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Abstract—The failures of iterative decoders for low-density drastically affect the failures of the decoder, are avoiddwy
parity-check (LDPC) codes on the additive white Gaussian noise were also able to associate some trapping sets with certain
channel (AWGNC) and the binary symmetric channel (BSC) g hgraphs of the Tanner graphs which represent the codes, an

can be understood in terms of combinatorial objects known as h t f timation in th flod
trapping sets. In this paper, we derive a systematic method to ence accurate performance estimation in the error rlocomeg

identify the most relevant trapping sets for decoding over the BSC could be made if the number of trapping sets present in the
in the error floor region. We elaborate on the notion of the critical Tanner graph are known. Moreover, graphical representatio

number of a trapping set and der_ive a classification of trapping of trapping sets allows one to Study the impact of code’s
sets. We then develop the trapping set ontology, a database Ofgycture on the error floor of the code, consequently giving
trapping sets that summarizes the topological relations among raise to numerous methods of avoiding trapping sets in code
trapping sets. We elucidate the usefulness of the trapping set . e 5 .
ontology in predicting the error floor as well as in designing Cconstruction and minimizing the effects of trapping setthi
better codes. iterative decoders on the BSC [see [4] for examples].
Although the characterization of failures is well undeosto
Index Terms for the binary erasure channel (BEC) in the formstépping
sets which are subgraphs with a deterministic property, it
rFTqas been only partially understood for other channels such
as BSC and AWGN. In [2], Richardson gave the necessary
and sufficient conditions for a subgraph to form a trappirg se
. . for serial flipping decoder for &3(6) regular LDPC code. He
LDPC codes, invented by Gallager in 1960s [1], have begfyq proved that the trapping sets for serial flipping atboni
attracting a large amount of research efforts in the past fey, 5150 trapping sets for the Gallager A and the Gallager
years, owing to their capacity-approaching performanateun g algorithm. In [5], Chilappagari gave the necessary and
low complexit.y iterativp deqoding alggrithms. While most of fficient conditions for a subgraph to formfixed set a
the asymptotic behaviors, i.e. behaviors as thg blo.ck Ienggpecia| case of trapping set, under the Gallager A/B algorit
tends to infinity, of LDPC codes are understood, little is\kno 54 the bit flipping algorithm. Using the definition offiaed
a_lb_out their finite length be_haviors. One important behaof(_)r setfor a trapping set, trapping sets can be classified based
finite length LDPC codes is therror floor phenomenon. This o their relative harmfulness on the BSC channel using the
phenomenon can be described as the abrupt degradation ofjfg, of critical number However, deterministic properties
frame error rate (FER) performance of the codes in the higlh (apping sets in general are not completely understood, a
signal-to-noise ratio (SNR) region. It is broadly known tthqhe problem of identifying and enumerating trapping seits st

the causes of error floor are due to the presence of cer@lfles on analyzing all failures of the decoders and explici
small structures in the Tanner graph of the code that caese g?aph searching techniques.

decoder to fail for error patterns of low weight, generallyah It was observed by Chilappagagt al. in [6] that by
lower than the error correction capability of the codes mnd@omparing decoding failures of several decoding algorithm
maximum-liklihood decoding. Richardson in [2] introducedy, gifferent channels, the decoding failures for various al
the notion oftra_pping_ setir_l order to c_haracterize_ faiIure_sgoritth are closely related and are dependent on only a
of decoders. Using this notion, he provided a semi-ana@ytice\, topological structures. These structures are eitiagping
method to compute error floors of LDPC codes and presentgds for jterative decoding algorithms on the BSC or larger
res.ults for qddmve wh|te Gaussian noise (AWGN) Chann%ubgraphs containing these trapping sets. Upon analybing t
Chilappagariet al. [3] in the same spirit, presented resultgyjyres of jterative decoders caused by trapping sets en th
on error.floor estlmatloq for the binary symmetric chann%sc, it can be seen that generally trapping sets are subgraph
(BSC) with the assumption that the Gallager B algorithm igmeq by cycles or union of cycles. These imply that there
employed in the decoder. The major difference between theggsis 4 topological interrelation among trapping sets iaral

two contributions is that by assuming a hard decision dewpdipgader sense, a topological interrelation among errdeyet
algorithm, issues related to the implementation nuances gk cause decoding failures for various algorithms orecit

the decoding algorithm (such as numerical precision) that Cchannels. In this paper, we attempt to find this interrefesind

