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Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ-85721
Email: {rathna, vasic}@ece.arizona.edu

Abstract— We consider the problem of joint detection and
decoding of low-density parity-check (LDPC) coded signals
over partial response (PR) channels. A method to graphically
represent the constraints imposed by the channel and the code
on the channel output sequence is introduced. This enables the
design of a detector and decoder that estimates a posteriori
probabilities of noiseless channel output symbols rather than
binary channel inputs. By running the sum-product algorithm
(SPA) on this graph, a joint decoder is obtained that is shown
to perform significantly better than the turbo-equalizer.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes, invented by Gal-
lager [1] and rediscovered by Mackay and Neal [2] have been
shown to be capacity achieving on memoryless channels. It has
also been shown to achieve excellent error rate performance
over channels with memory, such as magnetic storage [3] and
optical communication channels [4]. For reasons of bandwidth
efficiency, these inter-symbol interference (ISI) channels are
equalized to a partial-response (PR) target with relatively
small memory compared to the unequalized channel. Any
LDPC decoder must cope with the controlled amount of ISI
introduced by the PR. For an uncoded system, the channel
input sequence is optimally detected in the presence of ISI
by the Viterbi algorithm. For an LDPC coded system, the
optimal maximum a posteriori (MAP) decoding is impractical,
but good error rate performance can be achieved by using
the turbo principle [5]. In this technique, information is
iteratively passed back and forth between a soft-input soft-
output (SISO) detector and a SISO LDPC decoder. The ISI in
the channel output is eliminated by a detector using the chan-
nel information unknown to the decoder, and subsequently,
the output is decoded by a LDPC decoder using the code
structure information unknown to the detector. Since, Viterbi
algorithm produces only hard decisions, algorithms like soft-
output Viterbi algorithm (SOVA) [6] and Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm [7] are used for SISO detection and
the well-known sum-product algorithm (SPA) [8] is used for
SISO decoding. This iterative algorithm is known asturbo-
equalizer. Though sub-optimal, it is the best and most widely
used decoder known today.

The performance can be improved beyond what is achieved
by turbo-equalizer, if both channel and the code information
are simultaneously used to make decisions on the channel
inputs. This is referred to as joint detection and decoding or

simply as joint decoding, and is the focus of this paper. It has
also been the focus of some recent works in [9], [10], [11]
and [12]. A practical and popular approach in this directionhas
been to design message-passing (MP) decoding algorithms that
operate on a graph, which represents the constraints imposed
by both the channel and the LDPC code.

In turbo-equalizer, the channel constraints are represented
by the channel trellis and the code constraints are represented
by the bipartite graph of the code, known as the Tanner
graph. Detectors like SOVA and BCJR operate serially on
the trellis, while the LDPC decoder operates parallely on the
Tanner graph. While aiming to conceive a joint MP decoding
algorithm operating on a graph, it is logical to first consider
the problem of representing the channel constraints as a graph
and then to design a parallel MP detection algorithm that
operates on this graph. This problem has been addressed by
Kurkoski et. al. in [9], who introduced parallel bit-based and
state-based MP algorithms for channel detection. The bit-based
MP algorithm is useful only in channels with unit memory
length, but has been modified for use in channels with longer
memory by Colavolpe et. al. [10]. Even though in [9], the
state-based MP detector was combined with the LDPC MP
decoder to obtain a joint MP decoder, it achieved at best the
same performance as the turbo-equalizer. This is due to the
fact that the joint MP decoder is simply a parallel schedule of
the turbo-equalizer.

The challenge in jointly using both the channel and code
information arises from the fact that the channel imposes
constraints on the channeloutput sequences, whereas the code
imposes constraints on the channelinput sequences. The idea
motivating our approach is the observation that by imposing
constraints on the channel input sequences, the code also
imposes certain constraints on the noiseless channel output
sequences. In this paper, we modify the LDPC MP decoder to
produce information on the noiseless channel output symbols
rather than on channel inputs. This enables us to combine
it with a modified version of the state-based MP detector to
design a joint decoder, that significantly surpasses the per-
formance of the turbo-equalizer. The joint decoder estimates
a posteriori probabilities (APPs) of channel output symbols,
from which APPs of channel inputs are derived. Also, as it
will be shown, this algorithm can be used irrespective of the
channel memory length, although as described in Section III, it
may perform relatively better for channels with small memory.



