
On the Selection of Finite Alphabet Iterative
Decoders for LDPC codes on the BSC

Ludovic Danjean, David Declercq
ETIS

ENSEA / Univ. Cergy-Pontoise / CNRS UMR 8051
F-95000 Cergy-Pontoise, France

{danjean,declercq}@ensea.fr

Shiva K. Planjery, Bane Vasić
Dept. of Electrical and Computer Eng.

University of Arizona
Tucson, AZ 85721, USA

{shivap,vasic}@ece.arizona.edu

Abstract—Recently new message passing decoders for LDPC
codes, called finite alphabet iterative decoders (FAIDs) were
proposed. The messages belong to a finite alphabet and the update
functions are simple boolean maps different from the functions
used for the belied propagation (BP) decoder. The maps can
be chosen using the knowledge of potential trapping sets such
that the decoders surpass the BP decoder in the error floor. In
this paper, we address the issue of selecting good FAIDs which
perform well in the error floor for column weight three codes. We
introduce the notion of noisy trapping set which is a generalization
based on analyzing the local dynamic behaviour of a given FAID
on a trapping set. Using this notion as the core, we provide
an iterative greedy algorithm that outputs a set of candidate
FAIDs containing potentially good decoders for any given code.
To illustrate the appliance of the methodology on several codes,
we show that the set of candidate FAIDs contains particularly
good FAIDs for different codes with different rates and lengths.

I. INTRODUCTION

Traditional iterative decoders for low-density parity-check
(LDPC) codes are all based on the inference algorithm known
as belief propagation (BP). Under BP decoding LDPC codes
perform close to Shannon’s theoretical limit asymptotically
in the length of the code. For finite length codes however,
the presence of unavoidable cycles in the Tanner graph of the
code cause the BP decoder to fail on low-weight error patterns
that would be correctable by the maximum likelihood decoder
(MLD). This leads to an abrupt degradation in the slope of the
error rate performance in the high signal-to-noise ratio (SNR)
well known as the error floor region.

The error floor problem has attracted significant interest
with emphasis on designing codes and low-complexity
decoders with lower error floors. Richardson introduced the
notion of trapping sets in order to characterize error floors
[1]. These are certain subgraphs consisting of cycles present in
the Tanner graph of the code that increase the rate of decoder
failure in the high SNR region.

Recently a new class of finite alphabet iterative decoders
(FAIDs) were proposed for LDPC codes over the Binary
Symmetric channel (BSC), where the messages can take a
finite number of levels [2]. These new decoders can provide
a superior performance in the error floor compared to BP
but with only a fraction of its complexity as only a small
number of bits (as small as 3) are required for the message
representation. The update functions used at the variable nodes
are maps different from that used in BP and are chosen

with the goal of increasing the guaranteed error correction
capability of the code which governs the slope of the error
floor on the BSC [3].

In this paper, we focus on the issue of designing good
FAIDs for column weight three codes. Although the important
concept of isolation assumption was introduced in [2] which
allows one to analyze decoders on potential trapping sets in an
isolated fashion (disregarding the neighborhood of the trapping
set contained in a particular graph), a precise strategy for
selecting FAIDs was not provided. In addition, on an actual
code, the neighborhood can greatly influence the dynamics of
message passing on the trapping set. Therefore, analysis of a
FAID under isolation assumption does not accurately reflect
the true decoding behaviour on a practical code, unless a much
larger subgraph containing the true neighborhood (to a certain
extent) is considered for the analysis. This was also identified
in [4] where a code specific methodology was proposed which
involved analyzing the FAIDs on subgraphs induced by the
minimum-weight codewords (of size 20) and selecting them
based on their error-correction capability on the subgraphs,
and this gave best performing FAIDs for the code.

Our main goal in this paper is to provide a methodology
that is not code specific but which gives a set of candidate
FAIDs that contains potentially good decoders in the error
floor for any given column-weight three code, and which
utilizes only a few carefully selected small trapping sets in the
analysis. To achieve this, we introduce the notion of a noisy
trapping set which involves introducing noisy messages in the
neighborhood while analyzing a given FAID on a trapping
set. We then propose an iterative greedy algorithm that selects
candidate FAIDs using certain statistics computed on the noisy
trapping sets.

