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Abstract—We consider Linear Programming (LP) decoding of flips in) BSC-instanton leads to the all-zero-codeword.
of a fixed Low-Density Parity-Check (LDPC) code over the Finding the instantons is a difficult task which so far ad-
Binary Symmetric Channel (BSC). The LP decoder fails when mitted only heuristic solutions [5], [6]. In this regard,eth

it outputs a pseudo-codeword which is not a codeword. We - - .

propose an efficient algorithm termed the Instanton Search most successful (in efficiency) _approach, coined the Pseudo
Algorithm (ISA) which, given a random input, generates a set Codeword-Search (PCS) algorithm, was suggested for the LP
of flips called the BSC-instanton and prove that: (a) the LP decoding performing over the continuous channel in [7]wit
decoder fails for any set of flips with support vector including an - Additive White Gaussian Noise (AWGN) channel used as an
instanton; (b) for any input, the algorithm outputs an instanton enabling example). Our Instanton Search Algorithm (ISA)

in the number of steps upper-bounded by twice the number of . . .
flips in the input. Repeated sufficient number of times, the ISA is an extension of the PCS to the BSC, and constitutes a

outcomes the number of unique instantons of different sizes. Significantly stronger algorithm than the one of [7] due ® it
We use the instanton statistics to predict the performance of property that it outputs an instanton in the number of steps

the LP decoding over the BSC in the error floor region. We upper-bounded by twice the number of flips in the original

also propose an efficient semi-analytical method to predict the configuration the algorithm is initiated with
performance of LP decoding over a large range of transition Th . tributi f thi . 1) ch teri
probabilities of the BSC. e main contributions of this paper are: (1) characteri-

zation of all the failures of the LP decoder over the BSC
|. INTRODUCTION in terms of the instantons, (2) a provably efficient Instanto

The significance of Low-Density Parity-Check (LDPC)Search Algorithm (ISA), and (3) a semi-analytical method to
codes [1] is in their capacity-approaching performancerwh@redict the performance of LP decoding over a large range of
decoded using low complexity iterative algorithms, such asansition probabilities of the BSC. An extended version of
Belief Propagation (BP) [1], [2]. The linear programminghis paper with the proofs of all the lemmata and theorems
(LP) decoding introduced by Feldmaat al. [3], is another (however lacking some of experimental results and analysis
sub-optimal algorithm for decoding LDPC codes, which hasf the code performance in the transient regime discussed in
higher complexity but is more amenable to analysis. Thhis manuscript) has been submitted to IEEE Transactions on
typical performance measures of a decoder (either LP lmformation Theory (see [8]).
BP) for a fixed code are the Bit-Error-Rate (BER) or/and the The rest of the paper is organized as follows. In Section I,
Frame-Error-Rate (FER) as functions of the Signal-to-Boisve give a brief introduction to the LDPC codes, LP decoding
Ratio (SNR). A typical BER/FER vs SNR curve consistand pseudo-codewords. In Section Ill, we introduce the BSC-
of two distinct regions. At small SNR, the error probabilityspecific notions for the pseudo-codeword weight, medians
decreases rapidly with the SNR, and the curve forms the std instantons (defined as special set of flips), their costs,
calledwaterfallregion. The decrease slows down at moderagid we also state some set of useful lemmata emphasizing
values turning into theerror floor asymptotic at very large the significance of the instanton analysis. In Section IV, we
SNR [4]. describe the ISA, state our main result concerning bounds on

After the formulation of the problem by Richardson [4], ahe number of iterations required to output an instantod, an
significant effort has been devoted to the analysis of thar erigescribe how to utilize ISA for reconstructing FER vs SNR
floor phenomenon. Given that the decoding sub-optimality érve in the intermediate range interfacing from the waterf
expressed in the domain where the error probability is smal the the error floor. Section V summarizes our numerical
the troublesome noise configurations leading to decodihg feexperiments.
ures and controlling the error floor asymptotic are extrgmel
rare, and analytical rather than simulation methods foirthe || - pre| imiNARIES: LDPC CoDES, LP DECODER AND
characterization are necessary. PSEUDO-CODEWORDS

In this paper, we consider pseudo-codewords [3] and
instantons of the LP decoder [3] for the BSC. We define In this section, we discuss the LP decoder and the notion
the BSC-instantoras a noise configuration which is decodedf pseudo-codewords. We adopt the formulation of the LP
by the LP decoder into a pseudo-codeword distinct fromlecoder and the terminology from [3], and thus the inteceste
the all-zero-codeword while any reduction of the (humbeeader is advised to refer to [3] for more details.



