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Abstract— In this paper, we present a combinatorial algorithm
to calculate the exact bit error rate performance of regular
low-density parity check codes under one-step majority logic
decoding. Majority logic decoders have regained importance in
nano-scale memories due to their resilience to both memory
and logic gate failures. This result is an extension of the work
of Rudolph on error correction capability of majority-logic
decoders.

I. I NTRODUCTION

With the decreasing transistor size, it is becoming increas-
ingly possible to develop small, fast and efficient memory
chips. As the demand for higher memory densities continues,
a wide range of new nano-scale technologies is being actively
investigated. It is widely recognized that due to their miniature
size and variations in a technological process, the nano-
components will be inherently unreliable. The main challenge
in building stable memories in nano-scale systems is both
faulty storage elements and faulty logic gates of the error-
correction circuitry. It is in contrast to the state-of-the-art
systems where only the memory elements are considered
unreliable while error correction encoders and decoders are
assumed to be made of reliable logic gates. An interesting
consequence of the presence of an unreliable decoder is that
complex decoding algorithms requiring complex Boolean cir-
cuits need not necessarily perform better than low complexity
decoders. This has renewed interest in majority logic decoders.

In one of our recent works [1], we considered a Taylor-
Kuznetsov low-density parity check (LDPC) coded mem-
ory system [2], [3] with a one-step majority logic decoder
constructed with faulty gates. For the case of perfect logic
gates, this problem can be reduced to a problem of error
correction capability of the one-step majority logic decoder
considered by Rudolph [4], but surprisingly, his result hasso
far not been extended to determine the bit error rate (BER)
of LDPC codes. We present a combinatorial algorithm to
calculate the exact bit error rate performance of the one-
step majority logic decoder on regular, four-cycle free LDPC
codes over the binary symmetric channel (BSC), which is
used to model failures of memory elements. We explain how
the total number of error configurations that will result in
a decoding error can be calculated efficiently. Using this
algorithm, BER of several LDPC codes derived from finite

geometry is determined. The results presented here complete
the work in [1]. There are many papers on the performance of
LDPC codes under iterative decoding, most notably the work
by Richardson and Urbanke [5]. But, the analysis in general is
for average performance of an ensemble of codes. For a given
code, its performance under iterative decoding cannot yet be
determined analytically. For the case of low complexity hard
decision decoders, there has been some work that determines
undecodable error patterns for a specific code. For example,
in [6], for a special class of Euclidean geometry codes, the
authors determine such patterns for the bit-flipping algorithm.

The paper is organized as follows. We start with an ex-
planation of one-step majority logic decoder and present the
generalized algorithm in Section II. We apply this algorithm
to several codes in Section III and finally conclude the paper
in Section IV.

II. ONE-STEP MAJORITY LOGIC DECODER

The one-step majority logic decoding algorithm is briefly
explained below. LetH be the parity check matrix of a(n, k)
regular linear codeC with column weightγ and row weight
ρ. Let v=[v0, v1, v2, .., vn−1] be the sent codeword andr = v +
e be the received vector, wheree=[e0, e1, ..., en−1] is the error
vector. Every variable node or code bit is involved inγ parity
check sum equations. Ife6=0, then some of the parity check
sum equations may not be zero, i.e.r · H may not be a zero
vector. Let theγ parity check equations for a variable node
vj be

P =
[
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]
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If code C has no four cycles, then the only variable node
common to all of these checks isvj . These checks are said
to be orthogonal to the variable nodevj or correspondingly,
to the jth error position. Similarly, there existsγ orthogonal
parity check equations for alln variable nodes. Therefore,
the one-step majority logic decoding is simply described as
follows,

v̂j = rj ⊕ majority
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(2)
where,p(j)

i indicates theith check node parity of thejth bit
node and the operation⊕ indicates modulo-2 summation.
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Fig. 1. One-step MLG operating on the Tanner graph

One-step majority logic decoder can also be explained
as a decoder operating on the Tanner graph of the code.
For example, consider Fig. 1, the part of the Tanner graph
corresponding to the nodevj . All the variable nodes send their
received value to all the corresponding checks. When decoding
vj , checkp

(j)
i sends the sum (modulo-2) of all the incoming

messages (except fromvj) to vj . Similarly, all other checks
orthogonal tovj send their respective messages. Finally,vj

is decoded as the majority of all the incoming messages.
This procedure is carried out for alln variable nodes. For
such a decoder, the bit error rate of a code can be computed
analytically. This method is generic and can be applied to any
code with a minimum girth of at least 6. In this paper, we
apply this algorithm to several LDPC codes designed from
projective and affine geometries.