Manuscript received September 24, 2009. This work is fundefsbme construct a hierarchy of trapping sets, which we talpping
rich guys] set ontology

S. K. Chilappagari, S. K. Planjery, D. V. Nguyen, and B. Vasi®  The rest of the paper is organized as follows. In section
with the Department of Electrical and Computer Engineeringivetsity of . . .
Arizona, Tucson, Arizona, 85721 USA. (emaifshashic, shivap, nguyendv, I, we prowde the pre“mma”es and baCkground related to
vasic} @ece.arizona.edu. LDPC codes. In section lll, we provide definitions related

Low-density parity-check codes, trapping set, iterative decodi
algorithm

I. INTRODUCTION



trapping sets and elaborate on the notion of critical numbé&om variable nodes (first half of the iteration) and ends by
In section IV, we describe in detail the concept of trappingending messages from check nodes to variable nodes (second
set ontology and the method to derive it. In section V, wealf of the iteration). The outgoing message on an edig
elucidate on the usefulness of trapping set ontology and é@sfunction of all the incoming messages (and possibly the
possible applications. Finally, we conclude the paper in VI received value in the case of messages from variable nodes
to the check nodes) except the message received ®here
II. PRELIMINARIES are algorithms which are iterative but do not belong to the
A LDPC Codes clas§ of message passing algorithms, sgch as the bit flipping
. . ) . (serial or parallel) algorithm. In every iteration of thet bi
A binary LDPC codeC is a linear block code which mapsgjipping algorithm, constraints (check nodes) are re-estaid,
a message block df information bits to a binary:-tuple. A then variable nodes which are involved in more unsatisfied
graphical representatior = (V' U C, E) of C, also called ¢onstraints than satisfied constraints are flipped.
the Tanner _graph [7], is a bipartite graph with two sets of cgnsider an iterative decoder on the BSC. et =
nodes:n_varlable (bit) noded” = {1,2,...,n} andm check (y1,y2...,yn) be the input to the decoder and let =
(constraint) nodes” = {1,2,...,m}; and a set of edges. (z},2L,...,21), I < D be the output vector at thé&"
The check nodes (variable nodes resp.) connected to a Marigration. The decoder run until a valid codeword is found or
node (check node resp.) are referred to as its neighborsify maximum number of iteration® is reached, whichever
vector w = (wy,ws...,wy) is a codeword if and only if js earlier. The output of the decoder is either a codeword or
all the check nodes are satisfied. The supportvofdenoted D
as suppw), is defined as the set of all variable nodes (bits)
v € V such thatw, # 0. The adjacency matrix of7 gives . TRAPPINGSETS
H, a parity-check matrix of’. The degreed(u) of a node
u € V UC is the number of its neighbors. A-left-regular
LDPC codeC has a Tanner grapli in which all variable ~ As mentioned above, we assume that the all-zero codeword
nodes have degree Similarly, a p-right-regular LDPC code is transmitted. Consider an LDPC code of lengthA variable
C has a Tanner grapfi in which all check nodes have degredlodev is said to besventually correctf there exists a positive
p. A (v, p) regular LDPC cod€ is an LDPC code which is-  integer¢ such that for alll > ¢, v ¢ supfx’). A decoder
left-regular andp-right-regular. This code has rate> 1—~/p failure is said to have occurred if there does not ekist D
[7]. The degree of a variable node (check node resp.) is aféch that suppx’) = 0.
referred to as the left degree (right degree resp.) or thewol ~ Definition 1: Let T(y) denote the set of variable nodes that

weight (row weight resp.). The length of the shortest cynle gre not eventually correct. '(y) # 0, leta = [T(y)| and
the Tanner grapld is called the girthy of G. b be the number of odd degree check nodes in the sub-graph

induced byT(y). We sayT(y) is an(a,b) trapping set.
. Remark: For each failure of the iterative decoder, there is
B. Channel and the all-zero codeword assumption . : i D

_ . o ~acorresponding set of corrupt variable nodés= supgx”).