The rest of the paper is organized as follows. In Section II,
we provide preliminaries required for describing FAIDs. In the
Section III, we introduce the the notion of noisy trapping sets
which forms the basis for our methodology. We then describe
the proposed selection algorithm in Section IV. Finally Section
V provides the results and conclusions.

II. FINITE ALPHABET ITERATIVE DECODERS

A. Preliminaries and notations

Let C denote an (N ,M) binary LDPC code whose Tanner
graph G has N variable nodes and M check nodes with a set

of variable nodes V = {v1, · · · , vN}. The degree of a node
is the number of its neighbors. The code is said to be dv-left-
regular if all variable nodes in G have the same degree dv . In
this paper, we consider only 3-left-regular LDPC codes.

The u represents a variable node, @ represents an even
degree check node, and p represents an odd degree check
node. As defined in [1], a trapping set (TS) is a non-empty
set of variable nodes in G that are not eventually corrected
by the decoder. A standard notation for a trapping set is (a, b)
where a is the number of variable nodes and b is the number
of odd-degree check nodes in the subgraph induced by the a
variable nodes.

The critical number m(a, b) of a TS(a, b) under a particular
decoder is the minimum number of errors that need to be
introduced in TS(a, b) to cause the decoder to fail on TS(a, b)
under isolation assumption. More details on this notion will
be discussed in the next section.

B. Definition of FAID

An Ns-level FAID F (as defined in [2]) is a 4-tuple given
by F = (M,Y,Φv,Φc). The messages are levels confined
to an alphabet M = {0,±Lk : 1 ≤ k ≤ Ns−1

2 } consisting
of Ns levels, where Li ∈ R+ and Li > Lj for any i > j.
The set Y denotes the set of possible channel values. For the
case of BSC, Y = {±C}, and for each variable node vi in
G, the channel value yi ∈ Y is determined by yi = (−1)riC
where ri is the value received from the channel, i.e., we use
the mapping 0→ C and 1→ −C. We can consider the sign of
x ∈M to represent the value of the bit (postive for zero and
negative for one), and the magnitude |x| to reflect a measure
of how reliable this value is.

Φc : Mdc−1 →M is the update function used at a check
node with degree dc. Let m1, · · · ,mdc−1 denote the incoming
messages used during update at a check node with degree dc.
The function is given by

Φc(m1, . . . ,mdc−1) =

dc−1∏
j=1

sign(mj)

 min
j∈{1,...,dc−1}

(|mj |)

where sign denotes the sign function.
Φv : Y ×Mdv−1 →M is a symmetric update rule used at

a variable node with degree dv . The map Φv can be described
in closed form as a linear or non-linear threshold function [2],
or simply as a look-up table (LUT) of size Ndv−1

s . For this
paper, we shall use the LUT form. For the case of dv = 3, Φv
is a simple 2D LUT defined for each channel value.

Table I shows an example of the LUT that defines the
variable node update map of a 5-level FAID for yi = −C
(the LUT for yi = +C can be obtained by symmetry).

Since Φc is fixed for any Ns-level FAID, note that a
particular choice of Φv uniquely defines the Ns-level FAID.
Henceforth, for convenience we shall refer to a particular Ns-
level FAID by its map Φv .

It is evident from the representation that there are a
prohibitively large number of Ns-level FAIDs for possible
decoder selection (in spite of the symmetries). Hence we

Table I: LUT for Φv of 5-level FAID with yi = −C

m1/m2 −L2 −L1 0 +L1 +L2

−L2 −L2 −L2 −L2 −L2 0
−L1 −L2 −L2 −L1 −L1 +L1

0 −L2 −L1 −L1 0 +L1

+L1 −L2 −L1 0 +L1 +L2

+L2 0 +L1 +L1 +L2 +L2

further reduce the number of Ns-level FAIDs considered by
specifying an additional constraint which Φv must satisfy as
follows. For all m1,m2,m

′
1,m

′
2 ∈M such that |m1| ≥ |m′1|

and |m2| ≥ |m′2|, Φv must satisfy

|Φv(|m1| , |m2| ,C)| ≥ |Φv(|m′1| , |m′2| ,C)|

This constraint still allows for the selection of good FAIDs.
Let F = {Φ(1)

v , ...,Φ
(Nf)
v } denote the set of all possible

variable node update maps that satisfy the above constraint,
where |F| = Nf . Nf was computed to be 28,314 for Ns = 5
and 6,392,620 for Ns = 7.

