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Abstract—We consider Linear Programming (LP) decoding
of a fixed Low-Density Parity-Check (LDPC) code over the
Binary Symmetric Channel (BSC). The LP decoder fails when
it outputs a pseudo-codeword which is not a codeword. We
propose an efficient algorithm termed the Instanton Search
Algorithm (ISA) which, given a random input, generates a set
of flips called the BSC-instanton and prove that: (a) the LP
decoder fails for any set of flips with support vector including an
instanton; (b) for any input, the algorithm outputs an instanton
in the number of steps upper-bounded by twice the number of
flips in the input. Repeated sufficient number of times, the ISA
outcomes the number of unique instantons of different sizes.
We use the instanton statistics to predict the performance of
the LP decoding over the BSC in the error floor region. We
also propose an efficient semi-analytical method to predict the
performance of LP decoding over a large range of transition
probabilities of the BSC.

I. I NTRODUCTION

The significance of Low-Density Parity-Check (LDPC)
codes [1] is in their capacity-approaching performance when
decoded using low complexity iterative algorithms, such as
Belief Propagation (BP) [1], [2]. The linear programming
(LP) decoding introduced by Feldmanet al. [3], is another
sub-optimal algorithm for decoding LDPC codes, which has
higher complexity but is more amenable to analysis. The
typical performance measures of a decoder (either LP or
BP) for a fixed code are the Bit-Error-Rate (BER) or/and the
Frame-Error-Rate (FER) as functions of the Signal-to-Noise
Ratio (SNR). A typical BER/FER vs SNR curve consists
of two distinct regions. At small SNR, the error probability
decreases rapidly with the SNR, and the curve forms the so-
calledwaterfall region. The decrease slows down at moderate
values turning into theerror floor asymptotic at very large
SNR [4].

After the formulation of the problem by Richardson [4], a
significant effort has been devoted to the analysis of the error
floor phenomenon. Given that the decoding sub-optimality is
expressed in the domain where the error probability is small,
the troublesome noise configurations leading to decoding fail-
ures and controlling the error floor asymptotic are extremely
rare, and analytical rather than simulation methods for their
characterization are necessary.

In this paper, we consider pseudo-codewords [3] and
instantons of the LP decoder [3] for the BSC. We define
the BSC-instantonas a noise configuration which is decoded
by the LP decoder into a pseudo-codeword distinct from
the all-zero-codeword while any reduction of the (number

of flips in) BSC-instanton leads to the all-zero-codeword.
Finding the instantons is a difficult task which so far ad-
mitted only heuristic solutions [5], [6]. In this regard, the
most successful (in efficiency) approach, coined the Pseudo-
Codeword-Search (PCS) algorithm, was suggested for the LP
decoding performing over the continuous channel in [7] (with
Additive White Gaussian Noise (AWGN) channel used as an
enabling example). Our Instanton Search Algorithm (ISA)
is an extension of the PCS to the BSC, and constitutes a
significantly stronger algorithm than the one of [7] due to its
property that it outputs an instanton in the number of steps
upper-bounded by twice the number of flips in the original
configuration the algorithm is initiated with.

The main contributions of this paper are: (1) characteri-
zation of all the failures of the LP decoder over the BSC
in terms of the instantons, (2) a provably efficient Instanton
Search Algorithm (ISA), and (3) a semi-analytical method to
predict the performance of LP decoding over a large range of
transition probabilities of the BSC. An extended version of
this paper with the proofs of all the lemmata and theorems
(however lacking some of experimental results and analysis
of the code performance in the transient regime discussed in
this manuscript) has been submitted to IEEE Transactions on
Information Theory (see [8]).

The rest of the paper is organized as follows. In Section II,
we give a brief introduction to the LDPC codes, LP decoding
and pseudo-codewords. In Section III, we introduce the BSC-
specific notions for the pseudo-codeword weight, medians
and instantons (defined as special set of flips), their costs,
and we also state some set of useful lemmata emphasizing
the significance of the instanton analysis. In Section IV, we
describe the ISA, state our main result concerning bounds on
the number of iterations required to output an instanton, and
describe how to utilize ISA for reconstructing FER vs SNR
curve in the intermediate range interfacing from the waterfall
to the the error floor. Section V summarizes our numerical
experiments.