In this paper, we consider transmission over the binamhe setF is not necessarily a trapping set because it may not
symmetric channel (BSC). We defifiipping” as the event contain all the variable nodes that are eventually incarrec
of a bit changing its value from “0” to “1” or vice versa.sych as variable nodes that oscillate between the righevalu
The BSC with transition probability flips a transmitted bit gnd the wrong value.

with probability p. A variable node is said to be correct if Definition 2: Let 7 be a trapping set. If'(y) = 7 then

its received value is equal to its original value and corrugipg(y) is a inducing set off".

otherwise. Definition 3: Let 7 be a trapping set and 1Y (7) =
Since the BSC is a binary-input symmetric-output channgly|T(y) = 7}. The critical numberm(7) of trapping set

we can make the all-zero codeword assumption which validiy is the minimal number of variable nodes that have to be

was proved by Richarson and Urbanke in [8]. This assumptigitially in error for the decoder to end up in the trapping se
relies on the property of standard binary LDPC decoders that j e

the probability of decoding error is equal for any transewtt _
codeword. With this assumption, a variable node is corrfect i m(7T) = i |supHy)|
it is 0 and corrupt if it is 1.

A. Definitions

Definition 4: For transmission over a BSG; is a fixed
) ) point of the decoding algorithm if supp) = suppx') for
C. Decoding algorithms all L.

LDPC codes can be decoded with low complexity itera- Definition 5: For transmission over a BSC, ' (y) is a
tive algorithms. These include the class of message passirapping set ang is a fixed point, theril'(y) = supfy) is a
algorithms such as the Gallager A/B algorithm and the béxed set.
lief propagation (or sum-product) algorithm. Message ipgss Necessary and sufficient conditions for a set of variable
decoders operate by passing messages along the edgesodgs to form a fixed set for the Gallager A/B algorithm and
the Tanner graph representation of the code. Every roufud the bit flipping algorithm has been derived in [5] and are
of message passing (iteration) starts with sending messag&en in the following theorem.



Theorem 1:Let C be an LDPC code withy-left-regular
Tanner graplG. Let 7 be a set consisting af variable nodes
with induced subgrapti. Let the checks irZ be partitioned
into two disjoint subsets( consisting of checks with odd
degree and consisting of checks with even degree. THEN
is a fixed set for the Gallager A/B algorithm as well as for
the bit flipping algorithm (serial or parallel) iff : (a) Ewer
variable node irZ has at leasf 3| neighbors in¢ and (c) No

| 3] of O share a neighbor outside

B. Graphical representation @ ()

1) Tanner graph representationThe Tanner graph repre-rig. 1. Graphical representation of,) trapping set: (a) Tanner graph
sentation of an(a,b) trapping set7 is a sub-graph of the representation; (b) Line and point representation.

Tanner graph that represents the code. This sub-graphst®nsi
of a variable nodes ifT, represented by, and the neighboring
check nodes to this variable nodes. We B® represent odd
degree check nodes arid to represent even degree check
nodes.

2) Line and point representationTheorem 1 suggests that
the problem of creating a list of possible candidates for
fixed sets and in general trapping sets can be related to the
coloring problems in graph theory. In order to establisis thi
relationship, we choose an alternate graphical represamta
of trapping sets based on the incidence structure of linds an
points. In combinatorial mathematics, an incidence stimact (@ (b)
is a triple (P, L, I) where P is a set of “points” L is a set of
“lines” and I € P x L is the incidence relation. The element$ig. 2.  Graphical representation 03,8) trapping set: (a) Tanner graph
of I are called flags. |fp, l) € I, we say that poinp “lies on” representation; (b) Line and point representation.
line [. In this representation of trapping sets, variable nodes
correspond to lines and check nodes correspond to points
point is shaded black if it has odd number of lines passi

through it otherwise it is shaded white. An, b) trapping set Figure 2 shows the graphical representation of5a3)

is thus an incidence structure withlines andb black points. pping set which is a union of two 8-cycles. This trapping

The line and point representation also reveals the length Qi is a fixed set under the Gallager A/B decoding algorithm
the smallest cycle of the subgraph. It is the smallest numb&

. - . ) dcause ifv , U9, U3, V4, s are initially incorrect then the set
g such that there is a set gflines and a set of points in 102, U3, 01, U y

which everv point lies on exactly wo lines of incorrect variable nodes i§vy, va,v3,v4,v5} after every
yp y ' iteration of the decoder. Howevefp;, va, v3,v4,v5} IS Not

. . i
Note: To avoid confusion between the above graphlcége smallest inducing set. For the Gallager A/B algorithime, t

representations of trapping sets, it can be noticed that & of variable nodéus, v, v5) is the smallest inducing set.
Tanner graph representation of a trapping set always CONtRY, e this trapping set has 3 as its critical number.
B and (] to represents check nodes.