III. NOISY TRAPPING SETS

A. Inadequacy of critical numbers for decoder selection

The important notion of the critical number for a trapping
set was originally introduced for Gallager-A/B algorithms on
the BSC [5]. It is computed by analyzing the Gallager-A/B
decoding on errors contained in the trapping set assuming that
all nodes outside the trapping set are initially correct. The
critical number provides a measure of how harmful a trapping
set is when it is contained in a code. Hence, this notion
is useful not only in evaluating the error floor performance
but also in the construction of codes with lower error floor
by serving as an important parameter for deciding which
trapping sets to avoid during construction [6]. Alternatively,
this parameter could also possibly be used in decoder designs
for obtaining lower error floors where a decoder is designed
or selected to increase the critical number on given trapping
set(s).

In order to be able to use this notion for decoders other than
Gallager-A/B such as the FAIDs and the min-sum decoder,
the concept of isolation assumption was introduced in [2].
Under this assumption, the neighborhood of the trapping set is
such that the messages flowing into the trapping set from its
neighborhood are not in any way influenced by the messages
flowing out of the trapping set. Under such a scenario, the
messages flowing into trapping set can be computed while
completely disregarding the neighborhood, and the decoder
can be conveniently analyzed on the trapping set.

In principle, one could select a FAID (as mentioned in [2])
based on computing critical numbers on a database of potential
trapping sets generated either through analytical or empirical
evaluations of traditional decoders such as BP and Min-Sum
on several different codes. However, the isolation assumption
of a trapping set will typically not hold in an actual code for
more than few iterations and hence the critical number will
not reflect the true error-correction capability of the FAID on
the trapping set in the code. This is especially true for trapping

sets of small sizes. Therefore, unless a very large database of
trapping sets with large sizes are considered such that isolation
assumption holds for many more iterations, the strategy will
remain ineffective. This was also shown in [4].

This motivates the need for a new notion that considers to
an extent the influence of the neighborhood of a trapping set.

B. Noisy trapping sets

We now introduce the notion of noisy trapping set,
which captures the influence of its neighborhood through the
messages that are entering into the trapping set. Let Nc denote
the number of checks in a TS(a,b).

Definition 1. An initialization vector on TS(a,b) is defined as a
vector Θ(l)

I = {θ(l)1 , ..., θ
(l)
Nc
} where θ(l)i ∈M such that during

decoding on TS(a,b) using a particular decoder, the message
entering the ith check node in the lth iteration is θ(l)i .

Definition 2. A TS(a,b) that is initialized by the initialization
vector Θ(l)

I is called a noisy trapping set.

Our main intuition behind this notion is that different
initialization vectors on the TS(a,b) mimic the different
possible messages that can enter the TS(a,b) due to the
influence of its neighborhood. In other words, the initialization
vector on TS(a,b) in the lth iteration can be considered as
a possible snapshot of what the message passing looks like
when decoding bits in the TS(a,b) in some arbitrary code.
In this manner, we still analyze the decoder’s error-correction
capability on TS(a,b) but in the presence of different possible
influences of its neighborhood unlike the isolation assumption
case. Hence this notion of noisy trapping set gives a more
accurate reflection of how the decoder would perform on
TS(a,b) in an actual code. The Fig. 1 illustrates what we refer
to as the full initialization of the TS(5,3).

In order to mimic all the possible messages entering TS(a,b),
we would ideally need NNc

s initialization vectors at each
iteration, which is computationally too complex. Hence, we
instead consider the initialization of a trapping set only
through the odd-degree check nodes . The initialization vector
is then denoted Θ

(l)
I = {θ(l)1 , ..., θ

(l)
b } where θ

(l)
i ∈ M

which reduces the number of initialization vectors. Although
from the definition, an initialization vector on TS(a,b) is
iteration-dependent or dynamic, we can also consider a static
initialization vector that is iteration independent.

