
1

Trapping Set Ontology
S. K. Chilappagari,Member, IEEE,S. K. Planjery,Student Member, IEEE,D. V.

NguyenStudent Member, IEEE,and Bane Vasic,Senior Member, IEEE

Abstract—The failures of iterative decoders for low-density
parity-check (LDPC) codes on the additive white Gaussian noise
channel (AWGNC) and the binary symmetric channel (BSC)
can be understood in terms of combinatorial objects known as
trapping sets. In this paper, we derive a systematic method to
identify the most relevant trapping sets for decoding over the BSC
in the error floor region. We elaborate on the notion of the critical
number of a trapping set and derive a classification of trapping
sets. We then develop the trapping set ontology, a database of
trapping sets that summarizes the topological relations among
trapping sets. We elucidate the usefulness of the trapping set
ontology in predicting the error floor as well as in designing
better codes.

Index Terms

Low-density parity-check codes, trapping set, iterative decoding
algorithm

I. I NTRODUCTION

LDPC codes, invented by Gallager in 1960s [1], have been
attracting a large amount of research efforts in the past few
years, owing to their capacity-approaching performance under
low complexity iterative decoding algorithms. While most of
the asymptotic behaviors, i.e. behaviors as the block length
tends to infinity, of LDPC codes are understood, little is known
about their finite length behaviors. One important behaviorof
finite length LDPC codes is theerror floor phenomenon. This
phenomenon can be described as the abrupt degradation of the
frame error rate (FER) performance of the codes in the high
signal-to-noise ratio (SNR) region. It is broadly known that
the causes of error floor are due to the presence of certain
small structures in the Tanner graph of the code that cause the
decoder to fail for error patterns of low weight, generally much
lower than the error correction capability of the codes under
maximum-liklihood decoding. Richardson in [2] introduced
the notion of trapping set in order to characterize failures
of decoders. Using this notion, he provided a semi-analytical
method to compute error floors of LDPC codes and presented
results for additive white Gaussian noise (AWGN) channel.
Chilappagariet al. [3] in the same spirit, presented results
on error floor estimation for the binary symmetric channel
(BSC) with the assumption that the Gallager B algorithm is
employed in the decoder. The major difference between these
two contributions is that by assuming a hard decision decoding
algorithm, issues related to the implementation nuances of
the decoding algorithm (such as numerical precision) that can

Manuscript received September 24, 2009. This work is funded by [some
rich guys]

S. K. Chilappagari, S. K. Planjery, D. V. Nguyen, and B. Vasicare
with the Department of Electrical and Computer Engineering, University of
Arizona, Tucson, Arizona, 85721 USA. (emails:{shashic, shivap, nguyendv,
vasic}@ece.arizona.edu.

drastically affect the failures of the decoder, are avoided. They
were also able to associate some trapping sets with certain
subgraphs of the Tanner graphs which represent the codes, and
hence accurate performance estimation in the error floor region
could be made if the number of trapping sets present in the
Tanner graph are known. Moreover, graphical representation
of trapping sets allows one to study the impact of code’s
structure on the error floor of the code, consequently giving
raise to numerous methods of avoiding trapping sets in code
construction and minimizing the effects of trapping sets inthe
iterative decoders on the BSC [see [4] for examples].

Although the characterization of failures is well understood
for the binary erasure channel (BEC) in the form ofstopping
sets which are subgraphs with a deterministic property, it
has been only partially understood for other channels such
as BSC and AWGN. In [2], Richardson gave the necessary
and sufficient conditions for a subgraph to form a trapping set
for serial flipping decoder for a (3, 6) regular LDPC code. He
also proved that the trapping sets for serial flipping algorithm
are also trapping sets for the Gallager A and the Gallager
B algorithm. In [5], Chilappagari gave the necessary and
sufficient conditions for a subgraph to form afixed set, a
special case of trapping set, under the Gallager A/B algorithm
and the bit flipping algorithm. Using the definition of afixed
set for a trapping set, trapping sets can be classified based
on their relative harmfulness on the BSC channel using the
notion of critical number. However, deterministic properties
of trapping sets in general are not completely understood, and
the problem of identifying and enumerating trapping sets still
relies on analyzing all failures of the decoders and explicit
graph searching techniques.