The rest of the paper is organized as follows. We describe
a graphical model used to represent the channel and describe
an optimal MP detection algorithm operating on this graph in
Section II. This model is extended to include code constraints
and a joint MP decoding algorithm that operates on this
combined graph is described in Section III. Bit error simulated
performance for an LDPC code is shown in Section IV and
finally, the paper is concluded in Section V.

II. M ESSAGE-PASSING DETECTION ALGORITHM

A. System model

Fig. 1 shows the system model considered, where the
channel response is represented by a polynomialh(D) or
the corresponding coefficient vectorh. A sequenceu of k
binary bits is encoded by an LDPC code into a codeword
x of n binary bits. The codeword is transmitted through
the PR channel, whose non-binary output is corrupted by
additive white Gaussian noise (AWGN). The noiseless channel
output, y = x ∗ h, is of length n + m, where ∗ denotes
the convolution operator andm denotes the channel memory
length. The noisy channel output is given byr = y + z. We
first consider an uncoded system, where the optimal detector
is the one that estimates MAP probability of the bitsp (xi|r),
∀ i = 0, 1, . . . , k−1, wherexi is theith element of the vector
x andxi ∈ {0, 1}. These quantities are efficiently determined
by operating the BCJR algorithm on the channel trellis.

B. Channel graph

The trellis of a channel represents the constraints imposed
on the range of noiseless channel output sequences. A channel
trellis can be given as a factor graph [8] shown in Fig.
2, whereq0, q1, . . . , qn+1 represents state (hidden) variables,
x0, x1, . . . , xn represents channel inputs andy0, y1, . . . , yn

represents noiseless channel outputs. The factor graph can
be divided inton sections, where theith section denoted
by Ti is defined by all valid triples{qi, yi, qi+1}. Therefore,
each section acts as alocal constraint of the channel. Con-
sequently, a sequence of state and channel output variables
{q0, q1, . . . , qn+1, y0, y1, . . . , yn} is valid if and only if it
satisfies all local constraintsT0, T1, . . . , Tn.

When a global channel constraint is factored into local
channel constraints, numerous scheduling schemes for im-
plementing the BCJR algorithm are possible. Typically, one
instance of a BCJR algorithm is operated on one section of
the trellis at any time instant and is progressively moved to
other sections. This scheduling is known as fully-serial [8].
On the other extreme,n instances of the BCJR algorithm
can operate on each section of the trellis simultaneously,
exchanging information through the state variables during
every iteration. This scheduling is known as fully-parallel, and
is referred to as the parallel state-based MP algorithm in [9].
Naturally, intermediate scheduling schemes are possible.For
example, the factor graph shown in Fig. 2 can be divided into
p sections (p < n), and during every iteration,p instances of
the BCJR algorithm can operate on each of these sections,
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Fig. 1. Block diagram of a PR system. Decoder is either turbo-equalizer
(upper branch) or joint decoder (lower branch) and noise is modeled as
additive white Gaussian.
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Fig. 2. Generalized factor graph representation of a PR channel trellis.

exchanging information with the adjacent ones, but within
each section, the BCJR can operate serially.

In this work, we consider the fully-parallel MP schedul-
ing. This necessitates the need for state variables to store
and relay information between adjacent sections after every
iteration. We modify the factor graph representing the channel
constraints to remove the need for state variables and corre-
spondingly alter the detection algorithm. The graph is now
simply represented as a bipartite graphG shown in Fig. 3,
where circles correspond to the noiseless channel symbols
yi, and squares correspond to the local channel constraints.
These sets of nodes are referred to as symbol nodes and
channel nodes respectively. Every channel node represents
two sections of the trellis. For example, a channel nodesi

acts as a local constraint and represents all valid 5-tuples
{qi, yi, qi+1, yi+1, qi+1}. Therefore, unlike the factor graph
in Fig. 3, every section of the trellis is represented by two
channel nodes in this graph. As will be described in the next
section, information pertaining to state transition probabilities
is exchanged between symbol nodes through the channel
nodes. Like the factor graph of the trellis, graphG is a generic
cycle-free representation of a PR channel, irrespective ofits
memory length. However, the size of the set represented by
the channel nodes increases exponentially with increase in
memory length. If memory length ism, the size of this set is
2(m+2).