θ1

θ3

θ5

θ6

θ7

θ8

θ2

θ9

θ4

Fig. 1: Full
Initialization of

a TS(5,3)

θ2

θ3

θ1

Fig. 2:
Initialization of

a TS(5,3)

θ3

θ2

θ1

Fig. 3: TS(5,3) + 3
variable nodes = TS(8,2)

The Fig. 2 illustrates the initialization of a TS(5,3) with a
static initialization vector ΘI on the odd-degree check nodes.
In order to demonstrate how the initialization can mimic the

influence of the neighborhood, consider the Fig. 3 where a
TS(8,2) is formed by adding three extra variable nodes to
TS(5,3). The initialization vector of the TS(5,3) indicates the 3
possible messages that could enter TS(5,3) due to the influence
of its neighborhood defined by TS(8,2). Tables II(a) and II(b)
show the evolution of messages θ1, θ2, and θ3 for the first
10 decoding iterations when the 5-level FAID of Table I was
employed on the (155,93) Tanner code. Table II(a) corresponds
to the case when all 5 errors are introduced on a TS(5,3)
contained in TS(8,2). Table II(b) corresponds to the case of
adding an extra 6th error in the neighborhood of TS(5,3).
From the Tables, we can see that not only does the isolation
assumption not hold as messages do not remain +L2 after
iteration 3, but at certain iterations even messages such as 0
and −L1 begin to enter the TS(5,3) due to the neighborhood.

Although we see that dynamic initialization vectors can
accurately predict the decoder behaviour, we restrict ourselves
to using static initialization vectors in order to ensure
computational feasibility in the analysis.

Table II: Evolution of the messages entering a TS(5,3)

(a) Case 1
Iter. θ(l)c1

θ(l)c2
θ(l)c3

1 +L1 +L1 +L1

2 +L2 +L2 +L2

3 +L2 +L2 +L2

4 +L1 +L1 +L1

5 0 0 0
6 +L1 +L1 +L1

7 0 0 0
8 +L1 +L1 +L1

9 +L1 +L1 +L1

10 +L1 +L1 +L1

(b) Case 2
Iter. θ(l)c1

θ(l)c2
θ(l)c3

1 +L1 +L1 +L1

2 +L2 +L2 +L1

3 +L2 +L1 +L2

4 +L2 −L1 +L1

5 0 +L1 0
6 +L2 0 +L2

7 +L2 +L1 +L1

8 +L1 0 +L1

9 +L1 +L1 +L1

10 +L1 0 −L1

C. Noisy critical number vector and decoder domination

Having introduced the notion of noisy trapping sets, it is
natural to extend the notion of critical number as well. This can
be done by computing the critical number of the TS(a,b) under
a given FAID for each initialization vector that is used on
TS(a,b) as opposed to computing it under isolation assumption.
More precisely it is defined as follows.

Let Di be an Ns-level FAID and ∆ = {ΘI(k)}k=1...Kv be
a set of Kv static initialization vectors used on a TS(a,b).

Definition 3. The noisy critical number vector for a TS(a,b)
under a given FAID Di is defined as a vector

NDi (T (a, b),∆) = {m̃Di,k}k=1...Kv

where m̃Di,k is the smallest number of errors that cannot be
corrected by Di, when TS(a,b) is initialized using ΘI(k).

Since the noisy critical number vector NDi
reflects the

error-correction capability of Di on TS(a,b) under different
possible influences of the neighborhood, we can use this new
metric in order to select potentially good FAIDs. But before we
describe the methodology, we need to introduce the concept of
domination that allows us to compare the noisy critical number
vectors between any two FAIDs in order to determine whether
a FAID is potentially good or not.

For two FAIDs Di and Dj , a set of Kv initialization vectors
∆ on a TS(a,b), the decoder Di is said to dominate Dj if:

Kv∑
k=1

1(m̃Di,k ≥ m̃Dj ,k) ≥
Kv∑
k=1

1(m̃Di,k ≤ m̃Dj ,k) (1)

where 1 represents the indicator function of the condition
in argument. In other words Di will dominate Dj if during
an elementwise comparison between the two noisy critical
number vectors NDi

and NDj
, the number of instances when

(m̃Di,k ≥ m̃Dj ,k) is greater than or equal to the number of
instances when (m̃Di,k ≤ m̃Dj ,k).

IV. METHODOLOGY FOR SELECTION OF FAIDS

We now describe a methodology that uses the notions
of noisy critical number and decoder domination as the
basis. Ideally, one would like to find an Ns-level FAID that
dominates all other Ns-level FAIDs on a large number of
potential trapping sets with reasonable values of a and b.
However, we do not believe that such a decoder exists. Also
from our observations, it is not possible to provide a strict
ordering of the decoders in terms of how good they are for
any code, since a FAID that performs the best on one code
may not perform well on another code. We therefore propose
a selection algorithm that provides a collection of several
candidate FAIDs which are selected based on their analysis
on noisy trapping sets, and from which one can then choose a
particular FAID for any given 3-left-regular LDPC code using
possibly brute force simulation of all the candidate FAIDs in
the set or by some other means.