It was observed by Chilappagariet al. in [6] that by
comparing decoding failures of several decoding algorithms
on different channels, the decoding failures for various al-
gorithms are closely related and are dependent on only a
few topological structures. These structures are either trapping
sets for iterative decoding algorithms on the BSC or larger
subgraphs containing these trapping sets. Upon analyzing the
failures of iterative decoders caused by trapping sets on the
BSC, it can be seen that generally trapping sets are subgraphs
formed by cycles or union of cycles. These imply that there
exists a topological interrelation among trapping sets andin a
broader sense, a topological interrelation among error patterns
that cause decoding failures for various algorithms on different
channels. In this paper, we attempt to find this interrelation and
construct a hierarchy of trapping sets, which we calltrapping
set ontology.

The rest of the paper is organized as follows. In section
II, we provide the preliminaries and background related to
LDPC codes. In section III, we provide definitions related

2

trapping sets and elaborate on the notion of critical number.
In section IV, we describe in detail the concept of trapping
set ontology and the method to derive it. In section V, we
elucidate on the usefulness of trapping set ontology and its
possible applications. Finally, we conclude the paper in VI.

II. PRELIMINARIES

A. LDPC Codes

A binary LDPC codeC is a linear block code which maps
a message block ofk information bits to a binaryn-tuple. A
graphical representationG = (V ∪ C,E) of C, also called
the Tanner graph [7], is a bipartite graph with two sets of
nodes:n variable (bit) nodesV = {1, 2, . . . , n} andm check
(constraint) nodesC = {1, 2, . . . ,m}; and a set of edgesE.
The check nodes (variable nodes resp.) connected to a variable
node (check node resp.) are referred to as its neighbors. A
vector w = (w1, w2 . . . , wn) is a codeword if and only if
all the check nodes are satisfied. The support ofw, denoted
as supp(w), is defined as the set of all variable nodes (bits)
v ∈ V such thatwv 6= 0. The adjacency matrix ofG gives
H, a parity-check matrix ofC. The degreed(u) of a node
u ∈ V ∪ C is the number of its neighbors. Aγ-left-regular
LDPC codeC has a Tanner graphG in which all variable
nodes have degreeγ. Similarly, aρ-right-regular LDPC code
C has a Tanner graphG in which all check nodes have degree
ρ. A (γ, ρ) regular LDPC codeC is an LDPC code which isγ-
left-regular andρ-right-regular. This code has rater > 1−γ/ρ
[7]. The degree of a variable node (check node resp.) is also
referred to as the left degree (right degree resp.) or the column
weight (row weight resp.). The length of the shortest cycle in
the Tanner graphG is called the girthg of G.

B. Channel and the all-zero codeword assumption

In this paper, we consider transmission over the binary
symmetric channel (BSC). We define“flipping” as the event
of a bit changing its value from “0” to “1” or vice versa.
The BSC with transition probabilityp flips a transmitted bit
with probability p. A variable node is said to be correct if
its received value is equal to its original value and corrupt
otherwise.

Since the BSC is a binary-input symmetric-output channel,
we can make the all-zero codeword assumption which validity
was proved by Richarson and Urbanke in [8]. This assumption
relies on the property of standard binary LDPC decoders that
the probability of decoding error is equal for any transmitted
codeword. With this assumption, a variable node is correct if
it is 0 and corrupt if it is 1.

C. Decoding algorithms

LDPC codes can be decoded with low complexity itera-
tive algorithms. These include the class of message passing
algorithms such as the Gallager A/B algorithm and the be-
lief propagation (or sum-product) algorithm. Message passing
decoders operate by passing messages along the edges of
the Tanner graph representation of the code. Every round
of message passing (iteration) starts with sending messages

from variable nodes (first half of the iteration) and ends by
sending messages from check nodes to variable nodes (second
half of the iteration). The outgoing message on an edgee is
a function of all the incoming messages (and possibly the
received value in the case of messages from variable nodes
to the check nodes) except the message received one. There
are algorithms which are iterative but do not belong to the
class of message passing algorithms, such as the bit flipping
(serial or parallel) algorithm. In every iteration of the bit
flipping algorithm, constraints (check nodes) are re-evaluated,
then variable nodes which are involved in more unsatisfied
constraints than satisfied constraints are flipped.

Consider an iterative decoder on the BSC. Lety =
(y1, y2 . . . , yn) be the input to the decoder and letxl =
(xl

1, x
l
2, . . . , x

l
n), l ≤ D be the output vector at thelth

iteration. The decoder run until a valid codeword is found or
the maximum number of iterationsD is reached, whichever
is earlier. The output of the decoder is either a codeword or
xD.