C. Message-passing symbol detector

Now, we describe a MP detection algorithm that operates on
graphG and produces APPs of output symbols, from which
APPs of channel inputs are derived. Ifxk and yk are the
channel input and noiseless output at timek, then

yk = f (xk, xk−1, . . . , xk−m) , (1)

where the functionf() is determined by the channel response
h(D). Let A = {a0, a1, . . . , a2m−1} be the set of possible
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Fig. 3. A graph that represents constraints imposed by the channel on the
noiseless channel output sequences.

noiseless channel output symbols when the current channel
input xk = 0, and letB = {b0, b1, . . . , b2m−1} be the set of
possible noiseless channel output symbols when the channel
input xk = 1. Then, APPs of the channel inputxk are given
as,

p (xk = 0|r) =
2m−1∑

i=0

p(yi = ai|r). (2)

Though elements of setA and B may not be unique, we
emphasize that they correspond to a unique state transition
in the corresponding channel trellis. Since the MP detection
algorithm is not operated explicitly on the trellis, we simply
refer the quantitiesp(yi) as symbol probabilities rather than
state transition probabilities.

Let ϕi denote the set of symbol pairs represented by channel
node si of the graph shown in Fig. 3. Therefore,(yi, yi+1) ∈
ϕi, ∀ i. The constraints imposed on the output sequences by
the channel can be viewed as acode, where each channel
node si corresponds to a code of length 2 and the setϕi

corresponds to its set ofcodewords. With the knowledge ofϕi

for all channel nodes, the output sequence can thus bedecoded
without the use of state variables. Since the underlying channel
graphG is a tree, APPs can be estimated optimally using the
SPA. Now, the MP detection algorithm is given as follows.

MP Detection Algorithm:

1) Initialization: Since, channel inputs are i.i.d, all state
transitions are initially equally likely. Therefore,p(yi) =
1/2m+1, ∀ i = 0, 1, . . . , n + m − 1.

2) Message from symbol nodes to channel nodes during
the tth iteration:

M (t)
yk→sk−1

= M (t−1)
sk→yk

M (t)
yk→sk

= M (t−1)
sk−1→yk

, ∀ k = 1, . . . , n + m − 2
(3)

where,M (t)
yk→sk−1

denotes the message sent from sym-
bol nodeyk to channel node sk−1 during thetth itera-
tion. Other terms are defined similarly.

3) Message from channel nodes to symbol nodes during
the tth iteration:

M (t)
sk→yk

=
p(yk|rk, rk+1, ϕk)

p(rk|yk)p(yk)
, ∀ yk

M (t)
sk→yk+1

=
p(yk+1|rk, rk+1, ϕk)

p(rk+1|yk+1)p(yk+1)
, ∀ yk+1.

(4)

Messages received from the symbol nodes during the
current iteration serve as thea priori symbol probabili-
ties for the channel node operation.

4) APPs of channel output symbols: After repeating the
above steps for a fixed number of iterations, APPs of
channel output symbols are calculated as,

M (t)
yk

= M (t)
sk→yk

· M (t)
sk−1→yk

· p(rk|yk) · p(yk) (5)

where,p(yk) is the initial a priori probability.
5) APPs of channel input bits: The algorithm halts after

calculating channel input APPs using Eqn. 2.

Remark: p(yk|rk, rk+1, ϕk) and p(yk+1|rk, rk+1, ϕk) in
Eqn. 4 can be computed in a straightforward way, since
|ϕk| ≤ 2m+2, and m is small. In the context of a trellis,
this is same as operating BCJR only on the two sections of
the trellis represented by the channel nodesk.