Let C be a binary LDPC code defined by a Tanner graph The performance of the LP decoder can be analyzed in
G with two sets of nodes: the set of variable nodés= terms of the pseudo-codewords, originally defined as falow
{1,2,...,n} and the set of check nodés= {1,2,...,m}. Definition 1: [3] Integer pseudo-codewoid a vectorp =
The adjacency matrix of7 is H, a parity-check matrix of (pi,...,p,) Of non-negative integers such that, for every
C, with m rows corresponding to the check nodes and parity checkj € C, the neighborhoodp; : i € N(j)} is
columns corresponding to the variable nodes. A binary vect sum of local codewords.

c = (ci,...,c,) is a codewordff cH? = 0. The support of Alternatively, one may choose to defineeascaled pseudo-
a vectorr = (rq,r9,...,7,), denoted by sugm), is defined codeword p = (p1,...,p,) Where0 < p;, < 1,Vi € V,
as the set of all positionssuch thatr; # 0. simply equal to the output of the LCLP. In the following, we

We assume that a codeworgl is transmitted over a adopt the re-scaled definition.
discrete symmetric memoryless channel and is received a#\ given codeC can have different Tanner graph repre-
y. The channel is characterized By[¢;|y;] which denotes sentations and consequently potentially different funeiatal
the probability thaty; is received agj;. The negative log- polytopes. Hence, we refer to the pseudo-codewords as
likelihood ratio (LLR) corresponding to the variable node corresponding to a particular Tanner gragtof C.

is given b
9 y Pr(d:lu: — 0 I1l. CosT AND WEIGHT OF PSEUDO-CODEWORDS
Ny = ( r(§ily: = )>
s .

Pr(gily: = 1) MEDIANS AND INSTANTONS
, i Since the focus of the paper is on the pseudo-codewords
The ML decoding of the cod€ allows a convenient LP ¢, yhe BSC, in this section we introduce some terms, e.g.
formulation in terms of thecodeword polytopepoly(C)  jstantons and medians, specific to the BSC. We will also
whose vert|ce_s correspond to the cod_ev_vo_rd_é?m'he ML- state here some preliminary lemmata which will enable
LP d.eCOde,[ findsf = ) (f1,.-, fa) minimizing the C,OSt subsequent discussion of the ISA in the next Section.
function Zi:.l %fi subject to thgf € pqu(C) constraint. The polytope@ is symmetric and looks exactly the same
The forml,!lathn IS compapt 'F’“t impractical, as the numbeﬁrom all codewords (see e.g. [3]). Hence we assume that the
of constraints is exponential n the_ code Iength._ _all-zero-codeword is transmitted. The process of changing
Hence arelaxed polytope is defined as the intersectiony fom () 1o 1 and vice-versa is known as flipping. The
of all the polytopes associated with the local codes intrggg flins every transmitted bit with a certain probability

duced for all .the _checks of the original .code. ASSOCiati”&enceforth denoted by). We therefore call a noise vector
(f1,--., fn) with bits of the code we require with support of sizek as havingk flips.