III. T RAPPINGSETS

A. Definitions

As mentioned above, we assume that the all-zero codeword
is transmitted. Consider an LDPC code of lengthn. A variable
nodev is said to beeventually correctif there exists a positive
integer q such that for alll ≥ q, v /∈ supp(xl). A decoder
failure is said to have occurred if there does not existl ≤ D
such that supp(xl) = ∅.

Definition 1: Let T(y) denote the set of variable nodes that
are not eventually correct. IfT(y) 6= ∅, let a = |T(y)| and
b be the number of odd degree check nodes in the sub-graph
induced byT(y). We sayT(y) is an (a, b) trapping set.

Remark: For each failure of the iterative decoder, there is
a corresponding set of corrupt variable nodes:F = supp(xD).
The setF is not necessarily a trapping set because it may not
contain all the variable nodes that are eventually incorrect,
such as variable nodes that oscillate between the right value
and the wrong value.

Definition 2: Let T be a trapping set. IfT(y) = T then
supp(y) is a inducing set ofT .

Definition 3: Let T be a trapping set and letY(T) =
{y|T(y) = T }. The critical numberm(T) of trapping set
T is the minimal number of variable nodes that have to be
initially in error for the decoder to end up in the trapping set
T , i.e.

m(T) = min
Y(T)

|supp(y)|

Definition 4: For transmission over a BSC,y is a fixed
point of the decoding algorithm if supp(y) = supp(xl) for
all l.

Definition 5: For transmission over a BSC, ifT(y) is a
trapping set andy is a fixed point, thenT(y) = supp(y) is a
fixed set.

Necessary and sufficient conditions for a set of variable
nodes to form a fixed set for the Gallager A/B algorithm and
for the bit flipping algorithm has been derived in [5] and are
given in the following theorem.

3

Theorem 1:Let C be an LDPC code withγ-left-regular
Tanner graphG. Let T be a set consisting ofa variable nodes
with induced subgraphI. Let the checks inI be partitioned
into two disjoint subsets;O consisting of checks with odd
degree andE consisting of checks with even degree. ThenT
is a fixed set for the Gallager A/B algorithm as well as for
the bit flipping algorithm (serial or parallel) iff : (a) Every
variable node inI has at least⌈γ

2 ⌉ neighbors inE and (c) No
⌊γ

2 ⌋ of O share a neighbor outsideI.

B. Graphical representation

1) Tanner graph representation:The Tanner graph repre-
sentation of an(a, b) trapping setT is a sub-graph of the
Tanner graph that represents the code. This sub-graph consists
of a variable nodes inT , represented by•, and the neighboring
check nodes to this variable nodes. We use� to represent odd
degree check nodes and� to represent even degree check
nodes.

2) Line and point representation:Theorem 1 suggests that
the problem of creating a list of possible candidates for
fixed sets and in general trapping sets can be related to the
coloring problems in graph theory. In order to establish this
relationship, we choose an alternate graphical representation
of trapping sets based on the incidence structure of lines and
points. In combinatorial mathematics, an incidence structure
is a triple (P,L, I) whereP is a set of “points” L is a set of
“lines” and I ∈ P ×L is the incidence relation. The elements
of I are called flags. If(p, l) ∈ I, we say that pointp “lies on”
line l. In this representation of trapping sets, variable nodes
correspond to lines and check nodes correspond to points. A
point is shaded black if it has odd number of lines passing
through it otherwise it is shaded white. An(a, b) trapping set
is thus an incidence structure witha lines andb black points.
The line and point representation also reveals the length of
the smallest cycle of the subgraph. It is the smallest number
g such that there is a set ofg lines and a set ofg points in
which every point lies on exactly two lines.

Note: To avoid confusion between the above graphical
representations of trapping sets, it can be noticed that the
Tanner graph representation of a trapping set always contain
� and� to represents check nodes.

C. Example

Figure 1 shows the Tanner graph representation and the
line and point representation of a (4, 4) trapping setT =
{v1, v2, v3, v4} of column weight three LDPC codes. It can
be seen that this trapping set forms an 8-cycle. For Gallager
A/B algorithm, the only inducing set ofT is T itself, hence
T is a fixed set. The critical number ofT is 4, i.e. all the
variable nodesv1, v2, v3 and v4 have to be in error in order
for the Gallager A/B decoder to fail inT . For the parallel bit
flipping algorithm, it can be shown that{v1, v3} and{v2, v4}
are inducing sets ofT . Therefore the critical number ofT for
the parallel bit flipping algorithm is 2. Note that the parallel
bit flipping algorithm also fails inT if all the variable nodes
v1, v2, v3 andv4 are in error and henceT is also a inducing set.