II. PRELIMINARIES: LDPC CODES, LP DECODER AND

PSEUDO-CODEWORDS

In this section, we discuss the LP decoder and the notion
of pseudo-codewords. We adopt the formulation of the LP
decoder and the terminology from [3], and thus the interested
reader is advised to refer to [3] for more details.



Let C be a binary LDPC code defined by a Tanner graph
G with two sets of nodes: the set of variable nodesV =
{1, 2, . . . , n} and the set of check nodesC = {1, 2, . . . ,m}.
The adjacency matrix ofG is H, a parity-check matrix of
C, with m rows corresponding to the check nodes andn
columns corresponding to the variable nodes. A binary vector
c = (c1, . . . , cn) is a codewordiff cHT = 0. The support of
a vectorr = (r1, r2, . . . , rn), denoted by supp(r), is defined
as the set of all positionsi such thatri 6= 0.

We assume that a codewordy is transmitted over a
discrete symmetric memoryless channel and is received as
ŷ. The channel is characterized byPr[ŷi|yi] which denotes
the probability thatyi is received aŝyi. The negative log-
likelihood ratio (LLR) corresponding to the variable nodei
is given by

γi = log

(

Pr(ŷi|yi = 0)

Pr(ŷi|yi = 1)

)

.

The ML decoding of the codeC allows a convenient LP
formulation in terms of thecodeword polytopepoly(C)
whose vertices correspond to the codewords inC. The ML-
LP decoder findsf = (f1, . . . , fn) minimizing the cost
function

∑n
i=1 γifi subject to thef ∈ poly(C) constraint.

The formulation is compact but impractical, as the number
of constraints is exponential in the code length.

Hence arelaxed polytope is defined as the intersection
of all the polytopes associated with the local codes intro-
duced for all the checks of the original code. Associating
(f1, . . . , fn) with bits of the code we require

0 ≤ fi ≤ 1, ∀i ∈ V (1)

For every check nodej, let N(j) denote the set of variable
nodes which are neighbors ofj. Let Ej = {T ⊆ N(j) :
|T | is even}. The polytopeQj associated with the check
node j is defined as the set of points(f ,w) for which the
following constraints hold

0 ≤ wj,T ≤ 1, ∀T ∈ Ej (2)
∑

T∈Ej
wj,T = 1 (3)

fi =
∑

T∈Ej ,T∋i wj,T , ∀i ∈ N(j) (4)

Now, let Q = ∩jQj be the set of points(f ,w) such that (1)-
(4) hold for all j ∈ C. (Note thatQ, which is also referred
to as the fundamental polytope [9], [10], is a function of the
Tanner graphG and consequently the parity-check matrixH
representing the codeC.) The Linear Code Linear Program
(LCLP) can be stated as

min
(f ,w)

∑

i∈V

γifi, s.t. (f ,w) ∈ Q.

For the sake of brevity, the decoder based on the LCLP is
referred to in the following as the LP decoder. A solution
(f ,w) to the LCLP such that allfis andwj,T s are integers is
known as an integer solution. The integer solution represents
a codeword [3]. It was also shown in [3] that the LP decoder
has the ML certificate, i.e., if the output of the decoder is a
codeword, then the ML decoder would decode into the same
codeword. The LCLP can fail, generating an output which is
not a codeword.

The performance of the LP decoder can be analyzed in
terms of the pseudo-codewords, originally defined as follows:

Definition 1: [3] Integer pseudo-codewordis a vectorp =
(p1, . . . , pn) of non-negative integers such that, for every
parity checkj ∈ C, the neighborhood{pi : i ∈ N(j)} is
a sum of local codewords.
Alternatively, one may choose to define are-scaled pseudo-
codeword, p = (p1, . . . , pn) where 0 ≤ pi ≤ 1,∀i ∈ V ,
simply equal to the output of the LCLP. In the following, we
adopt the re-scaled definition.