The probability of a bit being in error after decoding can
be determined as follows,

Pb =
∑

Ne

Pr(bit decoded incorrectly|Ne errors) · Pr(Ne errors)

(3)

whereNe is the number of errors in a codeword. For sake of
simplicity, let b0 and b̂0 be the channel and decoder output of
the bit and let its transmitted value be0. Then,

Pb =
∑

Ne

[

Pr(b̂0 = 1|{Ne errors, b0 = 0})·

Pr(b0 = 0|Ne errors)+

Pr(b̂0 = 1|{Ne − 1 other errors, b0 = 1})·

Pr(b0 = 1|Ne errors)
]

· Pr(Ne errors),

(4)

where, by (Ne − 1) other errors, we mean the number of
errors not counting the error inb0 itself. Now, we describe
how the expressions Pr(b̂0 = 1|{Ne − 1 other errors, b0 =
1}) and Pr(b̂0 = 1|{Ne errors, b0 = 0}) can be calculated
combinatorially.

The neighboring variable nodes ofb0 is defined as the set
of nodes that has at least one check in common withb0. We
introduce the following notation:

Nv : number of neighboring variable nodes ofb0,

N̄v : number of non-neighboring variable nodes ofb0,

Ne
v : number of neighboring variable nodes ofb0 in error,

N̄e
v : number of non-neighboring variable nodes ofb0 in error.

Using this notation, the terms of Eqn. (4) can be further
expanded as,
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The errors in the received word is partitioned into two sets -
errors that occur among the neighboring variable nodes and
that occur among non-neighboring variable nodes ofb0. Only
the errors in the neighboring nodes have an effect on the
decision onb0. For four-cycle free codes, there can be at most
one check in common between two variable nodes. Therefore,
the number of neighboring variable nodes ofb0 is Nv =
γ (ρ − 1). For a givenNe, N̄

e
v and b0, Ne

v is fixed and are
distributed among theNv neighboring nodes ofb0 and affect
γ check equations. Depending on how theγ check equations
are affected, some error patterns may induce incorrect decision
on b0 and some may induce correct decision onb0. The total
number of error patterns is,

(

γ (ρ − 1)
Ne

v

)

. (7)

But, it is cumbersome to determine whetherb̂0 is incorrect or
not for each of these cases individually. Instead, we calculate
the probability by first considering allvalid integer partitions
of Ne

v . Let a partition be denoted as[q1 q2 q3 · · · qNe
v
], i.e.

Ne
v = 1 · q1 + 2 · q2 + · · ·+ Ne

v · qNe
v
. We define a partition to

be valid, if

1) ∀ i > (ρ − 1), qi = 0

2) q =
∑Ne

v

i=1 qi ≤ γ.

A valid partition is interpreted as an error pattern withq1

checks having 1 error,q2 checks having 2 errors and so on.
There are many error configurations with the same pattern
(or partition), but all of them will result in the samêb0.
There areq checks that have at least one error and these
are among theγ checks connected tob0. Therefore, there are
(

γ
q

)

ways of selecting theseq checks. Given theq checks,
the number of error configurations that will result in the same
partition is

(

q!
q1!·q2!···qρ−1!

)

. Given the number of errors that
occur in a check, they may occur anywhere among theρ − 1
nodes connected to the check (other thanb0). Also, N̄e

v errors
may occur anywhere among then − (γ(ρ − 1) + 1)) non-
neighboring nodes ofb0. Therefore, the total number of error



configurations that result in the same partition is,
(

γ

q

) (

q!

q1!q2! · · · qρ−1!

) ρ−1
∏

j=1

(

ρ − 1
j

)qj
(

n − γ(ρ − 1) − 1
N̄e

v

)

.