(a) (b)

Fig. 1. Graphical representation of (4, 4) trapping set: (a) Tanner graph
representation; (b) Line and point representation.

(a) (b)

Fig. 2. Graphical representation of (5, 3) trapping set: (a) Tanner graph
representation; (b) Line and point representation.

However, it is not a relevant inducing set since its cardinality
is much bigger than the cardinality of the other inducing sets.

Figure 2 shows the graphical representation of a (5, 3)
trapping set which is a union of two 8-cycles. This trapping
set is a fixed set under the Gallager A/B decoding algorithm
because ifv1, v2, v3, v4, v5 are initially incorrect then the set
of incorrect variable nodes is{v1, v2, v3, v4, v5} after every
iteration of the decoder. However,{v1, v2, v3, v4, v5} is not
the smallest inducing set. For the Gallager A/B algorithm, the
set of variable node{v2, v4, v5} is the smallest inducing set.
Hence this trapping set has 3 as its critical number.

IV. T RAPPING SET ONTOLOGY

A. Identification of trapping sets and their topological rela-
tions

As mentioned above, since trapping sets are either cycles or
union of cycles, there exist topological relations among them.
Consider an LDPC code whose Tanner graph has girthg. Then
as mentioned previously for the case of the BSC, the most
harmful trapping sets of the code are typically the shortest
cycles which areg-cycles or subgraphs containing unions of
g-cycles. For such trapping sets, we say that the subgraph
induced by the trapping set has theg-cycle as itsparent and
the subgraph is achild of the g-cycle. In general, we say that
a subgraph induced by the set of variable nodeVp is a parent
of a subgraph induced by the set of variable nodesVc if there
exists subsetV ′

p ∈ Vc such that the subgraph induced byV ′
p

4

is isomorphic to the subgraph induced byVp. For simplicity,
from now on we shall say that a trapping set is a parent or
a child and by that we means the subgraph induced by the
trapping set.

Theorem 1 gives an easy way to realize which subgraph is
a fixed set for the Gallager A/B algorithm and the bit flipping
algorithm. In the line and point representation of a subgraph,
if every line has more white points than black points then the
subgraph represents a fixed set. This observation leads to a
systematic method of identifying fixed sets from its parent.
The method is simply described as adding additional lines
to a parent subgraph along with changing the color of the
points accordingly such that the resulting subgraph satisfies
the nescessary and sufficient conditions dictated by Theorem
1. It can be seen that the method is general and can be
applied to general trapping sets, as long as the properties of
those trapping sets are understood. We choose to illustratethe
method by a providing a series of examples of identifying
fixed sets for column weight three LDPC codes of girth 8. It
will be illustrated in the next subsection that many of these
fixed sets contain proper subsets that are inducing sets, hence
these fixed sets are trapping sets with critical number smaller
than the cardinality of the fixed sets. Henceforth, for the sake
of generality, we shall refer to fixed sets as trapping sets.

Example 1:Consider the (4, 4) and (5, 3) trapping sets as
shown in Figure 1 and 2. The (5, 3) trapping set can be
obtained by adding one variable nodev5 which connect two
odd degree check nodec5 and c7. In the point and line
representation, this corresponds to adding one line passing
through the two black points which representc5 and c7.
Since c5 and c7 now have two neighbors, its color changes
to white. The variable nodev5 needs one more neighboring
check node because the code is of column weight three, hence
an odd degree check nodec9 is added. In the line and point
representation, this corresponds to adding a black node on the
newly added line which representsv5. As a general rule, if a
point has an additional line passing through it, its color will
change. This suggests that the additional lines to be added
should only passed through the currently black points so that
in the resulting subgraph, all lines have more white points than
black points. Also, the girth of the graph has to be preserved.
In this example, only line passing throughc5 andc7 or c6 and
c8 can be added. If a line is added passing throughv5 andv6

or v7 andv8 then the girth of the graph is reduced to 6.
Example 2: In the same manner, we can add one more

variable node to the (5, 3) trapping set to get a trapping set of
cardinality 6. There are two ways to add such variable node
which yield different results as shown in Figure 3. If we add
a variable nodev6 connecting to check nodec8 and c9 and
introduce an odd degree check nodec10, then the result is
a (6, 2) trapping set. On the other hand, if the variable node
v6 hasc6 as its third check node then a (6, 0) trapping set is
obtained. Note that if an LDPC code contains a(a, 0) trapping
set then it contains codewords of weighta.