0<fi<l, VieV (1) In the case of the BSC, the likelihoods are scaled as
- 1, ify=0;
For every check nodg, let N(j) denote the set of variable Vi = { _i :f z _ (1)

nodes which are neighbors ¢f Let E; = {T" C N(j) :
|T| is every. The polytope; associated with the check Two important characteristics of a pseudo-codeword are its
nodej is defined as the set of poin{§, w) for which the cost and weight. While the cost associated with decoding to

following constraints hold a pseudo-codeword has already been defined in general, we
formalize it for the case of the BSC as follows:
0 <wjr <1, VT € E; (2)  Definition 2: The cost associated with LP decoding of a
ZTGEj wir =1 (3) binary vectorr to a pseudo-codeword is given by
Ji= ZTEEj,TBi wjr, Vi€ N(j) “4) C(r,p) = Z Di — Z Di- %)
Now, let@ = N;Q; be the set of pointsf, w) such that (1)- i¢SUpQr) i€Suppr)

(4) hold for all j € C. (Note thatQ, which is also referred If r is the input, then the LP decoder converges to the pseudo-
to as the fundamental polytope [9], [10], is a function of theodewordp which has the least value @f(r,p). The cost
Tanner grapi; and consequently the parity-check matfix of decoding to the all-zero-codeword is zero. Hence, a inar
representing the codé.) The Linear Code Linear Programvectorr does not converge to the all-zero-codeword if there

(LCLP) can be stated as exists a pseudo-codewogslwith C(r, p) < 0.
) Definition 3: [11], [12, Definition 2.10] Letp =
(frw) _z‘:/%fi’ st.(f,w)eQ. (p1,...,pn) be a pseudo-codeword distinct from the all-zero-
1€

codeword. Lete be the smallest number such that the sum
For the sake of brevity, the decoder based on the LCLP d$the e largestp;s is at least(}",., p;) /2. Then, the BSC
referred to in the following as the LP decoder. A solutiopseudo-codeword weigluf p is
(f,w) to the LCLP such that alf;s andw; rs are integers is . _ )
known as an integer solution. The integer solution repitssen wgsc(p) = { 2e, !; 2o pZ: = (Ziev pz:) /2;
a codeword [3]. It was also shown in [3] that the LP decoder 2e =1, if Yopi> (Tievpi) /2
has the ML certificate, i.e., if the output of the decoder is a The minimum pseudo-codeword weight ¢f denoted
codeword, then the ML decoder would decode into the sarbg wBSC is the minimum over all the non-zero pseudo-
codeword. The LCLP can fail, generating an output which dewords of7. The parametet = [(wgsc(p) + 1) /2] can
not a codeword. be interpreted as the least number of bits to be flipped in



the all-zero-codeword such that the resulting vector desod From the above discussion, we see that the BSC instantons
to the pseudo-codeworg. (See e.g. [12] for a number ofare analogous to the minimal stopping sets for the case
illustrative examples.) of iterative/LP decoding over the BEC. In fact, Lemma 6
The interpretation of BSC pseudo-codeword weight meharacterizes all the decoding failures of the LP decoder
tivates the following definition of thenedian noise vector over the BSC in terms of the instantons and can be used to
corresponding to a pseudo-codeword: derive analytical estimates of the code performance gikien t
Definition 4: The median noise vector (or simply theweight distribution of the instantons (this will be illuated
median) M(p) of a pseudo-codeworcb distinct from in Section V).
the all-zero-codeword is a binary vector with support
S = {iy,i2,...,4.}, such thatp;,,...,p; are thee(=
[(wesc(p) + 1) /2]) largest components gf. _ _ _ _
One observers that; (M (p), p) < 0. From the definition of In this section, we first describe the Instanton Search

wesc(p), it follows that at least one median exists for everyMgorithm and j[hen proceed to describe a sgmi-analytical
p. Also, all medians op have[ (wssc(p) + 1) /2] flips. The method to predict the FER performance of a given code.

following lemmata characterize some important propeitfes A, The Instanton Search Algorithm

the median. . . The ISA starts with a random binary vector with some
Lemma 1:The LP decoder decodes a binary vector W'thumber of flips and outputs an instanton

k flips into a pseudo-codeworg distinct from the all-zero- Instanton Search Algorithm '

codewordiff wgsc(p) < 2k. _ _ Initialization (I=0) step Initialize to a binary input vector

Lemma 2:Let p be a pseudo-codeword with mediarygniaining sufficient number of flips so that the LP decoder
M (p) whose support has cardinality. Thenwgsc(P) € gecodes it into a pseudo-codeword different from the all-
{2k — 1,2k}, ) . zero-codeword. Apply the LP decoder toand denote the

Lemma 3:Let M(p) be a median op with supportsS. pseudo-codeword output of LP k.