The first step is to choose the potential trapping sets and
the set ∆ that would be used for the analysis. Since we would
like to use only a few trapping sets in the analysis for practical
reasons, it is imperative that we carefully identify and select
the trapping sets that are known to be the most harmful for
the decoder performance. We have chosen TS(5,3), TS(7,3),
TS(8,2), TS(10,2) as the noisy trapping sets based on their
harmfulness and also their topological relations [6].

The next step is to construct a set of potentially "good" and
"bad" decoders from the set of Nf possible FAIDs (whose
maps belong to F), namely SD(good) and SD(bad). This is
done by definining an appropriate cost function and comparing
its value to a threshold. Due to page limits, we have omitted
details related to choice of the cost function, but basically it
is based on whether a FAID Di dominates (or is dominated
by) FAIDs in SD(good) and SD(bad). Initially, SD(good) is
empty and SD(bad) is initialized with a known decoder D0,
which was chosen as the min-sum decoder. Then a FAID is
chosen from the set F , and it is either placed in SD(good) or
SD(bad) depending on the value of the cost function which
is compared to a threshold. This process is repeated until
SD(bad) contains an NB number of FAIDs. After this, the
subsequent FAIDs are either placed in SD(good) or simply
rejected or it replaces one of the FAIDs it was dominated by in
SD(bad) with a small probability, which is all decided based
on the value of the cost function. At the end, the set SD(good)

is the final set of candidate FAIDs that are potentially good
for any 3-left-regular code. The decoder selection algorithm is
described below.

1) Define the set ∆ of initialization vectors and fix
SD(good) = ∅ and SD(bad) = D0.

2) Consider a valid FAID Di whose map belongs to set F
and compute its noisy critical numbers
NDi (T (5, 3),∆), NDi (T (7, 3),∆), NDi (T (8, 2),∆),
NDi (T (10, 2),∆).

3) Define a cost function based on the domination strength
of Di with respect to the decoders in SD(good) and
SD(bad), such that it has the following properties:
• If Di dominates Dj ∈ SD(bad) and dominates
Dm ∈ SD(good), then the value of the cost
function increases.

• If Di is dominated by Dj ∈ SD(good) and is being
dominated by Dm ∈ SD(bad), then the value of
the cost function decreases.

4) If the value of the cost function is greater than some
threshold, place Di in SD(good). Else
• If |SD(bad)| < NB , place Di in SD(bad),
• Else it means |SD(bad)| = NB . Then with a small

probability replace Dj ∈ SD(bad) that dominates
Di, by Di only if the value of the cost function is
small enough and much lower than the threshold.
Otherwise reject it.

5) Go to 2) until all Nf FAIDs have been considered.
6) SD(good) is the final output set of candidate FAIDs.

Algorithm 1: Decoder Selection Algorithm

The maximum cardinality NB of SD(bad) is important
to choose properly, since if NB is too less, the role of the
cost function diminishes and many FAIDs will be easily
placed in SD(good). At the same time, it should not be too
high as then it may bias the cost function to reject many
good FAIDs. We chose NB = 20 for our simulations and
found this to be a reasonable choice. The threshold in (4)
will control the cardinality of the final output set SD(good).
This choice depends on our requirements depending on our
computational resources since FAIDs need to be further chosen
from the candidate set SD(good) for a given code. Using this
methodology, we obtained for the 5-level |SD(good)| = 5
FAIDs among 28,314 possible 5-level FAIDs tested, and
|SD(good)| = 70 7-level FAIDs among 6,575,972 7-level
FAIDs tested. The list of the final candidate FAIDs will be
reported in a future publication.

V. RESULTS AND CONLUSIONS

In order to validate our approach, we selected particular
FAIDs from the final candidate sets of SD(good) obtained
for both 5 and 7 levels, for three different codes: (155,93)
Tanner code, the (2640,1320) Margulis code, and a rate 0.7
(530,157) quasicyclic (QC) code. Since these codes have
different lengths, rates, and different trapping set ensembles,

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

cross−over probability (α)

F
ra

m
e

E
rr

o
r

R
at

e
(F

E
R

)

Belief Propagation

5−level

7−level

5−level best threshold

7−level best threshold

Fig. 4: FER results for the Tanner Code, N=155, R=0.413

it serves as a good testbench to verify that our methodology
is not code specific.