Example 3:For illustrative purposes, we again show the
line and point representation of the (4, 4) trapping set in Figure
4(a) but with a slightly different way of drawing. It can be
seen that the black points which represent check nodec5 and

(a) (b)

Fig. 3. Children of (5, 3) trapping set: (a) (6, 2) trapping set; (b) (6, 0)
trapping set.

(a) (b)

(c)

Fig. 4. (6, 4) trapping set obtained from (4, 4) trapping set: (a) another
look of the (4, 4) trapping set; (b) (6, 4) trapping set formed by a union of
an 8-cycle and a 10-cycle; (c) (6, 4) trapping set formed by a union of two
8-cycles.

c7 are still on the lines which represent variable nodesv1 and
v3, respectively. By adding two variable nodesv5 andv6 such
that v5 is connected toc5, v6 is connected toc7 andc9 is the
common neighbor ofv5 andv6, we obtain a (6, 4) trapping set,
which is a union of an 8-cycle and a 10-cycle. This trapping
set is shown in Figure 4(b). If we add two variable nodesv5

andv6 such thatv5 is connected toc8, v6 is connected toc7

and c9 is the common neighbor ofv5 andv6, we also obtain
a (6, 4) trapping set as shown in Figure 4(c). However, this
(6, 4) trapping set is a union of an two 8-cycles.

It can be seen that the topological relations among trapping
sets follow directly from the way they are identified. A
trapping set is a child of another trapping set (its parent)
if its induced subgraph can be obtained by adding lines to
the induced subgraph of the other trapping set. Figure 5
demonstrates the trapping set ontology for column weight
three LDPC codes under the Gallager A algorithm. Note that
only trapping sets up to size six are shown. A more complete
list can be found in [9].

5

Fig. 5. Trapping set ontology for column weight three codes and Gallager
A algorithm.

(a) (b)

Fig. 6. (7, 3) trapping sets: (a) child of (5, 3) trapping set; (b) child of (6, 4)
trapping set.

B. More on critical number of trapping sets

The harmfullness of a trapping setT depends on its critical
numberm(T) and the number of inducing sets, especially
ones with cardinalitym(T). The smaller the critical number,
the more harmful a trapping set since fewer number of errors
can result in decoding failure by ending in that trapping set.
Larger number of inducing sets also increases the probability
of decoding failure.

The topological relations of trapping sets suggest that there
is a relation among critical numbers of trapping sets. Based
on this, we provide the following conjecture.

Conjecture:The critical number of a trapping setT is upper
bounded by the critical number of its parents.

This conjecture gives a relative measure of the harmfulness
of a trapping set based on the harmfulness of its parents as
illustrated in the following examples.

Example 4:Consider two (6, 4) trapping sets shown in
Figure 4(b) and (c). Both are children of the (4, 4) trapping
set shown in Figure 1. Both has critical numberm = 4. The
(6, 4) trapping set which is the union of two 8-cycles (Figure
4(c)) has two inducing sets of cardinality 4. Each inducing
set consists of variable nodes that form an 8-cycle. On the
other hand, the (6, 4) trapping set which is the union of an 8-
cycle and a 10-cycle (Figure 4(b)) only has one inducing set of
cardinality 4. The inducing set, again, consists of the variable
nodes which form the 8-cycle. The number of inducing sets
indicates that the former trapping set is more harmful than
the later. A possible explaination for the difference in the
harmfulness of the two trapping sets is that a 10-cycle (or a
(5, 5) trapping set) is less harmful than an 8-cycle (or a (4, 4)
trapping set). Thus, the trapping set which is a union of an
8-cycle and a 10-cycle is less harmfull than the trapping set
which is a union of two 8-cycles.

Example 5:Consider two (7, 3) trapping sets shown in
Figure 6. Both are unions of two 8-cycles and one 10-cycle.
One trapping set is shown in Figure 6(a) and is a child of the
(5, 3) trapping set shown in Figure 2. This trapping set has
critical numberm = 3. The other trapping set is shown in
Figure 6(b). This trapping set is a child of the (6, 4) trapping
set shown in Figure 4(b) and has critical numberm = 4. It can
be seen that the former trapping set is more harmful than the
later. The former trapping set also has a more harmful parent,
since the (5, 3) trapping set has critical numberm = 3 while
the (6, 4) trapping set has critical numberm = 4.