(8)

The number of unsatisfied checks is the total number of checks
with odd number of errors in the partition. Therefore, the
decision onb0 is determined as follows,

b̂0 =











0 if
∑

i=1,3,...

qi <
γ

2

1 otherwise

(9)

If γ is even, then there is a possibility of a tie (equal number
of satisfied and unsatisfied checks). For such cases, we assume
b̂0 = b0.

Eqn. (8) can be calculated for all possible values ofN̄e
v and

their sum is the total number of error configurations for a given
Ne. It also gives, the number of such configurations resulting
in incorrect̂b0. Thus, Pr(b̂0 = 1|{Ne−1 other errors, b0 = 1})
and Pr(b̂0 = 1|{Ne errors, b0 = 0}) can be determined. Also,

Pr(b0 = 1|Ne errors) = e =

(

n − 1
Ne − 1

)

(

n

Ne

) =
Ne

n

Pr(b0 = 0|Ne errors) = 1 − e

(10)

Eqn. (4) can be calculated for all values ofNe and conse-
quently, for a given channel error rate (Pr(Ne errors)), exact
bit error rate for any four-cycle free code can be analytically
determined. For sake of clarity the algorithm is summarized
below,

Algorithm:

1) Calculatet, the error correcting capability of the one-
step majority logic decoder for the given code. Minimum
value of Ne is t + 1. The maximum value ofNe can
be chosen based on the required accuracy. For the codes
considered in the next section, we choset + 1 ≤ Ne ≤
t + 15.

2) For everyNe, 0 ≤ Ne
v ≤ Nv. For everyNe

v , determine
all valid partitions and the corresponding number of
configurations that gives rise to the same partition using
Eqn. (8).

3) Using Eqn. (9), determine if each of the error patterns
represented by the partitions will result in a decoding
error. The total number of possible error patterns for
a given Ne

v is given in Eqn. (7). Thus, considering
independently, the cases whenb0 is in error and not in
error at the channel output, Pr(b̂0 = 1|{Ne errors, b0 =
0}) and Pr(b̂0 = 1|{Ne − 1 other errors, b0 = 1}) can
be calculated using Eqn. (5) and Eqn. (6) respectively.

4) Use Eqn. (10) and Eqn. (4) to determine Pr(b̂0 =
1|Ne errors).

5) For a given channel error rate, use Eqn. (3) to determine
the bit error rate for the given code.

The algorithm explained above facilitates the calculationof
bit error rate for a particular code bit. But, for regular and
structured LDPC codes, as ones considered in the next section,
the probability of bit error calculation for every bit will be
the same. So, this algorithm needs to be executed only once.
The most complex task of the algorithm is to determine all
valid partitions for all possible values ofNe

v . However, in the
process of evaluating the performance of a code, the run-time
of this task will be greatly reduced, if the valid partitionsfor
a givenNe

v is stored and re-used for different values ofNe

and also for the evaluation of other codes.

III. PERFORMANCEPREDICTION OFCODES FROMFINITE

GEOMETRY

LDPC codes designed from finite geometry form an im-
portant class of majority-logic decodable codes [7]. Finite
geometry is a family of balanced incomplete block design
(BIBD). We give a brief exposition of BIBD here. A BIBD is
defined as a collection ofk-subsets of av-setP , k < v, such
that every pair of elements ofP occur together in exactlyλ
of the k-subsets. Eachk-subset is called ablock and each
element ofP is called apoint. A BIBD is referred to as a
design with parameters2-(v, k, λ). The design is said to be
balanced because each pair of points occur together in exactly
λ of the blocks and is said to be incomplete because not all
possiblek-subsets of points are blocks. General information
on BIBDs can be found in [8] and [9].

The incidence matrixof a 2-(v, k, λ) design withb blocks
is a b× v matrix A = (aij) such thataij is 1 if the ith block
contains thejth point or0 otherwise. The parity-check matrix
H of a code from BIBD is the transpose of the incidence
matrix A. The parity-check matrix obtained from the design
has uniform column and row weights. Fossorier [10] proposed
the construction of LDPC codes from the incidence structures
of finite geometries which are members of BIBD’s.

Using the derivation given in [4] by Rudolph, it can be
determined that a code from2− (v, k, 1) design, with column
weight γ, can correct up toγ−1

2 errors, if γ is odd, andγ
2

errors, if γ is even under one-step majority logic decoding.

