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Abstract—We provide unsupervised machine learning (ML)
schemes based on autoencoders for unconstrained beamform-
ing (BF) and hybrid BF in millimeter-waves (mmWaves). An
autoencoder is a powerful unsupervised ML model, and it is
used to reconstruct the input with a minimal error by finding
a low-dimensional representation of the input. In this paper, we
present a linear autoencoder for finding the beamformers at the
transmitter (Tx) and receiver (Rx), which maximize the achieved
rates over the mmWave channel. Since the autoencoder has a
close relationship with the singular value decomposition (SVD),
we first study autoencoders for unconstrained BF based on SVD.
In hybrid BF, beamformers are designed by using finite-precision
phase shifters in the radio frequency (RF) domain along with
power constraints. Therefore, we propose a hybrid BF algorithm
based on autoencoders, which incorporates these constraints. We
present our simulation results for both unconstrained BF as well
as hybrid BF, and compare their performance with state-of-the-
art. By using the stochastic and NYUSIM channel models, we
achieve 30−40% and 60−70% gains in rates with the proposed
autoencoder based approach compared to the supervised hybrid
BF with the stochastic and NYUSIM channel models, respectively.

I. INTRODUCTION

Millimeter-wave (mmWave) bands (30-300 GHz), which
offer high throughput and capacity by utilizing the vast amount
of mmWave frequency spectrum, will play a critical role in
upcoming 5G wireless systems and beyond [1]. Moreover, high
BF gains can be achieved by employing a massive number
of antennas (massive MIMO) at mmWaves. To keep the
power consumption low and data rates high, hybrid BF, which
divides BF operation into analog and digital domains, has been
proposed [2]. Hybrid BF architectures can be categorized into
fully-connected, sub-connected, and adaptively-connected. In
the fully-connected architecture, each antenna is supported
by all RF chains. Authors of [3] have proposed a hybrid
BF algorithm to minimize the Euclidean distance between
the unconstrained BF and hybrid BF matrices for the fully-
connected structure. The authors in [4] have proposed a hybrid
BF design for the sub-connected architecture, where each
RF chain is connected to a set of antennas. The adaptively-
connected architecture has been proposed to provide a flex-
ible connection between RF chains and antennas [5]. The
codebook-based hybrid BF has been studied in [6], where the
beams are selected exhaustively based on maximum signal-to-
noise-ratio (SNR). Moreover, sparsity of the mmWave channel
has been exploited to reduce the computational complexity [7].

However, sparse hybrid BF methods bring overhead due to the
training, which scales with the number of antennas.

There has been recent interest in applying ML algorithms
to BF [8]–[10]. The authors of [8] have applied support
vector machine (SVM) algorithm to select beamformers by
formulating beam selection in hybrid BF as a multi-class
classification problem. In [9], a supervised deep feedforward
network (DFN) is used to predict the BF vectors from received
signals using omni beam patterns. Authors of [10] present
a supervised hybrid BF procedure for SVD and hybrid BF
based on convolutional neural networks (CNNs). However,
supervised approaches bring additional overhead since they
require a large amount of labeled data during the training.

Contributions of this paper: Optimal unconstrained beam-
formers (which maximize channel capacity) can be found
through the SVD of the channel, i.e., k singular vectors corre-
sponding to the most significant singular values of the channel
matrix can be used to determine k optimum beam directions
[11]. Since the computational complexity of the conventional
SVD algorithms [12] is O(N3) for N -by-N matrix, our
motivation is to reduce the complexity of computing the SVD
as well as hybrid beamformers by leveraging the autoencoders.
It has been shown that the weights of a linear autoencoder
trained with a squared error loss function span the same
subspace with the principal component loading vectors [13].
Moreover, a method for recovering the loading vectors from
the weights of the linear autoencoder has been proposed in
[14]. In this paper, motivated by the fact that optimal solution
for principal component analysis (PCA), which is closely
related to SVD, can be found through a linear autoencoder
with squared error loss [15], we formulate unconstrained and
hybrid BF design problems using linear autoencoders.
• We first provide an unsupervised scheme based on a linear
autoencoder to find unconstrained beamformers.
• We then propose an unsupervised scheme for hybrid BF
based on autoencoders by incorporating the RF and power
constraints. We assume that the finite-precision phase shifters
are used in the RF domain, which restricts the RF beamformers
to have constant modulus and quantized phase values. To
circumvent the non-differentiability of uniform quantization,
we approximate uniform quantization using a combination of
sigmoid functions with different parameters.
• By using the stochastic mmWave channel model, we com-
pare the rates of the proposed autoencoder based algorithms
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Fig. 1. Hybrid BF architecture.

