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I. I NTRODUCTION

A memory is a device in which information is stored at some
time and retrieved at a later time [1] . Let the information be
stored in form of bits in registers (memory elements) each of
which can store a single bit. The information storage capability
of a memory is the number of information bits it stores [1].
Building a memory with information storage capability of
k bits with reliable memory elements requiresk registers.
Such a memory is termed as an irredundant memory. Now,
consider the problem of information storage with unreliable
memory elements. Due to the component failures, the infor-
mation read out of the memory may not be identical to the
information stored originally. Hence, to ensure reliable storage,
the information needs to be stored in coded form (see [1]
for an excellent discussion on the importance of coded form).
Initially, a codewordc from some error correcting codeC is
stored in the memory. The unreliable nature of the memory
elements introduces errors in the registers and the contents of
the memory differ from the initial state. To ensure reliability, a
correcting circuit is employed which performs error correction
and updates the contents of the registers with an estimate of
the original codeword. Hence, a fault-tolerant memory system
(referred to as memory system or simply memory henceforth)
consists of memory elements (referred to as storage circuit)
and a correcting circuit. Let the correcting circuit be also
built of unreliable components. The coding of information
along with the correcting circuit introduce redundancy into
the memory system.

II. PROBLEM DESCRIPTION

Definition 1: [1] Thecomplexityof a memory is the number
of components within the memory. A component is a device
which either performs an elementary operation or stores a
single bit where an elementary operation is any Boolean
function of two binary operands.

Note that there can be many memory architectures with differ-
ent complexities but the same information storage capability.

Definition 2: [1] The redundancyof a memory is the ratio
of the complexity of the memory to the complexity of an
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irredundant memory which has the same information storage
capability .

Definition 3: [1] Let c be the stored codeword. The decod-
ing equivalence class of a codewordc is the set of words which
decode toc when decoded with a decoder built of reliable
components. Amemory failureis said to have occurred if
the contents of the memory do not belong to the decoding
equivalence class ofc. Arbitrarily reliable information storage
is possible in a memory if the probability of memory failure
can be made arbitrarily small.

Definition 4: [1] The storage capacity, C, of a memory is
a number such that for all memory redundancies greater than
1/C, arbitrarily reliable information storage is possible.

Problem: Consider the problem of building a memory with
memory elements and logic gates which fail according to a
known random mechanism. What is the minimum redundancy
memory in which arbitrarily reliable information is possible?

The above problem can be reformulated into the follow-
ing question: givenn memory cells andm universal logic
gates which fail following a known random mechanism, what
is the optimal memory and logic gate architecture which
stores/processes the maximum number of information bits with
arbitrary low probability of error? This complex problem can
be divided and reformulated in many ways, but, interestingly,
even some of the most fundamental questions related to this
problem are still unanswered. For example, it is not known
for what range of failure rates reliable information storage is
possible. The answers depend on the failure mechanism and
we address a few relevant issues in subsequent sections.

III. M OTIVATION

During the past four decades, the decrease in transistor
size and the increase in integration factor have led to very
small, fast, and power efficient chips. As the demand for
power efficiency continues, a wide range of new nano-scale
technologies (see [2] for a complete list of references) is being
actively investigated for processing and storage of digital data.
Although it is difficult to discern which of these approaches
will become a technological basis for computers in the fu-
ture, it is widely recognized that due to their miniature size
and variations in technological process, the nano-components
will be inherently unreliable. Even in more traditional semi-
conductor technologies, reducing transistor size has already
started affecting circuit reliability, and it is widely believed
that transistor failures (both transient and permanent) will



become one of the main technological obstacles as the trend of
increasing the integration factor continues. Transient failures
are also observed in satellite and deep space communication
systems due to single event upsets caused by neutrons and
alpha particles that strike the silicon [3] as well as by elec-
tromagnetic interference and thermal fluctuations. These can
cause a glitch that corrupts bits in memory cells or the outputs
of a logic gate [4]. The frequency of transient failures per
second due to cosmic ray ions is known to be as large as
0.033 [5]. Traditional architectures that ensure fault tolerance
are incapable of handling such increased unreliability, and
with alternative nano-storage technologies on the industry
roadmaps, the development of novel reliable computers is of
critical importance.

In traditional models of memory and communication sys-
tems with error correction coding, it is assumed that the
operations of an error correction encoder and decoder are
deterministic and that the randomness (in the form of noise
and/or errors) exists only in the channel. However, if digital
logic in the encoder and decoder is built of faulty components
(devices), then the errors and noise do effect the operations
performed, and reduce the reliability of the whole system.
Making error correcting codes stronger and transmitters and
receivers more complex will not necessarily improve the
performance of a system. It is likely that for a given failure
mechanism, there is a trade off between receiver complexity
and its performance.