H'&Never, it is not a relevant inducing set since its cardliypal
iS'much bigger than the cardinality of the other inducing set

IV. TRAPPING SET ONTOLOGY

C. Example A. Identification of trapping sets and their topological ael
Figure 1 shows the Tanner graph representation and fins
line and point representation of d,4) trapping set7 = As mentioned above, since trapping sets are either cycles or

{v1,v2,v3,v4} Of column weight three LDPC codes. It carunion of cycles, there exist topological relations amoregnth

be seen that this trapping set forms an 8-cycle. For Gallagéonsider an LDPC code whose Tanner graph has girfthen

A/B algorithm, the only inducing set of is 7 itself, hence as mentioned previously for the case of the BSC, the most
7T is a fixed set. The critical number &f is 4, i.e. all the harmful trapping sets of the code are typically the shortest
variable nodess, v2,v3 andwv, have to be in error in order cycles which argj-cycles or subgraphs containing unions of
for the Gallager A/B decoder to fail ii. For the parallel bit g-cycles. For such trapping sets, we say that the subgraph
flipping algorithm, it can be shown thdw,,v3} and{vs,v4} induced by the trapping set has theycle as itsparentand

are inducing sets of . Therefore the critical number @ for the subgraph is ahild of the g-cycle. In general, we say that
the parallel bit flipping algorithm is 2. Note that the pagall a subgraph induced by the set of variable ndéfes a parent

bit flipping algorithm also fails irZ” if all the variable nodes of a subgraph induced by the set of variable node# there

v1, Vg, v3 andu, are in error and hence is also a inducing set. exists subseVp’ € V. such that the subgraph induced b’y



is isomorphic to the subgraph induced By. For simplicity,
from now on we shall say that a trapping set is a parent or
a child and by that we means the subgraph induced by the
trapping set. C
Theorem 1 gives an easy way to realize which subgraph is Y
a fixed set for the Gallager A/B algorithm and the bit flipping
algorithm. In the line and point representation of a sublgrap
if every line has more white points than black points then the @ ®)
subgraph represents a fixed set. This observation leads to a
systematic method of identifying fixed sets from its parenfig. 3.  Children of §,3) trapping set: (a), 2) trapping set; (b) €, 0)
The method is simply described as adding additional lin&&PPing set
to a parent subgraph along with changing the color of the
points accordingly such that the resulting subgraph sasisfi
the nescessary and sufficient conditions dictated by Theore ¢, v G ¢
1. It can be seen that the method is general and can be O
applied to general trapping sets, as long as the properties o
those trapping sets are understood. We choose to illugtrate
method by a providing a series of examples of identifying "4
fixed sets for column weight three LDPC codes of girth 8. It
will be illustrated in the next subsection that many of these
fixed sets contain proper subsets that are inducing setsghen
these fixed sets are trapping sets with critical number small
than the cardinality of the fixed sets. Henceforth, for theesa
of generality, we shall refer to fixed sets as trapping sets.
Example 1:Consider the 4,4) and 6, 3) trapping sets as
shown in Figure 1 and 2. The5,3) trapping set can be
obtained by adding one variable nodg which connect two
odd degree check node; and c¢;. In the point and line
representation, this corresponds to adding one line passin
through the two black points which represefit and c.
Since ¢; and ¢; now have two neighbors, its color changes
to white. The variable node; needs one more neighboring ©
check node because the code is of column weight three, hepge 4. ¢ 4) trapping set obtained fromi(4) trapping set: (a) another
an odd degree check nodg is added. In the line and pointlook of the @, 4) trapping set; (b) &, 4) trapping set formed by a union of
representation, this corresponds to adding a black nodeeon 3" 8-cycle and a 10-cycle; (c(4) trapping set formed by a union of two
newly added line which represents. As a general rule, if a -cycles.
point has an additional line passing through it, its colol wi
change. This suggests that the additional lines to be added
i he rescling subgraph, il lnes have more whie pohast. 1€ Stl on the lines which represent variable nodesind
black points. Also, the girth of the graph has to be preservev ; fespectively. By adding two variable nodesandug such