for unconstrained BF and hybrid BF with the supervised hy-
brid BF algorithm based on CNNs [10], the supervised hybrid
BF algorithm based on DFNs [9], and three conventional
hybrid BF algorithms [3], [16], [17]. The results show that
the proposed algorithms for unconstrained BF and hybrid BF
achieve up to 65% and 39% gain in rates compared to the
supervised hybrid BF based on DFNs [9], respectively. This
is because the performance of the supervised BF method in
[9] is bounded by the local optimal beamformers obtained by
maximizing the rate using the received omni beam patterns
while the performance of the proposed unsupervised BF
approach is bounded by the global optimal beamformers found
by performing the SVD of the channel matrix. Moreover,
the autoencoder based hybrid BF achieves 64% gain in rates
compared to the DL-based algorithm [9] when the NYUSIM
model is used.

II. SYSTEM MODEL

This section presents the system models for unconstrained
and hybrid BF, and then explains the mmWave channel model.

A. Unconstrained BF

Consider a communication system with NT transmit and
NR receive antennas, which transmit NS number of data
streams. We denote the channel matrix of this system by
H ∈ C

NR×NT , which can be written as H = UΣV∗ through SVD.
Here, U ∈ C

NR×NR and V ∈ C
NT×NT are unitary matrices,

which correspond to left and right singular vectors of H.
Σ ∈ C

NR×NT is a diagonal matrix with non-negative singular
values of H on its diagonal. We denote the precoder at the Tx
as T ∈ C

NT×NS and the combiner at the Rx as R ∈ C
NR×NS .

We define the average total transmit power as P and, the vector
of transmitted symbols s ∈ C

NS×1 satisfies E [ss∗] =
(

P

NS

)
INS

.
First, s ∈ C

NS×1 is processed by T, and then transmitted
over the channel. The received signal r ∈ C

NR×1 is given
as r = HTs + n. Here, n ∈ C

NR×1 ∼ N (
0, σ2I

)
is the Gaussian

noise vector. Finally, the vector of received symbols y ∈ C
NS×1

is obtained as y = R∗HTs + R∗n. The unconstrained beam-
formers are found by maximizing the rate given as,

R = log2

(∣∣∣I + P

NS

C−1
n

R∗
opt

HToptT∗
opt

H∗Ropt

∣∣∣
)
. (1)

Here, Topt = VNS
and Ropt = UNS

denote the optimal uncon-
strained precoder and combiner, respectively.

B. Hybrid BF

We consider hybrid BF with fully-connected architecture,
which is shown in Fig. 1. At the Tx, NS data streams,
where NS ≤ LT ≤ NT and NS ≤ LR ≤ NR, are processed by

a baseband precoder TBB ∈ C
LT×NS followed by an RF pre-

coder TRF ∈ C
NT×LT . Then, the Rx processes r ∈ C

NR×1 with
an RF combiner RRF ∈ C

NR×LR and a baseband combiner
RBB ∈ C

LR×NS . The received signal y ∈ C
NS×1 is given as,

y = RBB
∗RRF

∗HTRF TBBs + RBB
∗RRF

∗n. (2)

RF and power constraints: Due to the usage of
finite-precision phase shifters in the RF domain, TRF and
RRF must have constant modulus, i.e., |[TRF ]i,j |2 = N−1

T

and |[RRF ]i,j |2 = N−1
R

, where |[TRF ]i,j |(|[RRF ]i,j |) corresponds
to the magnitude of (i, j)th element of TRF (RRF ). More-
over, the elements of each column in TRF and RRF are
represented as quantized phase shifts, where each phase
shifter is controlled by an Nq-bit input. The phase shifts
of the n(m)th antenna of the TRF (RRF ), can be given as

e
j2πnkq

2
Nq

(
e

j2πmkq

2
Nq

)
for kq = 0, 1, ..., 2Nq − 1. Due to the power con-

straint, ‖TRF TBB‖2F = NS and ‖RRF RBB‖2F = NS . We aim to
find RRF , RBB, TRF , and TBB , which maximize the achievable
rate R while satisfying the RF and power constraints.