Then the result of LP decoding of any binary vector wittﬁ2 1 step Take the pseudo-codeword! (output of the
supportS’ C S and|S’| < |S]| is distinct fromp. I — 1) step) and calculate its mediavi (p’). Apply the LP

Lemma 4:1f M(p) converges to a pseudo-codewor@iecoder taV/ (p') and denote the output hyy;,. By Lemma
Py # P, then wesc(pm) < wesc(p). Also, 4, only two cases arise:

C(M(p),pm) < C(M(p),p)-

Definition 5: The BSCinstantoni is a binary vector with
the following properties: (1) There exists a pseudo-coadwo
p such thatC(i,p) < C(i,0) = 0; (2) For any binary
vectorr such that supfr) C supgi), there exists no pseudo-
codeword withC(r,p) < 0. The size (or weight) of an
instanton is the cardinality of its support.

In other words, the LP decoder decodego a pseudo-
codeword other than the all-zero-codeword or one finds a
pseudo-codeworg such thatC(i, p) = 0 (interpreted as the
LP decoding failure), whereas any binary vector with flips
from a subset of the flips i is decoded to the all-zero-
codeword.

IV. INSTANTON SEARCHALGORITHM AND
PERFORMANCEANALYSIS

o wasc(Pn;) < wesc(p'). Thenp!™ = p,;, becomes
the [-th step outputl + 1) step input.

o wasc(Py,) = wesc(p'). Let the support ofV/ (p') be
S ={i1,..., i }. LetS;, = S\{i;} for somei; € S.
Let r;, be a binary vector with suppoH;,. Apply the
LP decoder to alkr;, and denote thé;-output by p;,.

If p;, = 0,Vi;, then M (p') is the desired instanton
and the algorithm halts. Else,, # 0 becomes thé-th
step outpuil + 1) step input. (Notice, that Lemma 3
guarantees that any;, # p!, thus preventing the ISA
from entering into an infinite loop.)

Theorem 1 below addresses the bounds on the number of

The following lemma follows from the definition of theSte.l.phse?rewli?wt::c(ﬁ'? ;enr? ||23;equ(pl))| are monotoni-

cost of decodmg‘(the psegdo-codeword cost). . cally decreasing. Also, the ISA terminates in at md&g
Lemma 5:Let i be an instanton. Then for any binary,

. steps, wheré, is the number of flips in the input.
vectorr such that sup@l) C supfr), there exists a pseudo- P 0 P P
codewordp satisfyingC(r,p) < 0. B. Performance Prediction Using Instanton Statistics

The above lemma implies that the LP decoder fails to |n [13], [14], it was shown that the slope of the (log-log)
decode every vectar whose support is a superset of an inFER curve in the asymptotic limit of — 0 is equal to the
stanton to the all-zero-codeword. We now have the followingze of the smallest weight instanton. In other words, most
corollary: of the decoding failures in the error floor region are due to

Corollary 1: Letr be a binary vector with suppoft. Let the low-weight instantons. Hence, the instanton stasistan
p be a pseudo-codeword such tiiatr, p) < 0. If all binary be used to predict the FER performance for small values
vectors with supportS” C S, such that|S’| = |S| — 1, of a. For large values ofv (near the threshold), the FER
converge ta0, thenr is an instanton. performance can be estimated with a very good accuracy

The above lemmata lead us to the following lemma whidby Monte-Carlo simulations. FER estimates in this region
characterizes all the failures of the LP decoder over the:BS€an be made with a fixed complexity (the details of which