- - . thatvs is connected ta@s, vg is connected t@; andcg is the
In this example, only line passing throughandc; or ¢g and common neighbor ofs ands, we obtain a8, 4) trapping set
cs can be added. If a line is added passing througland vg 9 5 41006, ’ pping set,

or v7 anduvs then the girth of the graph is reduced to 6. which is a union of an 8-cycle and a 10-cycle. This trapping

Example 2:In the same manner, we can add one mmseet is shown in Figure 4(b). If we add two variable nodgs

variable node to thes(3) trapping set to get a trapping set of* 23 Vs isu;:hh thazﬁn |snccr)]ninehc;etrd 38’ zg 'S cv?lnnelcted l;(tE?in
cardinality 6. There are two ways to add such variable nod€¢ ¢ 'S N€ common neighbor al, ahdwg, We aiso obtain -
6,4) trapping set as shown in Figure 4(c). However, this

which yield different results as shown in Figure 3. If we ad kD)t ) ti . f an two 8-cvel
a variable nodeys connecting to check node; andcy and ,4) trapping set is a union of an two 8-cycles.
introduce an odd degree check nodg, then the result is It can be seen that the topological relations among trapping
a (6,2) trapping set. On the other hand, if the variable nodsets follow directly from the way they are identified. A
vg hascg as its third check node then &, () trapping set is trapping set is a child of another trapping set (its parent)
obtained. Note that if an LDPC code contain&a0) trapping if its induced subgraph can be obtained by adding lines to
set then it contains codewords of weight the induced subgraph of the other trapping set. Figure 5
Example 3:For illustrative purposes, we again show theemonstrates the trapping set ontology for column weight
line and point representation of the {) trapping set in Figure three LDPC codes under the Gallager A algorithm. Note that
4(a) but with a slightly different way of drawing. It can beonly trapping sets up to size six are shown. A more complete
seen that the black points which represent check rngdend list can be found in [9].

(@) (b)
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Fig. 5. Trapping set ontology for column weight three coded @allager
A algorithm.

(a) (b)

Fig. 6. (7, 3) trapping sets: (a) child of5( 3) trapping set; (b) child ofd, 4)
trapping set.

B. More on critical number of trapping sets

The harmfullness of a trapping sétdepends on its critical
numberm(7) and the number of inducing sets, especially
ones with cardinalityn(7"). The smaller the critical number,
the more harmful a trapping set since fewer number of errors
can result in decoding failure by ending in that trapping set
Larger number of inducing sets also increases the probabili
of decoding failure.

The topological relations of trapping sets suggest thaethe
is a relation among critical numbers of trapping sets. Based
on this, we provide the following conjecture.

Conjecture:The critical number of a trapping s&tis upper
bounded by the critical number of its parents.

This conjecture gives a relative measure of the harmfulness
of a trapping set based on the harmfulness of its parents as
illustrated in the following examples.

Example 4:Consider two §,4) trapping sets shown in
Figure 4(b) and (c). Both are children of thé, 4) trapping
set shown in Figure 1. Both has critical number= 4. The
(6, 4) trapping set which is the union of two 8-cycles (Figure
4(c)) has two inducing sets of cardinality 4. Each inducing
set consists of variable nodes that form an 8-cycle. On the
other hand, the6( 4) trapping set which is the union of an 8-
cycle and a 10-cycle (Figure 4(b)) only has one inducing et o
cardinality 4. The inducing set, again, consists of thealde
nodes which form the 8-cycle. The number of inducing sets
indicates that the former trapping set is more harmful than
the later. A possible explaination for the difference in the
harmfulness of the two trapping sets is that a 10-cycle (or a
(5,5) trapping set) is less harmful than an 8-cycle (oradf
trapping set). Thus, the trapping set which is a union of an
8-cycle and a 10-cycle is less harmfull than the trapping set
which is a union of two 8-cycles.

Example 5:Consider two T,3) trapping sets shown in
Figure 6. Both are unions of two 8-cycles and one 10-cycle.
One trapping set is shown in Figure 6(a) and is a child of the
(5, 3) trapping set shown in Figure 2. This trapping set has
critical numberm = 3. The other trapping set is shown in
Figure 6(b). This trapping set is a child of th& 4) trapping
set shown in Figure 4(b) and has critical numbee 4. It can
be seen that the former trapping set is more harmful than the
later. The former trapping set also has a more harmful parent
since the §, 3) trapping set has critical numbet = 3 while
the 6, 4) trapping set has critical numbet = 4.