C. mmWave Channel Models

For the scope of this paper, we consider the stochastic and
the measurement-based NYUSIM channel models.

Stochastic mmWave Channel Model: The stochastic chan-
nel model, which has been proposed in [18], is suitable to
characterize the mathematical structure of mmWave channels.
Therefore, we first consider this mmWave channel model,
which is defined as,

H =
√

NTNR

ρ

∑
S

s=1 gsaR(θs)a∗
T
(φs), (3)

where ρ is the average path-loss between the Tx and Rx, S
is the number of scatterers, and gs is the complex gain of
the sth path with Rayleigh distribution, i.e., gs ∼ N (0, G)
for s = 1, 2, ..., S. G is the average power gain. aT (φs) and
aR(θs) denote the array response vectors at the Tx and Rx,
respectively. φs ∈ [0, 2π] and θs ∈ [0, 2π] represent the sth
path’s azimuth Angle of Arrival (AoA) and Angle of Departure
(AoD), respectively.

Measurement-Based NYUSIM Model: We consider the
NYUSIM channel model, which was developed based on the
measurements conducted at mmWave frequencies in New York
City [19]. The NYUSIM channel model characterizes temporal
and angular properties of multipath components (MPCs). This
model is a clustering-based model in which a time cluster
is defined by a group of rays coming from different angular
directions. We refer the reader to [19] for further details.

III. AUTOENCODERS FOR UNCONSTRAINED BF

In this section, we propose an autoencoder based unsuper-
vised scheme to design the unconstrained beamformers at the
Tx and Rx. First, we show that a linear autoencoder with
squared error loss can be used to compute the eigendecom-
position of a matrix. We then formulate the unconstrained BF
design problem with a linear autoencoder, and present our
algorithm to compute the unconstrained beamformers.
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A. Autoencoders for Eigendecomposition
Fig. 2 represents a linear autoencoder, which

consists of input and output layers containing
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Fig. 2. Linear autoencoder.

n nodes and a hidden layer
containing k nodes. Let
X = [x1, x2, ..., xn] ∈ C

n×n,
Y = [y1, y2, ..., y

k
] ∈ C

n×k,
and X̂ = [x̂1, x̂2, ..., x̂n] ∈ C

n×n

be the complex matrices
formed by the input, hidden,
and output nodes respectively.
The output matrix X̂ is
obtained from the input matrix X as,

Y = XW1 + b11k
T , X̂ = YW2 + b21n

T , (4)

where W1 ∈ C
n×k and b1 ∈ C

n×1 are the weight matrix and
the vector of biases, which map the input to the output of the
hidden layer. W2 ∈ C

k×n and b2 ∈ C
n×1 are the weight matrix

and the bias vector of the second layer (hidden to output).
The objective is to find the optimal weight matrices and bias
vectors, which minimize the following cost function,

min
W1,b1,W2,b2

∣∣∣∣X − ((
AiW1 + b11k

T
)

W2 + b21n
T
)∣∣∣∣2 . (5)

For fixed W1, W2, and b1, the minimization of the cost function
w.r.t. b2 yields,

b2 = 1
n

(
X − (

XW1 + b11k
T
)

W2

)
1n. (6)

By denoting Y = XW1 + b11k
T , (5) can be rewritten as,

min
Y,W2

∣∣∣∣
∣∣∣∣(X − YW2)− 1

n
(X − YW2) 1n1n

T

∣∣∣∣
∣∣∣∣
2

. (7)

Let us assume X is a rank-k matrix. In this case, (7) is mini-
mized in terms of Euclidean norm if YW2 is the best rank-k
approximation of X. We also assume that X is a diagonalizable
matrix, then it can be written by using eigendecomposition
as X = UΛU∗, where U ∈ C

n×n is the unitary matrix whose
columns are the eigenvectors of X, and Λ is the diagonal
matrix whose diagonal elements are the eigenvalues of X.
Then, the optimum weight matrix W2 and the optimum output
of the encoder Y must satisfy YW2 = [U]

.,≤k
[Λ]

k,k
[U∗]

.,≤k
,

where [Λ]
k,k

= diag(λ1, ..., λk) and [U]
.,≤k

is formed by first
k columns of U. Consequently,

W2 = T [U∗]
.,≤k

, Y = [U]
.,≤k

[Λ]
k,k

T−1, (8)

where T is an arbitrary k × k nonsingular matrix. The
eigenvectors matrix [U]

