is just before the start of a

correcting cycle, i.e.,

a, (It —0) =max{a,(t): (I — 1) <t<lIr}
Hence, it suffices to bound,(t) for t =l — 0,1 =1,2,..., L.
V(Ur =) < V(=17 =0)[(1—4e)
+ v(p —2)agn + ayn + apn (2)
Dividing Eq. 2 byn gives
a,((IT = 0) < ap((l—1)7 —6)(1 — 4e)
+ v(p—2)ag +a, +an
< a(l+4e)(1 —4e)/2 + a1 + 4e)(4e) /2

= o(l+4e)/2

Since

(T —0) < ap < a1 + 4e) /2,

it follows that

a,(IT —9) < a1l + 4e€)/2 Vi e IN.

Hence,

a,(t) < a(l +4e)/2 Vit < oo.

Since, the fraction of corrupt variables is less thédt + 4¢) /2, the contents of storage circuit correspond
the decoding class of original codeword and hence, by ounitlefi, no memory failure occurs. =

It is instructive to see the behavior of the memory in the abseof the correcting circuit. In any time
interval of 7 seconds, at most,,n fraction of the memories may fail. After sufficiently longre, the
fraction of corrupt variables becomes more thehn + 4¢) /2 and a memory failure occurs. The presence
of a correcting circuit ensures that at any time the numbecasfupt variables remains less than the
correcting capability of the code. However, for a given exgex there is a loss in the tolerable memory
failure due to the faulty nature of the gates as well as thmtitee nature of the decoder. Consider the
case of where decoder is reliable and failures occur onlg.ofbe tolerable fraction of errors for a given
expander is close ta(1 + 4¢)/2. In the case of memories with unreliable memory elementgdiigble
logic gates, the tolerable fraction of memory errors is eltisa (1 + 4¢)(4¢) /2. The reduction by a factor
of 4¢ occurs due to the fact that decoder is iterative in naturensedls multiple rounds to converge to the
codeword. One round of error correction decreases theselgor factor of(1 — 4¢) and «,,,n new errors
might be introduced due to memory failures. In the extremsea# e = 1/4 we have a decoder which
takes just one step to correct all the corrupt variables,hitivcase the tolerable failure rate is arbitrarily
close toa(1 + 4¢€)/2. The faulty nature of the decoder further reduces the tblermemory failure rate.
Given the values ofv,,, ag, oy, @ code based on graph with sufficient expansion can be cliodauld
a fault tolerant memory. It is well known that a random graplaigood expander with high probability

(see [9] and references therein). In the next section, wetrthte this fact with a few examples.

IV. NUMERICAL RESULTS

In this section, we illustrate with specific numerical exdespthe redundancies and tolerable failure
rates associated with different valuesyadindp. We first make the following observations. The redundancy
of a memory system depends on the parameteasd p of the LDPC code used. Different values of
and p can result in same redundancy. To compare across diffesdneés ofy and p, the values ofD,
and o, have to be chosen consistently. Hdw, and ., scale withy depends on the technology and
implementation. Assuming that all gates are built out ofvarsal NAND gates also does not answer the
question fully as different implementations can lead tdedént values. Hence for the sake of illustration
we consider a specific implementation. It should be notetittreasubsequent discussion is for illustration
purpose only. Accurate analysis for a given case can beedaout along the lines of the method we
present in this section. For a given implementation, we fex ttie values ofy and p thereby fixing the
redundancy as well as, and~(p—2)ae. We then use the bounds on the achievable expansiori-afea
regular bipartite graph to find bounds on the valuen@f. = «(1 + 4¢)(4e)/2. This in turn provides

bounds on the value af,, for fixed v and p.

A. Redundancy

Recall that the redundancy of a memory system is given by
R = n(l1+Dy+~(p—2))/rn
< (+Dy+9(p—2))/(L=7/p)

For a fixedy, R is minimum for a certairp depending on the value db.,. For example, ifD, = 2y —1,
then it can be shown that = 2y minimizes the redundancy. This implies that a rat@ code has the
least redundancy for a given

Fig. 1(a) and Fig. 1(b) show the dependence of the redundamgyfor a given value ofy.