Lemma 6:A binary vector r converges to a pseudo-will be explained subsequently). The region of intermeiat
codeword different from the all-zero-codewaffithe support «, interfacing from waterfall to error floor, is the most
of r contains the support of an instanton as a subset. difficult one for predicting performance. Analytical estites



cannot be made as the instanton statistics for higher weight V. NUMERICAL RESULTS
instantons are not complete. This is due to the fact that th
number of instantons grows with the size and the ISA nee

to run for a large number of initiations to gather reliabl “egular random code of length 204 from MacKay's webpage
statistics about higher weight instantons. On the othedh 6]. Table | shows the number of instantons found by the

Monte-Carlo estimates cannot be made due to prohibii §A initiated with 20 flips and run for 10000 instances. The

complexity. Hence, we make use of an approach that iS : .
S . . -_total number of instantons of each size as well as the total

a combination of Monte-Carlo simulations and analytica C :

approach number of distinct instantons of each size are recorddt

Observe that a decoder failure for a pattern witkerrors " be seen that the size of the smallest instanton is 5 for
b th§ Tanner code and 4 for the random MacKay code. Hence,

can occur due to the presence of an instanton (or instantops . .
. slope of the FER curve in the error floor region for the
of size less than or equal th. Let Pr(r|k) denote the : .
two codes is 5 and 4 respectively.

robability that an instanton of sizeis present in an error .
P y P Table 1 shows the data corresponding to

pattern of sizek. If the number of instantons of size decoder fail f h q q
is denoted byT’. then, it can be seen that, whenever thigfe( &;%Kzry eg(;gg{ i?]rrtohri —OES-tQO(]a r;%n;elr:or(;cof 23”
we assume thaPr(decoder failurg: errorg = 1. Table Il

(’:)Tr 5 shows the relative frequencies of various weight instasiton
(n) 6 for the two codes. The results are obtained by simulating
) " 107 error patterns with 8 errors for the Tanner code resulting

~ Now, letPr(decoder failurg: errorg denote the probabil- i, 331 gecoder failures. Contributions of various instasto

ity that the decoder fails when the channel makesrrors. s found by comparing with the subsets of the 8 error
Since, a decoder failure occurs if and only if an i”Sta”t%‘atterns. Note that some error patterns may consist of
is present, we have (again assuming that the probability i tiple instantons and hence the estimates made are only

We present instanton statistics for the following two codes
(3,5) regular Tanner code of length 155 [15]; and (2))X3,6

probability is small,

Pr(r|k) =~

small) approximate. For the Tanner code, one finds that there
k are approximately 2300 instantons of size @4 x 10°
Pr(decoder failurg: errorg = ZPr(rUg), (7) instantons of size 7 angl8 x 107 instantons of size 8. For
r=i the MacKay code (analyzing the 87 error events obtained by

where i is the size of the smallest weight instanton. Fosimulating 623385 error patterns), one finds approximately
sufficiently large values of, using Monte-Carlo simulations, 1120 instantons of size 5,9 x 10° instantons of size 6,
the relative frequencies of different instantons can bendou1.2 x 107 instantons of size 7 anil66 x 109 instantons of
and consequentlr(r|k) for differentr can be estimated. Size 8.
In fact, Eq. 6 does suggest such an approximate estimationfig. 1(a) shows comparison of the FER curves obtained
which subsequently can be used, with the help of Eq. 7, tsing the semi-analytical approach described above and the
estimatePr(decoder failurg: errorg for intermediate values Monte-Carlo simulations for the Tanner code. It is cleanfro
of k. This suggests the following estimation for FER at ¢he plots that our method is very accurate. Fig. 1(b) shows
given o the corresponding plots for the MacKay code. The predicted
n performance curve labeled 1 is based on the statistics shown
FER(a) = Z Pr(decoder failurg: errors Pr(k errors, in Table I, while the curve labeled 2 uses instanton stasist
1 obtained by analyzing a total of 713 error patterns of weight
and since the channel under consideration is the BSC, \%/e The closg agreem_eqt of thg two curves suggest that
arrive at even approximate statistics for higher weight instantames a
sufficient. The plots also show the predicted performance at
Pr(k errorg = <”> oF(1—a)F the values ofa which are beyond the reach of the Monte-
k Carlo simulations. The FER in this region is dominated by
Note that FER for large values oft is dominated the smallest weightinstantons and the calculated slopesag
by higher k. At large & fixed complexity estimate for With the theoretical prediction. Finally, we note that Tebl
Pr(decoder failurg: errorg can be found by recording thel, Il, Ill are sufficient to estimate FER for the Tanner code
number of failures based on comparison with a set of pred@d the MacKay code.
termined patterns witlt errors. This concludes explanation
of how to estimate FER va in the transient regime. 1Th¢ standard way to find out whether our instanton searchusxé all
. . . . the unique configurations is as follows. Assume that thereNaranique
Remark:Notice that while the number of instantons groWgstantons of a given weight and in each trial ISA finds all leérh with
with size, the error floor performance is actually dominatestjual probability. To estimate the number of ISA runs requitediinding