.,≤k
of X can be estimated by applying

Gram-Schmidt orthogonalization to the output of the encoder
Y. Moreover, the columns of [U]

.,≤k
must form a set of

orthonormal vectors, which implies that ||u∗
i
ui||2 = 1 and

||u∗
i
uj ||2 = 0 ∀ i, j s.t. i �= j. Therefore, we define the cost

function to estimate the eigenvectors of X as,

J = ||X − X̂||2 + λ
∑

i �=j
||u∗

i
uj ||2, (9)

where λ is the non-negative constant of the penalty term.
The above discussion indicates that linear autoencoders with
a squared error loss function essentially are equivalent to
performing the eigendecomposition of a matrix.

{ {������� �������
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(a) Autoencoder for the combiner.
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Fig. 3. Autoencoders for the unconstrained beamformers.

B. Problem Formulation

We formulate the problem of unconstrained BF design by
using a linear autoencoder based on eigendecomposition. We
receive m channel matrices ({Hi}mi=1), and train the linear
autoencoder to estimate the unconstrained beamformers of
the given channel matrix. Let us define ith matrix in the
training set as Hi ∈ C

NR×NT , which can be decomposed through
SVD as Hi = UiΣiV∗

i
. We assume that NS ≤ rank(Hi) = k, where

NS is the number of data streams. We denote Ai ∈ C
NR×NR

and Bi ∈ C
NT×NT as Ai = HiH∗

i
and Bi = H∗

i
Hi, respectively.

Through eigendecomposition, Ai = UiΣ
2
i
U∗

i
and Bi = ViΣ

2
i
V∗

i
.

Here, Σ
2
i

is a diagonal matrix, which consists of the square
of the singular values of Hi. Therefore, we can use linear
autoencoders to solve the eigendecomposition of Ai and Bi,
whose eigenvectors correspond to the unconstrained combiner
(Ui) and the unconstrained precoder (Vi) of Hi, respectively.

To estimate the unconstrained combiner based on the given
channel matrix, we propose to use the linear autoencoder
shown in Fig. 3-a. In the ith iteration of the training, the
input matrix Ai passes through the hidden layer of the au-
toencoder, which generates Yi ∈ C

NR×NS according to map-
ping Yi = AiW1 + b11NS

T . Then, the second layer maps Yi

to Âi ∈ C
NR×NR such that Âi = YiW2 + b21NR

T . Similarly, we
propose to use the linear autoencoder given in Fig. 3-b to
estimate the unconstrained precoder of the given matrix. In
the ith iteration of the training, the input matrix Bi passes
through the hidden layer, which generates Zi ∈ C

NT×NS such
that Zi = BiQ1 + c11NS

T . Then, the second layer maps Zi to
B̂i ∈ C

NT×NT according to B̂i = ZiQ2 + c21NT

T .

C. Loss Function of the Autoencoder for Unconstrained BF

The autoencoder given in Fig. 3-a is trained on the dataset
{Ai}mi=1 based on the cost function below,

min
W1,b1,W2,b2

1

m

m∑
i=1

||Ai − Âi||2 + λ
∑
i �=j

||u∗
i
uj ||2, (10)

where Âi =
(
AiW1 + b11NS

T
)

W2 + b21NR

T and λ is the non-
negative constant of the penalty term. By following steps
similar to those as in (8), the optimum W2 and Yi are found
as,

W2 = Ti [U∗
i
]
.,≤NS

, Yi = [Ui].,≤NS

[
Σ

2
i

]
NS ,NS

T−1
i

, (11)

where Ti is an arbitrary NS ×NS nonsingular matrix. In the
ith iteration during the training, we apply Gram-Schmidt
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Fig. 4. Autoencoder for estimating hybrid beamformers.

orthogonalization to Yi as shown in Fig. 3-a to estimate the
unconstrained combiner Ui. To satisfy the orthonormality of
Ui, the penalty term is added to (10). We use the autoencoder,
which is shown in Fig. 3-b, to estimate the unconstrained
precoder at the Tx. The cost function to train the autoencoder
on the dataset {Bi}mi=1 can be given similarly as,

min
Q1,c1,Q2,c2

1

m

m∑
i=1

||Bi − B̂i||2 + λ
∑
i �=j

||v∗
i
vj ||2, (12)

where B̂i =
(
BiQ1 + c11NS

T
)