1000

10

900%

800

*
700

o 10 *** b
600 4 ****
* %*»em *
500 .
*
400 - . 1
*
* *x * =t
Foxox s ox & ox * K X
30010 12 14 16 18 20 22 24 26 28 30 1030 40 50 60 70 80 90 100 110
P P
@ (b)
107 ; : . 1072 \
102 + Upper bound . + Upper bound
Eoocbiobgngn E H :
U e 3 HHHWWW%
107] 10 3
_107 1 B
s T
g 2107 .
5 5 S
10 3
-6
10 = 4 10 W***MW**WW
10’7 ¥k ooy . i *
S B Fw e
1078 I I I 1 10_6 I I I I I I I
10 15 20 25 30 30 40 50 60 70 80 90 100 110
p p
(©) (d)

Fig. 1. Redundancies and bounds on expansion for different vafugga) redundancy foty = 9 (b) redundancy fory = 34 (c) bounds

ON Qiotar fOr v =9 (d) bounds OMtorq for v = 34

B. Bounds on Expansion

We make use of the following theorem from [9] to find an uppeurmbo,,.,; for a given~ and p.

[Theorem 25, [9]]: LetB be a bipartite graph betweenc-regular vertices an@:/d)n d-regular vertices.

For all 0 < a < 1, there exists a set afn c-regular vertices with at most

”cgz(l — (1 - a)?) + O(1) neighbors
It should be noted that the upper bound is tight for higheueslofc.

Using this theorem, we can find an upper boundog,; for a given~y andp. It should also be noted

that we look for graphs which expand by at least a factof3gfl + ¢).

The following proposition from [11] addresses the issuexa$tence of expanders.

[Proposition 6, [11]]: Let0 < » < 1 and0 < § < 1 be any fixed constants, and letbe such that
(1 — d)c is an integer which is at least 2. Then for anym such thatr = 1 — m/n there is a Tanner
graph withn variable nodesi check nodes, and regular left degreevhich is an(an, ic)-expander,
where

a = (266C+1(5C/(1 - r))(l_‘s)c))_m

It should be noted that the notation for expanders is diffene [11]. Also, the proof does not guarantee
that all the check nodes have same degree.

This proposition guarantees the existence of graphs witicgmt expansion and can be used to derive
a lower bound onv,,, for given~ andp. This in turn proves existence of memories which can toterat
am, ag anda., fraction of failures in respective components as long.as-v(p—2)ag+a, < tora- Figs.
1(c) and 1(d) illustrate the upper bounds and lower bounds,gp for v = 9 and~ = 34 respectively.
We remark that the bounds have been derived numerically andiavnot attempt to give closed form

expressions for the bounds as the results are for illustrgiurpose only.

V. THE TAYLOR-KUZNETSOV SCHEME AND THE INDEPENDENTFAILURE MODEL

As mentioned in the introduction, Taylor [5], [18] was thesfito investigate the capacity and fault-
tolerant architectures of storage systems built entinggnfunreliable components. His results were refined
by Kuznetsov [6]. The aim of Taylor and Kuznetsov (TK) was &ride results analogous to the ones
derived by Shannon on the capacity of communication systé&hes spirit and methodology of Taylor and
Kuznetsov’s work [5], [6] is similar to Gallager’s resultsq] on LDPC codes. The bounds on probability
of error are given for an ensemble of regular random LDPC saddnfinitely large length used in the
correcting circuit. They are obtained under the assumstitiat the bits in memory elements remain

independent during the process of correction, i.e., untkerassumption that the girth (the length of the

shortest cycle) of the Tanner graph corresponding to a cedgfinitely large. Taylor and Kuznetsov
considered a failure model in which a faulty component, galhea logic gate or a memory element,
is subject to transient faults, i.e., faults that manifdstmselves at particular time steps but do not
necessarily persist for later times [1]. It is also assunied gates fail independently of each other, and
that the defects are not permanent, i.e., a gate that méthaed at some point in time may give correct
output subsequently and that failure occurs by flipping theect result with some probability, i.e., if
the correct result is “1”, the gate gives “0” and vice versacl&failure mechanism is referred to as von
Neumann type of error or as independent failure model. Atjagate or memory element in this case

can be modeled as as a binary symmetric channel (BSC) withaus@sprobabilityp.