We shall now describe how the trapping set ontology can
be used for predicting the error floor behaviour of codes as
well as in constructing codes that have lower error-flooideun
standard message-passing algorithms.

V. APPLICATION OF TRAPPING SET ONTOLOGY

A. Performance estimation of the iterative decoders in the
error floor region

It was previously mentioned that the error floor phenomenon
is predominantly caused by the presence of trapping sets in
the Tanner graph of a code. Hence, the problem of error floor
estimation for any given code on a particular channel resluce
to identifying the dominant trapping sets (which are tyflica



small subgraphs) for a given decoder and determining the 10
cardinality of such structures present in the Tanner grdjineo : : S
code. Based on this notion, the work of [2] and [3] provided ‘
semi-analytical methods to accurately predict the errarflo

of codes for the AWGN and BSC channels respectively. For
the case of the BSC channel as shown in [3], the trapping sets
can be conveniently classified into different classes based
their critical numbers and their strengths in order to simpl
the search for relevant trapping sets of a code. The strength

Frame Error Rate(FER)
&
o

of a trapping set is defined as the number of inducing sets 107 : EERE TR
with cardinality equal to the critical number that cause the . : T Trometear "
decoder to fail on the trapping set. Using this classificatib %005 001 0015 002 002 003 0035 004

becomes sufficient to determine the cardinality of eachsatés Probabilly of Transition €)

trapping sets present in the Tanner graph of the code and tf&%rj 7
the contribution of each class towards the error floor estona
for a given SNR can be easily calculated [3]. The cardinalfty
each trapping set class is determined by searching the .graph
The trapping set ontology can be used to greatly simplif§f the code. For the BSC channel, the trapping set classiftat
the enumeration of the trapping set classes by exploitieg thased on the critical number and strength of the trapping set
parent-child relationships between different subgraptm-c becomes particularly important since the critical numbgr o
pared to a brute-force search and counting of each individ@trapping set directly affects the slope of the error flogr [4
trapping set class. The first step in the search algorithmdvodience, by avoiding trapping sets that have low critical nemb
be to count the number afcycles in a Tanner graph of girth during code construction, we can improve the guaranteed err
g since the shortest cycles are the most harmful cycles GArrection capability of the code.
the graph. Since thg-cycles can be considered as @na) The parent-child relationship of different subgraphs pro-
parent trapping set, we can then search for all the trappivigled by the trapping set ontology can now be exploited to
sets that are the children of thecycle by simply checking simplify the construction algorithm of the code. Based on
the connections between the odd-degree check nodes of tii conjecture provided in the previous section that rslate
(a,a) parent. The complexity involved in the search of cycleée critical numbers of the parent and children, we can see
using a standard tree-based algorithm is linear with thgtken that the relevant trapping sets that need to be avoided are
of the code. Hence, the complexity involved searching fer tisimply the parent trapping sets. For example, suppose we wan
trapping sets that are children of a parent trapping setaléth to construct a girth-8 code and avoid trapping sets having a
be linear in length of the code. For example, if we considerditical number of 3 (or lower) for the Gallager-A algorithm
(3, 6) regular girth-8 LDPC code with length of the code beingn the BSC channel. From the previous section, we know
n, the complexity involved in searching for 4,{) trapping that the §,3) trapping set has a critical number of three
set using the tree-based algorithn{3s52-22)n = 300n. Now and must be avoided. By just avoiding thg ) trapping
in order to search fors( 3) trapping sets, we can simply takeset, we are already ensuring that ttie2), (6,0) and (7, 1)
all the @,4) parent trapping sets we just found and chedkapping sets are avoided since they are the children of the
if any pair of the degree-one check nodes of thed) are (5,3) trapping set. Hence, in this manner by exploiting the
connected through a variable node. The complexity for th@rent-child relationship, the number of trapping sets tle@d
search algorithm will then be twice as much as the complexit§ be considered in the code construction for avoiding iBiig
involved in searching the4(4) trapping sets which is still a icantly reduced. Also from the construction algorithm’snto
linear increase im. In this manner, by utilizing the trapping setof view, it becomes much simpler to avoid smaller subgraphs
ontology into the search algorithm, the complexity of shargluring code construction especially when using standaet tr
is only linear withn. based construction techniques such as progressive edgtgro
Figure V-A shows the simulated results and estimated erd®EG) [10].
floor for the Margulis code which is &3(6) regular LDPC Trapping set ontology can also be helpful in deriving
code of length 2640 based on the method described in [3]slifficient conditions to guarantee correction of certaimbar
is evident from the result that the prediction of the erroofflo of errors since it can reduce the number of different subdggap
on the BSC is quite accurate. to be analyzed. Based on these premises, the work of [11]
provided sufficient conditions on the Tanner graph of the
LDPC codes that guarantees correction of three errors.eThes
sufficient conditions are simply the trapping sets that need
Given the knowledge of potentially harmful trapping sets fdoe avoided and hence can be directly incorporated into the
a particular decoder, it is now well understood that an &ffec construction algorithm. In [11], column-weight three cede
code design strategy that significantly improves the sldpe were constructed by modifying the PEG algorithm to avoid
the error floor in the FER performance of a code is to avoittiese structures and the slope of the FER performance of the
these harmful structures while constructing the Tanneplgraresulting code was improved from 3 to 4. The performance