Q2 + c21NT

T and λ is the non-
negative constant of the penalty term. Similar to (11), we
calculate the optimum Q2 and Zi as,

Q2 = Si [V∗
i
]
.,≤NS

, Zi = [Vi].,≤NS

[
Σ

2
i

]
NS ,NS

S−1
i

, (13)

where Si is an arbitrary NS ×NS nonsingular matrix. We then
use Gram-Schmidt orthogonalization to estimate the uncon-
strained precoder Vi. To satisfy the orthonormality of Vi, the
penalty term is added to (12).

D. Algorithm for Unconstrained BF via Autoencoder

The proposed autoencoder based scheme for computing
the unconstrained beamformers is shown in Algorithm 1. In
the training phase, from step 2 to step 5, the autoencoder
given in Fig. 3-a is trained using the cost function defined
in (10). In the ith iteration, Yi = [Ui].,≤NS

[
Σ

2
i

]
NS ,NS

T−1
i

is orthogonalized to estimate the unconstrained combiner
Ri

opt
= [Ui].,≤NS

for ith matrix in the training set. From step
7 to step 10, the autoencoder given in Fig. 3-b is trained using
the cost function defined in (12). The output of the encoder
Zi = [Vi].,≤NS

[
Σ

2
i

]
NS ,NS

S−1
i

in the ith iteration is orthogonal-
ized to estimate the unconstrained precoder Ti

opt
= [Vi].,≤NS

.
In the test phase, Rj

opt
= [Uj ].,≤NS

and Tj

opt
= [Vj ].,≤NS

are
generated using the trained autencoders for j = 1, ..., n.

IV. AUTOENCODERS FOR HYBRID BF

In this section, we introduce an unsupervised approach using
autoencoders for computing the hybrid beamformers of the
system given in Fig. 1. We seek to design hybrid combiners
(RRF ,RBB) and precoders (TRF ,TBB), which maximize the
rate R given in (1), by satisfying the RF and power constraints
defined in Section II-B.

Algorithm 1 Unconstrained BF via Autoencoder
Training Phase:
Input: Training dataset {Hi}mi=1
Output: Trained autoencoder models
1: Compute Ai = HiH∗

i
2: for i← 1 to m do
3: Train autoencoder given in Fig. 3-a with Ai based on (10)
4: Apply Gram-Schmidt orthogonalization to the output of the encoder

Yi to estimate Ri
opt = [Ui].,≤NS

5: end for
6: Compute Bi = H∗

i Hi

7: for i← 1 to m do
8: Train autoencoder given in Fig. 3-b with Bi based on (12)
9: Apply Gram-Schmidt orthogonalization to the output of the encoder

Zi to estimate Ti
opt = [Vi].,≤NS

10: end for
Test Phase:
Input: Test dataset {Hj}nj=1

Output: Unconstrained combiner Rj
opt and precoder Tj

opt, j = 1, ..., n
1: Compute Aj = HjH∗

j and Bj = H∗
j Hj

2: Obtain Rj
opt and Tj

opt with the trained autoencoders

A. Problem Formulation

We propose a linear autoencoder shown in Fig. 4 to predict
the RF and baseband combiners at the Rx. In the train-
ing phase, we use Ai ∈ C

NR×NR , i = 1, ...,m, as the input
data. The first hidden layer generates Di ∈ C

NR×LR accord-
ing to Di = AiW1 + b11

T

LR
. Then, the output of the encoder

Yi ∈ C
NR×NS is generated as Yi = DiW2 + b21

T

NS
. The third

layer maps Yi to Ei ∈ C
NR×LR such that Ei = YiW3 + b31

T

LR
.

Finally, the last layer maps Ei to Âi ∈ C
NR×NR according

to Âi = EiW4 + b41
T

NR
. A linear autoencoder, which has a

similar structure with Fig. 4, has been proposed to pre-
dict the RF and baseband precoders at the Tx. We use
Bi ∈ C

NT×NT , i = 1, ...,m, as the input data during the
training. The proposed autoencoder is trained to estimate B̂i,
where B̂i=

((((
BiQ1+c11TLT

)
Q2

)
+c21TNS

)
Q3+c31TLT

)
Q4+c41TNT

.