A given codeC can have different Tanner graph repre-
sentations and consequently potentially different fundamental
polytopes. Hence, we refer to the pseudo-codewords as
corresponding to a particular Tanner graphG of C.

III. C OST AND WEIGHT OF PSEUDO-CODEWORDS,
MEDIANS AND INSTANTONS

Since the focus of the paper is on the pseudo-codewords
for the BSC, in this section we introduce some terms, e.g.
instantons and medians, specific to the BSC. We will also
state here some preliminary lemmata which will enable
subsequent discussion of the ISA in the next Section.

The polytopeQ is symmetric and looks exactly the same
from all codewords (see e.g. [3]). Hence we assume that the
all-zero-codeword is transmitted. The process of changinga
bit from 0 to 1 and vice-versa is known as flipping. The
BSC flips every transmitted bit with a certain probability
(henceforth denoted byα). We therefore call a noise vector
with support of sizek as havingk flips.

In the case of the BSC, the likelihoods are scaled as

γi =

{

1, if yi = 0;
−1, if yi = 1.

Two important characteristics of a pseudo-codeword are its
cost and weight. While the cost associated with decoding to
a pseudo-codeword has already been defined in general, we
formalize it for the case of the BSC as follows:

Definition 2: The cost associated with LP decoding of a
binary vectorr to a pseudo-codewordp is given by

C(r,p) =
∑

i/∈supp(r)
pi −

∑

i∈supp(r)
pi. (5)

If r is the input, then the LP decoder converges to the pseudo-
codewordp which has the least value ofC(r,p). The cost
of decoding to the all-zero-codeword is zero. Hence, a binary
vectorr does not converge to the all-zero-codeword if there
exists a pseudo-codewordp with C(r,p) ≤ 0.

Definition 3: [11], [12, Definition 2.10] Let p =
(p1, . . . , pn) be a pseudo-codeword distinct from the all-zero-
codeword. Lete be the smallest number such that the sum
of the e largestpis is at least

(
∑

i∈V pi

)

/2. Then, the BSC
pseudo-codeword weightof p is

wBSC(p) =

{

2e, if
∑

e pi =
(
∑

i∈V pi

)

/2;
2e − 1, if

∑

e pi >
(
∑

i∈V pi

)

/2.

The minimum pseudo-codeword weight ofG denoted
by wBSC

min is the minimum over all the non-zero pseudo-
codewords ofG. The parametere = ⌈(wBSC(p) + 1) /2⌉ can
be interpreted as the least number of bits to be flipped in



the all-zero-codeword such that the resulting vector decodes
to the pseudo-codewordp. (See e.g. [12] for a number of
illustrative examples.)

The interpretation of BSC pseudo-codeword weight mo-
tivates the following definition of themedian noise vector
corresponding to a pseudo-codeword:

Definition 4: The median noise vector (or simply the
median) M(p) of a pseudo-codewordp distinct from
the all-zero-codeword is a binary vector with support
S = {i1, i2, . . . , ie}, such thatpi1 , . . . , pie

are the e(=
⌈(wBSC(p) + 1) /2⌉) largest components ofp.
One observers that,C (M(p),p) ≤ 0. From the definition of
wBSC(p), it follows that at least one median exists for every
p. Also, all medians ofp have⌈(wBSC(p) + 1) /2⌉ flips. The
following lemmata characterize some important propertiesof
the median.

Lemma 1:The LP decoder decodes a binary vector with
k flips into a pseudo-codewordp distinct from the all-zero-
codewordiff wBSC(p) ≤ 2k.

Lemma 2:Let p be a pseudo-codeword with median
M(p) whose support has cardinalityk. Then wBSC(p) ∈
{2k − 1, 2k}.

Lemma 3:Let M(p) be a median ofp with supportS.
Then the result of LP decoding of any binary vector with
supportS′ ⊂ S and |S′| < |S| is distinct fromp.