When the number of iterations equal the length of the
sequence, the APPs obtained using the above algorithm are
same as that obtained from the BCJR algorithm. Usually, only
a small number of iterations are required to obtain performance
close to optimal. However, as observed in [9], all schedulings
of the BCJR algorithm, except the fully-serial scheduling,
result in an error floor if enough iterations are not run. Like
other MP detection algorithms proposed in the literature, this
algorithm is more complex than BCJR, primarily due to the
parallel scheduling of the algorithm, but it can potentially
reduce latency time and is suitable for high-speed applications.
Its most important advantage is that it can be combined with
a LDPC MP decoder to obtain a joint MP decoder.

III. JOINT MESSAGE-PASSING SYMBOL -DECODING

ALGORITHM

In this section, we extend the graphical model described
earlier to include constraints imposed by the parity checks
of the LDPC code. The tripartite graph shown in Fig. 4 is
obtained by including the parity check nodes to the channel
graph of Fig. 3. Connections between the parity check nodes
and the symbol nodes are defined in the same way as the
connections between the parity check nodes and the variable
nodes. Using this combined graph, a joint decoding algorithm
is developed that estimates the symbol APPs using both the
channel and the code information simultaneously. The joint
decoding algorithm is outlined below.

Joint MP Decoding Algorithm:

1) Initialization: Symbol a priori probabilities p(yi) =
1/2m+1.

2) Message from symbol nodes to channel nodes during
the tth iteration: For everyk, compute,

M (t)
yk→sk−1

= M (t−1)
sk→yk

·
∏

j|hjk=1

M (t−1)
cj→yk

M (t)
yk→sk

= M (t−1)
sk−1→yk

·
∏

j|hjk=1

M (t−1)
cj→yk

.
(6)

3) Message from symbol nodes to check nodes during the
tth iteration: If H = {hij} is the parity check matrix
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Fig. 4. A graph that represents constraints imposed by the channel and the
parity checks of the LDPC code on the noiseless channel output sequences.
Parity checks imposes certain constraints on the channel output sequences by
imposing constraints on the channel input sequences.
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Fig. 5. Trellis diagram of a single parity check code of length 3. The states
indicate the parity of the incoming sequences.

of the LDPC code, then for everyi and k such that
hik = 1, compute,

M (t)
yk→ci

= M (t−1)
sk→yk

· M (t−1)
sk−1→yk

·
∏

j|hjk=1,j 6=i

M (t−1)
cj→yk

.

(7)
4) Message from channel nodes to symbol nodes during

the tth iteration: This is same as Eqn. 4.
5) Message from check nodes to symbol nodes during the

tth iteration: For everyi and k such thathik = 1,
compute,

M (t)
ci→yk

=
p(yk|r i, Ci)

p(rk|yk)p(yk)
, ∀ yk (8)

where,Ci denotes the event that the check ci is satis-
fied andr i denotes the set of received samples at the
locations of the variable nodes connected to checkci.

6) APPs of channel symbols: For everyk, compute,

M (t)
yk

=M (t)
sk→yk

· M (t)
sk−1→yk

·
∏

j|hjk=1

M (t)
cj→yk

·

p(rk|yk) · p(yk)

(9)

where,p(yk) is the initial a priori probability.
7) APPs of channel input bits: After every iteration, the

channel input APPs are calculated using Eqn. 2. All
the above steps are repeated until either the decoded
sequence satisfies all channel and code constraints or a
preset maximum number of iterations is reached.

Remark: Observe that the check node operation of the LDPC
MP decoder is modified to provide symbol information for use
in joint decoding. In the traditional decoder, the check node
operation is efficiently computed by thetanh function, whereas
the new check node operation is more complex. We describe
next an efficient method to compute this new operation.

For ease of exposition, consider a degree 3 check node cl =
xi⊕xj ⊕xk. The check node cl implies that the three variable
nodes form a single parity check code, denoted byCX . This
is compactly represented by the code trellis shown in Fig.
5. All paths beginning and ending at state 0 correspond to
codewords of the codeCX . Input bit APPs conditioned on the
eventCl can be determined by operating the BCJR algorithm
on this trellis, which simply turns out be thetanh check node
operation.