by the instantons of the smallest size. these which are vé@f\the IV instantons, one notice that ¥ — 1 instantons are already found
' number of trails required to find to the last instantorwisN. If all

. . i
rare. Hence, estimates made using the method descr"@@ptwo instantons are already found the number of ISA triatjuired is

above are reliable only if the number of found small-siz&/2. Therefore, the average number of ISA trials required to filhdhe
instantons is sufficiently large. This underlies imporgngdnstantons is estimated a¥ + N/2 + N/3 + ---N/(N = 1) + 1 =

f the ISA fficient thod of ll-si instant N(1+1/2+4+1/34+---4+1/N) turningtoNIn N at N — oo, i.e. NIn N
0 e as an emicient method or small-size Instantoflys sa reliably findsV instantons. From this discussion, it is clear that

discovery. the statistics for smallest size instantons for both the s@de very reliable.



TABLE |
INSTANTON STATISTICS OBTAINED BY RUNNING THEISA WITH 20 RANDOM

MACKAY coD

FLIPS AND 10000INITIATIONS FOR THE TANNER CODE AND THE
E.

Code Number of instantons of weight
4 5 [§) 7 8 9 10 11 127 13
Total 3506 | 1049 | 1235 | 1145 | 1457 | 1024 | 369 | 66 | 7
Tanner code | —pigue 155 | 675 | 1028 | 1129 | 1453 | 1024 | 369 | 66 | 7
Total 213 749 | 2054 | 2906 | 2418 | 1168 | 332 55 6
MacKay code —pique 26 239 | 1695 | 2864 | 2417 | 1168 | 332 | 55 | 6
TABLE Il
Pr(DECODER FAILUREK ERRORS OBTAINED BY MONTE-CARLO SIMULATIONS.
Code Number of Errors
8 9 10 11 12 13 14 15 16 17 18 19 20
Tanner code | 3.3e-5| 1.2e-4| 53e-4| 22e-3| 7.7e-3| 26e-2| 75e-2| 0.178 | 0.358 | 0.582 | 0.806 | 0.932 | 0.985
MacKay code| 1.4 e-4| 5.1e-4| 1.9e-3| 6.2e-3| 1.9e-2| 55e-2| 0.124 | 0.265 | 0.449 | 0.674 | 0.853 | 0.947 | 0.991
0 NIV 0 A0
10 ; 10 : PRS00
02| | &
\E_/ 10 Lud, 10—27 3
L 4 @
s 10°t | g
g g 107 1
g10° | 1 3
g E .
T | Il - © - MacKay code-simulatior}]
—© -Tanner code-simulatidn —+— MacKay code-predicted |1
0 —+— Tanner code—predictej! i —¥— MacKay code-predicted |2
10 : : 10 :

0

107 10" 10

Probability of transitiond)
(@

Fig. 1.
the MacKay code.

TABLE IlI
RELATIVE FREQUENCIES OF DIFFERENT SIZE INSTANTONS OBTAINEBY
ANALYZING ERROR PATTERNS WITH8 ERRORS

(5]

# instantons of weight
Code # error events vi 5 5 i g -
Tanner code 331 130 | 37 | 139 | 58
MacKay code 87 10| 14 | 36 | 24 | 16 7]
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