A. Projective Geometry (PG) Codes

The projective geometry PG(2,q = 2m) codes considered
in this paper are constructed from the incidence matrix of
2 − (q2 + q + 1, q + 1, 1) designs, whereq is a power of
prime. The column weight of a PG(2,2m) code isq + 1 and
its minimum distance isdmin = q + 2. Therefore, for codes
from PG(2,2m), the decoder can correct all error patterns up
to weight t = b q+1

2 c = bdmin−1
2 c. The row weight is same

as the column weight. Therefore, the number of neighboring
variable nodes of any node is

γ (ρ − 1) = q2 + q = n − 1.

Therefore, for the PG(2,2m) code, all variable nodes are
neighbors of each other. To show how the probability of bit
error can be calculated combinatorially, we start with a simple
example.



Example: Consider the PG(2,2) code. It is a (7,7) regular
code with both column and row weight equal to 3. ItsH matrix
is as below,





















0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0





















The one-step majority logic decoder can correct one error.
In order to compute the bit error rate, Eqn. (4) needs to be
calculated for1 < Ne < 8. Let the node to be decoded be
denoted asb0 and for the purpose of this example, letNe =
5. First let us consider the cases whereb0 is not in error.
Therefore, all the 5 errors have to be distributed among the
other 6 nodes or equivalently among the 3 checks associated
to b0. The only way this can happen is by having one error
in one of the checks and two errors each on the other two
checks, which is denoted by the partition [1 2]. It is easy to
see that there are 6 ways this configuration can occur. For this
specific case, the bitb0 is decoded correctly. Therefore,

Pr
(

b̂0 = 1|{5 errors, b0 = 0}
)

= 0.

Similarly, consider the cases whereb0 is in error. Now, 4 errors
are distributed among three checks resulting in two possible
partitions [0 2] and [2 1]. In the former,b0 will be decoded
correctly and in the latterb0 will be decoded incorrectly. There
are 3 and 12 error configurations that can lead to the two
partitions respectively. Therefore,

Pr
(

b̂0 = 1|{4 other errors, b0 = 1}
)

=
12

15

Given the channel error rate, calculation of Pr(b0 =
1|Ne errors), Pr(b0 = 0|Ne errors) and Pr(Ne errors) are
straightforward. Eqn. (4) can be calculated for all values of
Ne and thus the bit error rate can be determined.

Using the above method, performance prediction of various
PG codes were determined for various channel error rates of
a BSC and are as shown in Fig. 2.

B. Affine Geometry (AG) Codes

The affine geometry AG(2,q = 2m) codes considered in this
paper are constructed from the incidence matrix of2−(q2, q, 1)
designs, where, as before,q is a power of prime. The column
weight of an AG(2,2m) is q and its minimum distance isdmin =
q + 1. Therefore, for codes from AG(2,2m), the decoder can
correct all error patterns up to weightt = b q

2c = bdmin−1
2 c.

The row weight isq+1. Therefore, the number of neighboring
variable nodes of any node is

γ (ρ − 1) = q2.

Therefore, unlike PG(2,2m) codes, nodes of AG(2,2m) codes
haveq−1 non-neighboring nodes. The method for calculating
bit error rate for this code is same as before, except that the
possibility of errors occurring in the non-neighboring nodes
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Fig. 2. Analytically calculated BER for codes from PG(2,2
m) when decoded

using one-step majority logic decoder
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Fig. 3. Analytically calculated BER for codes from AG(2,2
m) when decoded

using one-step majority logic decoder

need to be taken into account. The performance prediction of
various AG codes were determined for various channel error
rates of a BSC and are as shown in Fig. 3.

IV. CONCLUSION

Unreliability of memory elements and logic gates, due to
inherent failures of nano-components, has renewed interest in
very low complexity majority logic decoders. We recently ana-
lyzed the decoding failures of one-step majority logic decoders
constructed from faulty gates, which can be modeled as a BSC.
In this paper, we presented a combinatorial method to compute
the exact bit error rate of one-step majority logic decoder on
the binary symmetric channel (BSC) for regular, four-cycle
free LDPC codes. It constitutes an efficient methodology to
determine the number of error patterns that result in a decoding



error. This algorithm was applied to several LDPC codes
designed from projective and affine geometry and their bit
error rates were determined.
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