The check nodecl is connected to symbol nodesyi, yj and
yk in the combined graph. By imposing constraints on the
variable nodesxi, xj andxk, the checkcl also imposes certain
constraints on the corresponding output symbols. In other
words, the check nodecl implies that the three symbol nodes
also form a code, which we denote byCY . In order to obtain
symbol APPs, a trellis for the codeCY , referred to as the
expanded code trellis, is constructed byexpanding the edges
of the code trellis shown in Fig. 5. The expanded code trellisis
shown in Fig. 6. An edge representing a state transition in code
trellis is now replaced by2m edges representing all possible
noiseless channel outputs generated during the corresponding
state transition. For example, ifxi = 0 is transmitted, the
corresponding noiseless channel outputyi ∈ A. Further, the
edge labels are elements of setA or B depending on whether
the corresponding edge label in code trellis is 0 or 1. If the
three symbol nodes areindependent, i.e. they have at leastm
other symbol nodes between them, then all paths beginning
and ending at state 0 of the expanded code trellis correspond
to codewords of the codeCY . Therefore, the symbol APPs of
yi, yj and yk conditioned on the eventCl is determined by
operating the BCJR algorithm on the expanded code trellis.

If the symbol nodes connected to a check node are not inde-
pendent, the above method can still be used for an approximate
calculation of Eqn. 8. In principle, the joint symbol decoder
can be applied for channels with any memory length, although
the number of check nodes that violates the independence
property will be lower for channels with small memory. The
performance of the joint decoder would be severely affectedif
the LDPC code contains many pairs of consecutively occurring
variable nodes connected to a check, as such codes would
result in many four-cycles in the combined graph.

In practice, the check node degree is much higher than 3,
but the computation of Eqn. 8 using the expanded trellis is
still simple, since the expanded code trellis will always have
only two states as long as the check node represents a single
parity check code.

IV. SIMULATION RESULTS

We illustrate the performance of the joint symbol-decoding
algorithm by simulating an LDPC coded PR system, where



0 0

1

0

1

0

iy jy ky
A A A

A

B
B

BB

Fig. 6. Expanded code trellis of Fig. 5. The state transitionedge labels are
either elements of setA or B.

3.5 4 4.5 5 5.5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR(dB)

B
E

R

 

 

Turbo−equalizer (BER after every iteration)
Joint decoder

Fig. 7. Bit error rate comparison of (1908,212) random LDPC code on a
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the channel is given by the impulse response[1, 0,−1] (PR4),
and the LDPC code is of length 1908 and rate 0.89 [13]. The
channel output sequences are decoded by using both turbo-
equalizer and the joint symbol-decoder. When turbo-equalizer
is used, the number of global iterations is restricted to 5 and the
number of internal LDPC decoder iterations is restricted to3.
These settings give the best bit error rate (BER) performance.
Increasing the number of global iterations beyond 5 does not
improve the performance significantly. When the joint symbol-
decoder is used, the number of iterations is restricted to 60.
The performance comparison is shown in Fig. 7. At a signal-
to-noise ratio (SNR) of 5.4 dB the BER obtained by the joint
decoder is almost an order of magnitude better than the turbo-
equalizer. Also, the figure suggests that the gain increaseswith
increasing SNR. Among the 212 parity checks of this code,
100 parity checks contain at least one pair of variable nodes
(or symbol nodes) that are not independent. However, the joint
decoder was applied to the code without any modification,
implying that the computation of Eqn. 8 was approximate. In
spite of this, the decoder was able to achieve significant gain
over the turbo-equalizer.

V. CONCLUSION

The problem of joint detection and decoding of LDPC
coded signals over partial response channels is considered. In
order to jointly use both the channel and code information,
the LDPC decoder is modified to produce information on
channel output symbols rather than on channel inputs. This is
combined with a message-passing detector to develop a joint
decoder that estimates channel input APPs by first estimating
channel output symbol APPs. The performance of this decoder
is shown to significantly outperform that of the turbo-equalizer
for a random LDPC code of rate 0.89.
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