Numerical results for frame error rate vs cross-over
probability (α) for different decoders on the BSC for all three
codes are shown in Figs. 4, 5,6. For the Tanner code, Table I
was used for the 5-level FAID, and Table III was used for the
7-level FAID. For the other two codes, the 5-level and 7-level
FAIDs are different from the ones used on the Tanner code, but
they all were also chosen from the candidate sets of SD(good).
Their maps are not specified due to page constraints. For all
the three codes, we see that all the 5-level and 7-level FAIDs
chosen from the candidate set for each code outperform BP
in the error floor. Included in the Figures are also numerical
results for the FAIDs with best decoding thresholds which
were computed using discrete density evolution [7]. We also
see that all the 5-level FAIDs and 7-level FAIDs chosen from
the candidate set outperform these FAIDs with best thresholds
on all three codes, thereby showing that optimzing the decoder
design for the best decoding thresholds does not necessarily
lead to the best decoders. In fact the best threshold FAIDs
show relatively high error foors.

We have presented a methodology that is not code specific
for selecting a collection of candidate FAIDs. We remark that
the procedure presented in this paper was able to provide us
with a set of potentially good FAIDs fairly quickly (within
48 hours) and from which we were able to select particular
FAIDs with excellent performance in the error floor for several
different codes. It was also interesting to note that none of the
selected candidate FAIDs had bad decoding thresholds even
though density evolution was never used in the methodology.

Table III: Look-up table for Φv of a 7-level FAID with yi = −C

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 +L1

−L1 −L3 −L3 −L2 −L2 −L1 −L1 +L1

0 −L2 −L3 −L2 −L1 0 0 +L1

+L1 −L3 −L2 −L1 0 0 +L1 +L2

+L2 −L3 −L1 −L1 0 +L1 +L1 +L3

+L3 −L1 +L1 +L1 +L1 +L2 +L3 +L3

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

cross−over probability (α)

F
ra

m
e

E
rr

o
r

R
at

e
(F

E
R

)

Belief Propagation

5−level

7−level

5−level best threshold

7−level best threshold

Fig. 5: FER results for Margulis LDPC code, N=2640 R=0.5

10
−3

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

cross−over probability (α)

F
ra

m
e

E
rr

o
r

R
at

e
(F

E
R

)
Belief Propagation

5−level

7−level

5−level best threshold

7−level best threshold

Fig. 6: FER results for QC-LDPC code, N=530 R=0.7

ACKNOWLEDGEMENT

The authors want to thank D. V. Nguyen for providing the
QC-LDPC code of length 530. This work was funded by the
Nano2012 project, the French GdR-ISIS research network, and
the NSF grants CCF-0830245 and CCF-0963726.

REFERENCES

[1] T. Richardson, “Error Floors of LDPC Codes,” in Proc. 41st Annual
Allerton Conf. on Comm. Cont. and Comput., 2003.

[2] S. K. Planjery, D. Declercq, S. K. Chilappagari, and B. Vasić,
“Multilevel decoders surpassing belief propagation on the binary
symmetric channel,”Proc. IEEE Int. Symp. Inf. Theory,pp.769–773,2010.

[3] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets
in low-density parity-check codes by using Tanner graph covers,” IEEE
Trans. Inf. Theory, vol. 54, no. 8, pp. 3763–3768, 2008.

[4] D. Declercq, L. Danjean, E. Li, S. K. Planjery, and B. Vasić, “Finite
Alphabet Iterative Decoding (FAID) of the (155,64,20) Tanner Code,”
6th Int. Symp. on Turbo-Codes & Iter. Inf. Proc., 2010, pp. 11–15.

[5] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasić, “Error floors of
LDPC codes on the binary symmetric channel,” in Proc. IEEE Int. Conf.
on Comm., vol. 3, 2006, pp. 1089–1094.

[6] B. Vasić, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery,
“Trapping set ontology,” in Proc. 47th Annual Allerton Conf. on Comm.,
Cont. and Comput., Sept. 2009.

[7] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, 2001.