Lemma 4: If M(p) converges to a pseudo-codeword
pM 6= p, then wBSC(pM ) ≤ wBSC(p). Also,
C(M(p),pM ) ≤ C(M(p),p).

Definition 5: The BSCinstantoni is a binary vector with
the following properties: (1) There exists a pseudo-codeword
p such thatC(i,p) ≤ C(i,0) = 0; (2) For any binary
vectorr such that supp(r) ⊂ supp(i), there exists no pseudo-
codeword withC(r,p) ≤ 0. The size (or weight) of an
instanton is the cardinality of its support.
In other words, the LP decoder decodesi to a pseudo-
codeword other than the all-zero-codeword or one finds a
pseudo-codewordp such thatC(i,p) = 0 (interpreted as the
LP decoding failure), whereas any binary vector with flips
from a subset of the flips ini is decoded to the all-zero-
codeword.

The following lemma follows from the definition of the
cost of decoding (the pseudo-codeword cost):

Lemma 5:Let i be an instanton. Then for any binary
vectorr such that supp(i) ⊂ supp(r), there exists a pseudo-
codewordp satisfyingC(r,p) ≤ 0.

The above lemma implies that the LP decoder fails to
decode every vectorr whose support is a superset of an in-
stanton to the all-zero-codeword. We now have the following
corollary:

Corollary 1: Let r be a binary vector with supportS. Let
p be a pseudo-codeword such thatC(r,p) ≤ 0. If all binary
vectors with supportS′ ⊂ S, such that|S′| = |S| − 1,
converge to0, thenr is an instanton.

The above lemmata lead us to the following lemma which
characterizes all the failures of the LP decoder over the BSC:

Lemma 6:A binary vector r converges to a pseudo-
codeword different from the all-zero-codewordiff the support
of r contains the support of an instanton as a subset.

From the above discussion, we see that the BSC instantons
are analogous to the minimal stopping sets for the case
of iterative/LP decoding over the BEC. In fact, Lemma 6
characterizes all the decoding failures of the LP decoder
over the BSC in terms of the instantons and can be used to
derive analytical estimates of the code performance given the
weight distribution of the instantons (this will be illustrated
in Section V).

IV. I NSTANTON SEARCH ALGORITHM AND

PERFORMANCEANALYSIS

In this section, we first describe the Instanton Search
Algorithm and then proceed to describe a semi-analytical
method to predict the FER performance of a given code.

A. The Instanton Search Algorithm

The ISA starts with a random binary vector with some
number of flips and outputs an instanton.
Instanton Search Algorithm
Initialization (l=0) step: Initialize to a binary input vectorr
containing sufficient number of flips so that the LP decoder
decodes it into a pseudo-codeword different from the all-
zero-codeword. Apply the LP decoder tor and denote the
pseudo-codeword output of LP byp1.
l ≥ 1 step: Take the pseudo-codewordpl (output of the
(l − 1) step) and calculate its medianM(pl). Apply the LP
decoder toM(pl) and denote the output bypMl

. By Lemma
4, only two cases arise:

• wBSC(pMl
) < wBSC(p

l). Then pl+1 = pMl
becomes

the l-th step output/(l + 1) step input.
• wBSC(pMl

) = wBSC(p
l). Let the support ofM(pl) be

S = {i1, . . . , ikl
}. Let Sit

= S\{it} for someit ∈ S.
Let rit

be a binary vector with supportSit
. Apply the

LP decoder to allrit
and denote theit-output bypit

.
If pit

= 0,∀it, then M(pl) is the desired instanton
and the algorithm halts. Else,pit

6= 0 becomes thel-th
step output/(l + 1) step input. (Notice, that Lemma 3
guarantees that anypit

6= pl, thus preventing the ISA
from entering into an infinite loop.)

Theorem 1 below addresses the bounds on the number of
steps in which the ISA terminates.

Theorem 1:wBSC(p
l) and |supp(M(pl))| are monotoni-

cally decreasing. Also, the ISA terminates in at most2k0

steps, wherek0 is the number of flips in the input.