A. The TK Scheme

The information to be stored is first encoded byra~, p) regular binary LDPC code. The stored
codewordv = (vy,vs,...,v,) consist of bitsv;,1 < ¢ < n referred also as variables. Each variable
bit v;,1 < i < n is involved in~ parity-check equations by H” = c, where H is an (m x n) parity
check matrix and all operations are in binary field. The degsé each check node is. The vector
¢ = (c1,¢9,...,¢y) is called syndrome and; corresponds to the value gf" parity-check sum for
1 < j < m. Parity checke; is said to be satisfied if;, = 0 and unsatisfied it; = 1. A set of parity
checks involving bitz; is {cﬁl),cl(?), - ,cg"’)}. After encoding, every coded hit; is replaced withy bit-

copies of itself{xf.l),xg?), . ,:cf”} and stored iny registers. All bit-copies initially have the same value.

New estimates of each of these copies are obtained by usmganbination ofy — 1 checks. Note that
there are exactl;(,yll) = ~ combinations. The estimates are obtained as follows.
1) Evaluate parity checks for each bit-copy (exclude onamdisparity check from the original set of
checks for each bit-copy).
2) Flip the value of a particular bit-copy if half or more ofetlparity checks are unsatisfied.

3) lterate (1) and (2).

The Tanner graph description of LDPC codes was unknown dtirtiee of Taylor’'s paper. It is easy to
see that each bit copy corresponds to an edge in the Tanrgr. griae variable node corresponding to the
edge is the corresponding bit and the check node is the pardgk that is excluded in the estimation of
that bit copy. If the update scheme is modified so that thelchedes indicate an estimate of the bit copy,
then the update rule is an exact implementation of the hattid@ message passing algorithm (known
as Gallager B algorithm) for iterative decoding of LDPC cedgee [19] for a more detailed discussion).
Such an equivalence is of great significance as expandeh gigiments have been applied to message
passing algorithms [10] and allows us to extend these sesuilthe case of unreliable gates also.

The complexity and redundancy of the original TK scheme arengby
S = @+Dya+(y=1)(p—D)n

R < 2+Dya+(y=Dlp—DN/(1=1/p).

B. The Independent Failure Model

In this section, we extend our results to the independehiréaimodel. By Chernoff bounds [8], it
follows that a code which can correct a fractionpof A errors achieves exponentially small probability
of error on the BSC with crossover probabiliyf9]. In other words, if there are components which can
fail independently with probability, then the probability that more thant ¢ fraction of the components

fail at any time is bounded by

P(number of failures/n- p 4+ A) < e~ PwHAlRn < o=24%n

where D(z||ly) = xlog (z/y) + (1 — x)log ((1 — z)/(1 — y)) is the Kullback-Leibler divergence between
Bernoulli random variables with parametersaandy respectively.

Now consider a memory architecture built from unreliablenponents subject to independent failures.
Let p,, denote the probability of failure of memory element in timeetvalr, pe, p, denote the probability
of failure per use of an XOR gate andyainput majority logic gate respectively. Also, let,, eq, e, > 0

be such thap,, +€,, = ., ps +es = ag andp, + ¢, = «,. Let P¢(t) denote the probability of memory

failure at timet. For o, g, o, and§ satisfying the conditions in Theorem 1, we now have the Valhg
theorem

Theorem 2:The proposed memory architecture has the following pararmédr the independent failure
model:

1) Information storage capability n(1 —/p)

2) R< (14 Dy+7(p—2))/(1=7/p)

3) Py(Lt) < Le(=%m)

