Record Number of Masses and Spring Number:

Number of Masses = ________ , Nominal Mass of System: \(M = \) ________

Spring Number = ________ , Gain Value: \(K_{pf} = \) ________

1. From the Step Response plot obtain the following information:

 a. Find a peak value and its relative time of occurrence.
 \[x_{max} = \quad T_p = \quad \]

 b. Calculate the damped frequency. \(\omega_d = \frac{\pi}{T_p} = \quad \)

 c. Find the steady-state value of the mass position. \(A_1 = \quad \)

 d. Calculate the Percent Overshoot from \(x_{max} \) and \(A_1 \).
 \[P.O. = \left(\frac{x_{max} - A_1}{A_1} \right) \times 100\% = \quad \]

 e. Calculate the damping ratio from the percent overshoot.
 \[\zeta = \sqrt{\left[\frac{\ln^2(P.O./100)}{(\pi^2 + \ln^2(P.O./100))} \right]} = \quad \]

 f. Calculate the natural frequency of your system. \(\omega_n = \frac{\omega_d}{\sqrt{1 - \zeta^2}} = \quad \)

 g. Using the nominal mass value of your system, calculate the spring constant.
 \[\frac{K}{M} = \omega_n^2 \quad \rightarrow \quad K = \omega_n^2 M = \quad \]

 h. Using the damping factor, \(\sigma = \zeta \omega_n \), calculate the damping constant, \(B \).
 \[\frac{B}{M} = 2\sigma \quad \rightarrow \quad B = 2\sigma M = \quad \]

 i. Record the reference step input value used to excite the system. \(A = \quad \)

 j. Find the hardware gain value using the values from 1.c., 1.f., and 1.i.
 \[K_{hw} = \frac{A_1 M \omega_n^2}{A K_{pf}} = \quad \]

 k. Write down the transfer function of your system.
 \[G(s) = \frac{K_{hw}}{s^2 + \frac{B}{M} s + \frac{K}{M}} = \quad \]

 l. Determine the pole locations of your system model.
 \[p_1 = \quad \]
 \[p_2 = \quad \]