B. Loss Function of the Autoencoder for Hybrid BF

The linear autoencoder shown in Fig. 4 is trained on the
dataset {Ai}mi=1, based on the cost function below,

min
W1,b1,W2,b2,W3,b3,W4,b4

1

m

m∑
i=1

||Ai − Âi||2 + λ
∑
i �=j

||u∗
i
uj ||2, (14)

where Âi=
((((

AiW1+b11
T

LR

)
W2

)
+b21

T

NS

)
W3+b31

T

LR

)
W4+b41

T

NR

and λ is the non-negative constant of the penalty term. Here,
ui denotes the ith column of Ui = RRF

iRBB
i.

Using steps similar to those used in (8), the optimum values
for Yi, W3, and W4 can be determined as,

Yi = [Ui].,≤NS

[
Σ

2
i

]
NS ,NS

L−1
i

,

W3 =Li

(
RBB

i
)∗ T−1

i
, W4 = Ti

(
RRF

i
)∗

,
(15)

where Li and Ti are arbitrary NS ×NS and LR × LR non-
singular matrices, respectively. Gram-Schmidt orthogonaliza-
tion is applied to Yi to estimate the unconstrained com-
biner Ui. Then, Ui is sent through a quantization layer,
which estimates RRF

i. The quantization layer begins with
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a fully connected neural network, followed by a quantiza-
tion operation. Finally, normalization layer estimates RBB

i

by using RRF
i and Ui. We then train a linear autoencoder,

which is similar to Fig. 4, to estimate the RF and base-
band precoders (TRF ,TBB). We use the dataset {Bi}mi=1 to
train the autoencoder by using the cost function in (12),
where B̂i=

((((
BiQ1+c11TLT

)
Q2

)
+c21TNS

)
Q3+c31TLT

)
Q4+c41TNT

.
By following the similar procedures used to estimate RRF

i and
RBB

i, we can obtain estimated values of TRF
i and TBB

i.

C. Incorporation of RF and Power Constraints

As finite-precision phase shifters are used in the RF domain,
the phase of each element in RF combiner and precoder
matrices must be a quantized value. However, gradient-based
optimization techniques generate zero gradients if uniform
quantization is used, which would prevent weight updates of
autoencoder during training. To overcome this, we replace
each step function in the uniform quantization with a sigmoid
function, which was used in [10]. Moreover, the power con-
straint of the hybrid BF system must be satisfied. Therefore,
normalization layers are included to estimate RBB and TBB .

D. Algorithm for Hybrid BF via Autoencoder

Leveraging the above ideas, the autoencoder based unsuper-
vised scheme for hybrid BF is summarized in Algorithm 2. In
the training phase, from step 2 to step 8, the autoencoder given
in Fig. 4 is trained by using the cost function in (14). In the
ith iteration, Yi is orthogonalized to estimate Ui. Then, RRF

i

is estimated through the quantization layer. RBB
i is estimated

by using RRF
i and Ui, and normalized to satisfy the power

constraint. Similar calculations are applied during the training
phase of the linear autoencoder for the hybrid precoders to
estimate TRF

i and TBB
i. In the test phase, trained autoencoders

predict RRF
j, RBB

j, TRF
j, and TBB

j for j = 1, ..., n.

Algorithm 2 Hybrid BF via Autoencoder
Training Phase:
Input: Training dataset {Hi}mi=1
Output: Trained autoencoder models
1: Compute Ai = HiHi

∗
2: for i← 1 to m do
3: With Ai train the autoencoder in Fig. 4-a based on (14)
4: Apply Gram-Schmidt orthogonalization to Yi to estimate Ui

5: Process Ui through quantization layer to estimate RRF
i

6: Compute RBB
i = ((RRF

i)∗RRF
i)−1(RRF

i)∗Ui

7: Normalize RBB
i as RBB

i =
√
NS

RBB
i

‖RRF
iRBB

i‖F
8: end for
9: Computations similar to steps 1−8 are applied during the training of the

autoencoder for estimating TRF
i and TBB

i

Test Phase:
Input: Test dataset {Hj}nj=1

Output: RRF
j , RBB

j , TRF
j , and TBB

j , j = 1, ..., n
1: Compute Aj = HjHj

∗ and Bj = Hj
∗Hj

2: Obtain RRF
j , RBB

j , TRF
j , and TBB

j with the trained autoencoders

V. SIMULATION RESULTS

This section compares the rates of the proposed approaches
with state-of-the-art by using Tensorflow based simulations.