Proof: (1) and (2) follow from our discussion in Section Il. A memdwajlure may occur if the

fraction of components which fail at a time is more than tHerable fraction of errors. Id. time steps,

the correcting circuit is run fol. times. The memory registers can fdiltimes. Hence, we have
Pf(LT) § L(e—Qegnn _|_€—2€%9TL + 6_25'%“)

u
The bound on the probability of memory failure given in Thexar2 is a very weak bound and we do not
try to improve it. Theorem 2 establishes the fact that in th@ppsed memory architecture, probability
of memory failures decreases exponentially with the codgtlewhile the redundancy remains bounded.
Theorem 2 has been stated in the same form as the main theor€nzinetsov’s paper [6].
Hence, the proposed memory architecture has exponentiatlyeasing probability of memory failure

in code length and redundancy which is roughlyimes less the TK scheme.

VI. DISCUSSION

Taylor in [5] remarks that memories have an associated eom-storage capacity but an explicit
calculation of the capacity is, in general, a difficult pratl. For a given failure mechanism, finding
storage capacity involves calculating the minimum redumeglao achieve arbitrarily low probability of
error. The redundancy is a function of the coding scheme dsasethe decoding algorithm. The TK

scheme as well as the proposed memory architecture hawereoitindancies and only give bounds on the

storage capacity. In this paper, we have shown that thest mliable memories with redundancies less
than that of the TK scheme. This implies that the proposed ong@architecture improves the bound by a
factor ofy at least in a few cases. The explicit calculation of the gfer@apacity still remains an unsolved

problem. While the proposed architecture has less redugdére TK scheme may achieve better error
exponents as it employs message passing algorithm whichgeneral more powerful than the parallel

bit flipping algorithm. It is worth noting that Taylor in [5]a$cribes the parallel bit flipping algorithm as a
scheme for the update rule. He remarks that such an algok#thds to complex interrelation between the
errors as on successive iterations the values of the bitdviest in the estimation of new value of each bit

depend on previous value of the bit. We overcome this prolhetinis paper by using expander arguments.
Also, extending the results from the adversarial model witidependent failure model using Chernoff
bounds results in very weak bounds on the probability of nmgnfailure. Using expander arguments

directly for the independent failure model for both the mepd architecture and the TK scheme might
result in better error exponents as well as lead to tighteintds on the capacity.

Another problem which needs to be investigated is the bownrdshe probabilities of failures of
components, i.e., what are the upper bounds on the pralyabilifailure of various components. Sipser
and Spielman in [9] provided explicit construction of coaesich can correct a certain fraction of errors.
The fraction was later improved by Zemor in [20]. Barg and Zeimno[21] proved that expander codes
achieve capacity on the BSC under iterative decoding. Guamswand Indyk in [22] proposed linear time
encodable and decodable codes which achieve optimal em@ation performance. Study of fault-tolerant
memory architectures based on these codes can providegiieec bounds. However, these codes do not
directly imply a specific implementation as is the case wahafiel bit flipping algorithm. We noted earlier
that Capalbcet al. [12] gave an explicit construction of expanders. Howetles, redundancies associated
with such expanders are typically very high. This servesrasher reason to consider expander codes
and other linear time decodable codes based on expanders.

The proposed architecture as well as the TK scheme emplapngetheme based on regular LDPC

codes. The works of Richardson, Urbanke and Shokrollahi §®] Luby, Mitzenmacher, Shokrollahi,
and Spielman [24] show that well designed irregular codasopa close to capacity. Burshtein and
Miller's work on expander graph arguments for message pg@d4i0] is also based on irregular graphs.
Investigating memory architectures based on irregulaesaday serve as another avenue to study the

storage capacity problem.

ACKNOWLEDGMENT

The authors would like to thank Milos Ivkovic for fruitful scussions.