We shall now describe how the trapping set ontology can
be used for predicting the error floor behaviour of codes as
well as in constructing codes that have lower error-floors under
standard message-passing algorithms.

V. A PPLICATION OF TRAPPING SET ONTOLOGY

A. Performance estimation of the iterative decoders in the
error floor region

It was previously mentioned that the error floor phenomenon
is predominantly caused by the presence of trapping sets in
the Tanner graph of a code. Hence, the problem of error floor
estimation for any given code on a particular channel reduces
to identifying the dominant trapping sets (which are typically

6

small subgraphs) for a given decoder and determining the
cardinality of such structures present in the Tanner graph of the
code. Based on this notion, the work of [2] and [3] provided
semi-analytical methods to accurately predict the error floors
of codes for the AWGN and BSC channels respectively. For
the case of the BSC channel as shown in [3], the trapping sets
can be conveniently classified into different classes basedon
their critical numbers and their strengths in order to simply
the search for relevant trapping sets of a code. The strength
of a trapping set is defined as the number of inducing sets
with cardinality equal to the critical number that cause the
decoder to fail on the trapping set. Using this classification, it
becomes sufficient to determine the cardinality of each class of
trapping sets present in the Tanner graph of the code and then
the contribution of each class towards the error floor estimation
for a given SNR can be easily calculated [3]. The cardinalityof
each trapping set class is determined by searching the graph.

The trapping set ontology can be used to greatly simplify
the enumeration of the trapping set classes by exploiting the
parent-child relationships between different subgraphs com-
pared to a brute-force search and counting of each individual
trapping set class. The first step in the search algorithm would
be to count the number ofg-cycles in a Tanner graph of girth
g since the shortest cycles are the most harmful cycles in
the graph. Since theg-cycles can be considered as an(a, a)
parent trapping set, we can then search for all the trapping
sets that are the children of theg-cycle by simply checking
the connections between the odd-degree check nodes of the
(a, a) parent. The complexity involved in the search of cycles
using a standard tree-based algorithm is linear with the length
of the code. Hence, the complexity involved searching for the
trapping sets that are children of a parent trapping set willalso
be linear in length of the code. For example, if we consider a
(3, 6) regular girth-8 LDPC code with length of the code being
n, the complexity involved in searching for a (4, 4) trapping
set using the tree-based algorithm is(3·52 ·22)n = 300n. Now
in order to search for (5, 3) trapping sets, we can simply take
all the (4, 4) parent trapping sets we just found and check
if any pair of the degree-one check nodes of the (4, 4) are
connected through a variable node. The complexity for the
search algorithm will then be twice as much as the complexity
involved in searching the (4, 4) trapping sets which is still a
linear increase inn. In this manner, by utilizing the trapping set
ontology into the search algorithm, the complexity of search
is only linear withn.

Figure V-A shows the simulated results and estimated error
floor for the Margulis code which is a (3, 6) regular LDPC
code of length 2640 based on the method described in [3]. It
is evident from the result that the prediction of the error floor
on the BSC is quite accurate.

B. Code construction

Given the knowledge of potentially harmful trapping sets for
a particular decoder, it is now well understood that an effective
code design strategy that significantly improves the slope of
the error floor in the FER performance of a code is to avoid
these harmful structures while constructing the Tanner graph

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Probability of Transition (α)

F
ra

m
e

E
rr

or
 R

at
e(

F
E

R
)

Margulis−Simulation
Theoretical

Fig. 7. FER plot for Margulis code under Gallager A algorithm

of the code. For the BSC channel, the trapping set classifcation
based on the critical number and strength of the trapping set
becomes particularly important since the critical number of
a trapping set directly affects the slope of the error floor [4].
Hence, by avoiding trapping sets that have low critical number
during code construction, we can improve the guaranteed error
correction capability of the code.