IV. PREVIOUS WORK

Von Neumann [6] was the first to study computation using
faulty gates. In [6], he showed that, under certain conditions,
increased gate redundancy can lead to increased reliability of
a circuit. However, it was shown that, in general, computation
by faulty gates with non-zero computational capacity is not
possible (see [7], [8]). The study of storage circuits made of
unreliable components led to much more optimistic results.
Taylor in [1] proved that a memory has an associated in-
formation storage capacity,C, such that arbitrarily reliable
information storage is possible for all memory redundancies
greater than1/C. The methodology of the proof, however,
does not allow one to explicitly calculate the storage capacity.
This construction was further studied by Kuznetsov in [9]
and we will refer to it as the Taylor-Kuznetsov (TK) scheme.
Hadjicostis [10] was able to generalize Taylor’s scheme to fault
tolerant linear finite state machines. Spielman [11] obtained the
best result for a general model of computation, by marrying
the ideas of von Neumann with Reed-Solomon (RS) codes.

In both von Neumann and Taylor-Kuznetsov models, a
faulty component, generally a logic gate or a memory element
is subject to transient faults, i.e., faults that manifest them-
selves at particular time steps but do not necessarily persist for
later times [10]. It is also assumed that gates fail independently
of each other, and that the defects are not permanent, i.e., a
gate that malfunctioned at some point in time may give correct
output subsequently and that failure occurs by flipping the
correct result with some probability, i.e., if the correct result
is “1”, the gate gives “0” and vice versa (analogous to a binary

symmetric channel). Such failure mechanism is referred to as
von Neumann type of error. We note that the probability of “1”
flipping to “0” and the probability of “0” flipping to “1” do not
need to be the same, i.e., the failure can be input dependent.
We also note that this model can readily be extended to non-
binary logic gates [12], [13] and memory elements [14], [15],
[16]. From a theoretical point of view, both von Neumann
type of error as well as the transient error models assuming
dependent gate failures [17] fall into the class of Pippenger’s ǫ-
admissible failure model [18]. Taylor also considered a model
where components fail permanently but are bad components
are periodically replaced. Most of our discussion pertainsto
von Neumann type of error though results for one model can
be generalized to other model.

V. CHALLENGES, RECENT WORK AND INSIGHTS

The problem of computing capacity in classical coding
theory does not consider the complexity of the decoding
algorithm employed. However, from the definition of storage
capacity, it is clear that, to compute the complexity and
redundancy of a memory, a fixed implementation of the
decoder needs to be considered and only decoders whose
complexity is linear in codelength can have nonzero storage
capacity. In fact, Taylor claims that only iterative decoding
of LDPC codes can result is such nonzero capacity. Even
in the restricted case of LDPC codes the rate, redundancy
and thresholds are interrelated in a complex manner making
the problem intractable. The bounds deducible from the work
of Taylor and Kuznetsov are approximately in the order of
10

−6 (those reported in the papers are in the orders of10
−8)

and it is not known if these are the best possible bounds.
The current state of theoretical research in systems made of
unreliable components can be compared to that in the area of
communications before the renaissance of LDPC codes and
iterative decoding algorithms [19]. The spirit and methodology
of Taylor and Kuznetsov’s work [1], [9] is similar to Gallager’s
results [20] on LDPC codes. The large body of knowledge in
iterative decoding gained in past decade, especially techniques
developed for code construction and optimization as well as
techniques for analysis of iterative decoding algorithms have
not been exploited so far to improve reliability of memory
systems.

Recently, in [21], we gave an analytical characterization of
faulty decoders for one step majority logic decoders. Varshney
[22] studied effects of decoder noise in message passing
algorithms and [22] can be seen as an attempt to apply density
evolution to decoders made of unreliable gates. In [23], we
showed how expander graph arguments [24] can be applied
to show that decoders based on bit flipping algorithms have
nonzero storage capacity. The methodology of [23] can be
applied to any class of decoders which have the following
properties: (a) The decoder is iterative and (b) The decoder
is monotonic i.e., the number of errors (or wrong messages)
decreases with each iteration.

One observation is that results from adversarial channel can
be extended to binary symmetric channel model by Chernoff
bounds [25]. The work of Sipser and Spielman on expander



codes [24] and subsequent work by Guruswami and Indyk
[26] exhibit a powerful class of linear time encodable and
decodable codes for the adversarial channel model. The main
challenge in analyzing faulty memories for such codes is
to find a suitable way to characterize the errors due to the
decoder. How do we characterize a decoder built entirely of
unreliable components? Can it modeled as a black box which
takes in a corrupted codeword and outputs another corrupted
codeword possibly with less number of errors? What happens
if the input cannot be decoded by a perfect decoder? Does
the faulty decoder return the input? We are not aware of an
information theoretic framework to answer such questions.

Apart from proving asymptotic results, an important prob-
lem to solve is to determine the performance of finite size
memories. From the definition of memory failure, it can be
seen that, finite length analysis of iterative decoders plays an
important role in determining the performance of such mem-
ories. It is well known that we are far from having a complete
understanding of iterative decoders for finite lengths withthe
exception of the binary erasure channel. Techniques for error
floor analysis such as trapping sets and pseudocodewords need
to be investigated for faulty memories as well.
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