FER plot for Margulis code under Gallager A algorithm

B. Code construction
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results of the original code and modified code are shown in
Figure V-B. Other strategies apart from modifying the PEG
algorithm that can be used to avoid trapping sets during

construction are the use of graph covers [4]. In this tealmiq

the method it consists of taking two (or more) copies of the

same code and swapping edges between the code copies i

=)

such a way that the most dominant trapping sets are broken.
Performance results comparing the original code with the
modified code are shown in Figure V-B. (see [4] for more

details on this technique).

VI. CONCLUSION

In this paper, we have shown a systematic method to identify
the most relevant trapping sets for decoding over the BSC in
the error floor region. We showed how to develop trapping set

ontology, a database of trapping sets that summarizes ple to
logical relations among trapping sets and illustrated &uimn

weight three LDPC codes under the Gallager A algorithm.
Examples have been given to show the usefulness of trapping

set ontology. Future works include investigating progesrtbf

REFERENCES

R. G. Gallager,Low Density Parity Check Codes Cambridge, MA:
M.L.T. Press, 1963.

T. J. Richardson, “Error floors of Idpc codes,” Proc. 41st Annual
Allerton Conf. on Communications, Control and Computir2903,
pp. 1426-1435. [Online]. Available: http://www.hpl.hpro/personal/
Pascal_Vontobel/pseudocodewords/papers

S. K. Chilappagari, S. Sankaranarayanan, and B. Vagiapf floors of
LDPC codes on the binary symmetric channel,"Aroc. Int. Conf. on
Communicationsvol. 3, 2006, pp. 1089-1094.

M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminatintrapping
sets in low-density parity-check codes by using tanner flyreqvers,”
IEEE Trans. Inform. Theoryvol. 54, no. 8, pp. 3763-3768, 2008.
[Online]. Available: http://dx.doi.org/10.1109/TIT.26.926319

S. Chilappagari and B. Vasic, “Error-correction capdpiof column-
weight-three LDPC codes|EEE Trans. Inform. Theorwol. 55, no. 5,
pp. 2055-2061, May 2009.

S. K. Chilappagari, M. Chertkov, M. G. Stepanov, and B.sia
“Instanton-based techniques for analysis and reductioeradr floors
of LDPC codes.” [Online]. Available: http://arxiv.org/ai®903.1624

R. M. Tanner, “A recursive approach to low complexity cefdEEE
Trans. Inform. Theoryvol. 27, no. 5, pp. 533-547, Sept. 1981.

T. J. Richardson and R. Urbanke, “The capacity of lowsignparity-
check codes under message-passing decodiBdEE Trans. Inform.
Theory vol. 47, no. 2, pp. 599-618, Feb. 2001.

“Trapping set ontology.” [Online]. Available: httpultvw.ece.arizona.
edu/~vasiclab/Projects/CodingTheory/TrappingSetOntolotyl

X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular andregular
progressive edge-growth tanner graphEEE Trans. on Inform. Theory
vol. 51, no. 1, pp. 386-398, 2005.

S. K. Chilappagari, A. R. Krishnan, and B. Vasic, “LDPG@des which
can correct three errors under iterative decoding,Pioc. of IEEE
Information Theory WorkshgiMay 5-9, 2008.