The parent-child relationship of different subgraphs pro-
vided by the trapping set ontology can now be exploited to
simplify the construction algorithm of the code. Based on
the conjecture provided in the previous section that relates
the critical numbers of the parent and children, we can see
that the relevant trapping sets that need to be avoided are
simply the parent trapping sets. For example, suppose we want
to construct a girth-8 code and avoid trapping sets having a
critical number of 3 (or lower) for the Gallager-A algorithm
on the BSC channel. From the previous section, we know
that the (5, 3) trapping set has a critical number of three
and must be avoided. By just avoiding the (5, 3) trapping
set, we are already ensuring that the (6, 2), (6, 0) and (7, 1)
trapping sets are avoided since they are the children of the
(5, 3) trapping set. Hence, in this manner by exploiting the
parent-child relationship, the number of trapping sets that need
to be considered in the code construction for avoiding is signif-
icantly reduced. Also from the construction algorithm’s point
of view, it becomes much simpler to avoid smaller subgraphs
during code construction especially when using standard tree-
based construction techniques such as progressive edge growth
(PEG) [10].

Trapping set ontology can also be helpful in deriving
sufficient conditions to guarantee correction of certain number
of errors since it can reduce the number of different subgraphs
to be analyzed. Based on these premises, the work of [11]
provided sufficient conditions on the Tanner graph of the
LDPC codes that guarantees correction of three errors. These
sufficient conditions are simply the trapping sets that needto
be avoided and hence can be directly incorporated into the
construction algorithm. In [11], column-weight three codes
were constructed by modifying the PEG algorithm to avoid
these structures and the slope of the FER performance of the
resulting code was improved from 3 to 4. The performance

7

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

Probability of transition (α)

F
ra

m
e

er
ro

r
ra

te
(F

E
R

)

PEG Original
PEG New

Fig. 8. Example of the FER performance improvement by advoiding trapping
sets in code construction

Fig. 9. Example of the FER performance improvement by eliminating
trapping sets by using Tanner graph cover

results of the original code and modified code are shown in
Figure V-B. Other strategies apart from modifying the PEG
algorithm that can be used to avoid trapping sets during
construction are the use of graph covers [4]. In this technique,
the method it consists of taking two (or more) copies of the
same code and swapping edges between the code copies in
such a way that the most dominant trapping sets are broken.
Performance results comparing the original code with the
modified code are shown in Figure V-B. (see [4] for more
details on this technique).

VI. CONCLUSION

In this paper, we have shown a systematic method to identify
the most relevant trapping sets for decoding over the BSC in
the error floor region. We showed how to develop trapping set
ontology, a database of trapping sets that summarizes the topo-
logical relations among trapping sets and illustrated for column
weight three LDPC codes under the Gallager A algorithm.
Examples have been given to show the usefulness of trapping
set ontology. Future works include investigating properties of

trapping sets and developing trapping set ontology for different
decoding algorithms on various channels.

REFERENCES

[1] R. G. Gallager,Low Density Parity Check Codes. Cambridge, MA:
M.I.T. Press, 1963.

[2] T. J. Richardson, “Error floors of ldpc codes,” inProc. 41st Annual
Allerton Conf. on Communications, Control and Computing, 2003,
pp. 1426–1435. [Online]. Available: http://www.hpl.hp.com/personal/
Pascal\ Vontobel/pseudocodewords/papers

[3] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
LDPC codes on the binary symmetric channel,” inProc. Int. Conf. on
Communications, vol. 3, 2006, pp. 1089–1094.

[4] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping
sets in low-density parity-check codes by using tanner graph covers,”
IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 3763–3768, 2008.
[Online]. Available: http://dx.doi.org/10.1109/TIT.2008.926319

[5] S. Chilappagari and B. Vasic, “Error-correction capability of column-
weight-three LDPC codes,”IEEE Trans. Inform. Theory, vol. 55, no. 5,
pp. 2055–2061, May 2009.

[6] S. K. Chilappagari, M. Chertkov, M. G. Stepanov, and B. Vasic,
“Instanton-based techniques for analysis and reduction oferror floors
of LDPC codes.” [Online]. Available: http://arxiv.org/abs/0903.1624

[7] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inform. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[8] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,”IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[9] “Trapping set ontology.” [Online]. Available: http://www.ece.arizona.
edu/∼vasiclab/Projects/CodingTheory/TrappingSetOntology.html

[10] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,”IEEE Trans. on Inform. Theory,
vol. 51, no. 1, pp. 386–398, 2005.

[11] S. K. Chilappagari, A. R. Krishnan, and B. Vasic, “LDPC codes which
can correct three errors under iterative decoding,” inProc. of IEEE
Information Theory Workshop, May 5-9, 2008.