B. Performance Prediction Using Instanton Statistics

In [13], [14], it was shown that the slope of the (log-log)
FER curve in the asymptotic limit ofα → 0 is equal to the
size of the smallest weight instanton. In other words, most
of the decoding failures in the error floor region are due to
the low-weight instantons. Hence, the instanton statistics can
be used to predict the FER performance for small values
of α. For large values ofα (near the threshold), the FER
performance can be estimated with a very good accuracy
by Monte-Carlo simulations. FER estimates in this region
can be made with a fixed complexity (the details of which
will be explained subsequently). The region of intermediate
α, interfacing from waterfall to error floor, is the most
difficult one for predicting performance. Analytical estimates



cannot be made as the instanton statistics for higher weight
instantons are not complete. This is due to the fact that the
number of instantons grows with the size and the ISA needs
to run for a large number of initiations to gather reliable
statistics about higher weight instantons. On the other hand
Monte-Carlo estimates cannot be made due to prohibitive
complexity. Hence, we make use of an approach that is
a combination of Monte-Carlo simulations and analytical
approach.

Observe that a decoder failure for a pattern withk errors
can occur due to the presence of an instanton (or instantons)
of size less than or equal tok. Let Pr(r|k) denote the
probability that an instanton of sizer is present in an error
pattern of sizek. If the number of instantons of sizer
is denoted byTr then, it can be seen that, whenever this
probability is small,

Pr(r|k) ≈

(

k
r

)

Tr
(

n
r

) . (6)

Now, let Pr(decoder failure|k errors) denote the probabil-
ity that the decoder fails when the channel makesk errors.
Since, a decoder failure occurs if and only if an instanton
is present, we have (again assuming that the probability is
small)

Pr(decoder failure|k errors) ≈
k

∑

r=i

Pr(r|k), (7)

where i is the size of the smallest weight instanton. For
sufficiently large values ofk, using Monte-Carlo simulations,
the relative frequencies of different instantons can be found
and consequentlyPr(r|k) for different r can be estimated.
In fact, Eq. 6 does suggest such an approximate estimation,
which subsequently can be used, with the help of Eq. 7, to
estimatePr(decoder failure|k errors) for intermediate values
of k. This suggests the following estimation for FER at a
given α

FER(α) =

n
∑

k=1

Pr(decoder failure|k errors) Pr(k errors),

and since the channel under consideration is the BSC, we
arrive at

Pr(k errors) =

(

n

k

)

αk(1 − α)n−k

Note that FER for large values ofα is dominated
by higher k. At large k fixed complexity estimate for
Pr(decoder failure|k errors) can be found by recording the
number of failures based on comparison with a set of prede-
termined patterns withk errors. This concludes explanation
of how to estimate FER vsα in the transient regime.

Remark:Notice that while the number of instantons grows
with size, the error floor performance is actually dominated
by the instantons of the smallest size, these which are very
rare. Hence, estimates made using the method described
above are reliable only if the number of found small-size
instantons is sufficiently large. This underlies importance
of the ISA as an efficient method of small-size instanton
discovery.

V. NUMERICAL RESULTS

We present instanton statistics for the following two codes:
(1) (3,5) regular Tanner code of length 155 [15]; and (2) (3,6)
regular random code of length 204 from MacKay’s webpage
[16]. Table I shows the number of instantons found by the
ISA initiated with 20 flips and run for 10000 instances. The
total number of instantons of each size as well as the total
number of distinct instantons of each size are recorded1. It
can be seen that the size of the smallest instanton is 5 for
the Tanner code and 4 for the random MacKay code. Hence,
the slope of the FER curve in the error floor region for the
two codes is 5 and 4 respectively.