REFERENCES

[1] C. N. Hadjicostis and G. C. Verghese, “Coding approaches to faldtance in linear dynamic system$£EE Trans. Inform. Theory
vol. 51, no. 1, pp. 210-228, Jan. 2005.
[2] J. V. Neumann,Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliablapdnentsser. Automata Studies.
Princeton: Princeton University Press, 1956, pp. 43-98.
[3] R.L.Dobrushinand S. I. Ortyukov, “Lower bound for the redancy of self-correcting arrangements of unreliable functional elésie
Probl. Inform. Transm.vol. 13, pp. 59-65, 1977.
[4] N. Pippenger, “Developments in 'the synthesis of reliable organisom unreliable gates’,” irSBymposia in Pure Mathematjc$990,
pp. 311-324.
[5] M. Taylor, “Reliable information storage in memories designed frameliable componentsBell System Technical Journalol. 47,
pp. 2299-2337, 1968.
[6] A. Kuznetsov, “Information storage in a memory assembled fromelinble componentsProblems of Information Transmissiovol. 9,
pp. 254-264, 1973.
[7] D. Spielman, “Highly fault-tolerant parallel computation,” IBEE Conference on Foundations of Computer Scieh®66, pp. 154—163.
[8] H. Chernoff, “A measure of asymptotic efficiency for tests of gpdbihesis based on the sum of observatioAsihals of Mathematical
Statistics vol. 23, pp. 493-507, 1952.
[9] M. Sipser and D. Spielman, “Expander codd&EE Trans. Inform. Theorwol. 42, no. 6, pp. 1710-1722, Nov. 1996.
[10] D. Burshtein and G. Miller, “Expander graph arguments for ragespassing algorithmslEEE Trans. Inform. Theoryol. 47, no. 2,
pp. 782-790, Feb. 2001.
[11] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. WainhtiigLP decoding corrects a constant fraction of errotEEE

Trans. Inform. Theoryvol. 53, no. 1, pp. 82-89, Jan. 2007.

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Ramaigss conductors and constant-degree lossless expande$30i@
'02: Proceedings of the thiry-fourth annual ACM symposium on Thebgomputing New York, NY, USA: ACM Press, 2002, pp.
659-668.

S. Lin and D. J. Costellokrror Control Coding, Second Edition Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

D. Terr, “Parity check matrix.” [Online]. Available: http://mathwonteblfram.com/ParityCheckMatrix.html

R. G. GallagerLow Density Parity Check CodesCambridge, MA: M.I.T. Press, 1963.

A. Shokrollahi, “An introduction to low-density parity-check codes, Theoretical aspects of computer science: advanced lectures
New York, NY, USA: Springer-Verlag New York, Inc., 2002, pp.5t197.

R. M. Tanner, “A recursive approach to low complexity codéEEE Trans. Inform. Theorwol. 27, pp. 533-547, Sept. 1981.

M. Taylor, “Reliable computation in computing systems designed fooneliable componentsBell System Technical Journalol. 47,

pp. 2339-2266, Dec. 1968.

B. Vasic and S. K. Chilappagari, “An information theoretical frawek for analysis and design of nano-scale fault-tolerant memories
based on low-density parity-check code§EE Trans. Circuits Syst. |, Reg. Papgexcepted for publication.

G. Zemor, “On expander codedEEE Trans. Inform. Theoryol. 47, no. 2, pp. 835-837, Feb. 2001.

A. Barg and G. Zemor, “Error exponents of expander c6d&EE Trans. Inform. Theorywol. 48, no. 6, pp. 1725-1729, Jun. 2002.
V. Guruswami and P. Indyk, “Linear-time encodable/decodaioldes with near-optimal ratelEEE Trans. Inform. Theoryvol. 51,

no. 10, pp. 3393-3400, Oct. 2005.

T. J. Richardson, M. Shokrollahi, and R. Urbanke, “Design aacity-approaching irregular low-density parity-check coddsFE
Trans. Inform. Theoryvol. 47, no. 2, pp. 638-656, Feb. 2001.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. SpielmdImproved low-density parity-check codes using irregular

graphs,”IEEE Trans. Inform. Theoryol. 47, no. 2, pp. 585-598, Feb. 2001.