Table II shows the data corresponding to
Pr(decoder failure|k errors) for the Tanner code and
the MacKay code in thek = [8; 20] range. Fork > 20,
we assume thatPr(decoder failure|k errors) = 1. Table III
shows the relative frequencies of various weight instantons
for the two codes. The results are obtained by simulating
107 error patterns with 8 errors for the Tanner code resulting
in 331 decoder failures. Contributions of various instantons
is found by comparing with the subsets of the 8 error
patterns. Note that some error patterns may consist of
multiple instantons and hence the estimates made are only
approximate. For the Tanner code, one finds that there
are approximately 2300 instantons of size 6,6.4 × 105

instantons of size 7 and3.8 × 107 instantons of size 8. For
the MacKay code (analyzing the 87 error events obtained by
simulating 623385 error patterns), one finds approximately
1120 instantons of size 5,1.9 × 105 instantons of size 6,
1.2 × 107 instantons of size 7 and1.66 × 109 instantons of
size 8.

Fig. 1(a) shows comparison of the FER curves obtained
using the semi-analytical approach described above and the
Monte-Carlo simulations for the Tanner code. It is clear from
the plots that our method is very accurate. Fig. 1(b) shows
the corresponding plots for the MacKay code. The predicted
performance curve labeled 1 is based on the statistics shown
in Table II, while the curve labeled 2 uses instanton statistics
obtained by analyzing a total of 713 error patterns of weight
8. The close agreement of the two curves suggest that
even approximate statistics for higher weight instantons are
sufficient. The plots also show the predicted performance at
the values ofα which are beyond the reach of the Monte-
Carlo simulations. The FER in this region is dominated by
the smallest weight instantons and the calculated slopes agree
with the theoretical prediction. Finally, we note that Tables
I, II, III are sufficient to estimate FER for the Tanner code
and the MacKay code.

1The standard way to find out whether our instanton search exhausted all
the unique configurations is as follows. Assume that there areN unique
instantons of a given weight and in each trial ISA finds all of them with
equal probability. To estimate the number of ISA runs requiredfor finding
all the N instantons, one notice that ifN − 1 instantons are already found
the number of trails required to find to the last instanton is≈ N . If all
but two instantons are already found the number of ISA trials required is
N/2. Therefore, the average number of ISA trials required to find all the
instantons is estimated asN + N/2 + N/3 + · · ·N/(N − 1) + 1 =
N(1+1/2+1/3+ · · ·+1/N) turning toN ln N at N → ∞, i.e. N ln N
trials ISA reliably findsN instantons. From this discussion, it is clear that
the statistics for smallest size instantons for both the codes are very reliable.



TABLE I
INSTANTON STATISTICS OBTAINED BY RUNNING THEISA WITH 20 RANDOM FLIPS AND 10000INITIATIONS FOR THE TANNER CODE AND THE

MACKAY CODE.

Code Number of instantons of weight
4 5 6 7 8 9 10 11 12 13

Tanner code Total 3506 1049 1235 1145 1457 1024 369 66 7
Unique 155 675 1028 1129 1453 1024 369 66 7

MacKay code Total 213 749 2054 2906 2418 1168 332 55 6
Unique 26 239 1695 2864 2417 1168 332 55 6

TABLE II
Pr(DECODER FAILURE|k ERRORS) OBTAINED BY MONTE-CARLO SIMULATIONS.

Code
Number of Errors

8 9 10 11 12 13 14 15 16 17 18 19 20
Tanner code 3.3 e-5 1.2 e-4 5.3 e-4 2.2 e-3 7.7 e-3 2.6 e-2 7.5 e-2 0.178 0.358 0.582 0.806 0.932 0.985

MacKay code 1.4 e-4 5.1 e-4 1.9 e-3 6.2 e-3 1.9 e-2 5.5 e-2 0.124 0.265 0.449 0.674 0.853 0.947 0.991
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Fig. 1. Comparison between FER curves obtained using the semi-analytical approach and the Monte-Carlo simulations for (a)the Tanner code and (b)
the MacKay code.

TABLE III
RELATIVE FREQUENCIES OF DIFFERENT SIZE INSTANTONS OBTAINEDBY

ANALYZING ERROR PATTERNS WITH8 ERRORS.

Code # error events
# instantons of weight

4 5 6 7 8
Tanner code 331 130 37 139 58

MacKay code 87 10 14 36 24 16
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