Autoencoder Model: The loss functions given in (10) and
(12) with Adam optimization are used for training autoen-
coders shown in Fig. 3-a and 3-b, respectively. We train the
autoencoders for estimating the hybrid beamformers using the
cost functions defined in Section IV-B with Adam optimiza-
tion. The mini-batch size and λ of the penalty term are set to
32 and 0.05, respectively. The number of training iterations
is 10000. We set the learning rate to 0.0001, 0.0002, and
0.002 for 4-by-4, 8-by-8, and 16-by-16 mmWave systems,
respectively. For the stochastic model, we use 50000 channel
matrices, which are divided into a training set with 40000 and
a test set with 10000 samples. For the NYUSIM model, we
use a training set with 8000 and a test set with 2000 matrices.

Channel Model and Data Generation: In the stochastic
model, we use uniform linear arrays (ULAs). The AoDs/AoAs
are uniformly distributed in [0, 2π]. We set the path loss expo-
nent (PLE) to 3 and the bandwidth to 100 MHz. For NYUSIM
model, we consider uniform rectangular arrays (URAs), which
consist of 4 rows and 4 columns resulting in a total of 16
antenna elements. The PLE is 2 and the bandwidth is 850
MHz. In both models, the distance between the Tx and Rx is
50 m, the carrier frequency is 28 GHz, and the transmit power
is 7 dB. We use 1-bit, 2-bit, and 3-bit phase shifters in 4-by-4,
8-by-8, and 16-by-16 mmWave systems, respectively.

Autoencoder based BF versus State-of-the-Art: We first
conduct simulations using the stochastic mmWave channel
model. It is shown in Fig. 5-a that we obtain 37.7% gain
with the unconstrained BF via autoencoder compared to the
supervised BF [9] for 4-by-4 mmWave system. We observe
that 30% gain in rates is achieved with the hybrid BF via
autoencoder compared to the algorithm based on DFNs [9].
Fig. 5-b shows that we achieve 64.8% gain in rates with the
unconstrained BF via autoencoder compared to the algorithm
based on DFNs for 8-by-8 system. Furthermore, 17.7% im-
provement in rates is obtained with the unconstrained BF
via autoencoder compared to the supervised BF based on
CNNs. Fig. 5-b shows that 38.5% improvement is achieved
with our approach compared to [9]. We observe in Fig. 5-
c that 32.3% gain is obtained with the unconstrained BF
via autoencoder compared to the algorithm based on DFNs
for 16-by-16 system. Finally, an improvement of 18.7% is
achieved with the autoencoder based hybrid BF compared
to the algorithm based on DFNs. The proposed autoencoder
based approaches and the other DL-based BF algorithms [9],
[10] work better than the conventional BF approaches. The
DL-based algorithms find the global optimum as long as they
are trained with lots of data with appropriate hyperparameters.

Adaptability to Other Scenarios: We extend the simula-
tions from −20 to 20 dB SNR using the NYUSIM model.
Fig. 6 shows the achieved rates of the hybrid BF via autoen-
coder and the state-of-the-art algorithms when the NYUSIM
model is used. We show that the gain in rates achieved with
the autoencoder based algorithm compared to the supervised
algorithm and conventional hybrid BF algorithms increases
from 18.7% to 64% in a more realistic environment, which
shows the adaptability of our approach.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 29,2020 at 21:19:14 UTC from IEEE Xplore.  Restrictions apply. 



��� ��� ��� �� �
��	
���

�

���

�

���

�

���

	
�

��

�

�
�

��

�

��

30% gain with hybrid BF via autoencoders

37.7% gain with unconstrained BF via autoencoders

Unconstrained BF

Unconstrained BF via Autoencoders

Hybrid BF via Autoencoders

Supervised Hybrid BF via CNNs [10]

Supervised Hybrid BF via DFNs [9]

Hybrid BF based on Adaptive CE [16]

Sparse Hybrid BF [3]

Hybrid BF based on Efficient Power [17]

(a) 4-by-4 mmWave system.
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Unconstrained BF

Unconstrained BF via Autoencoders

Hybrid BF via Autoencoders

Supervised Hybrid BF via CNNs [10]

Supervised Hybrid BF via DFNs [9]

Hybrid BF based on Adaptive CE [16]

Sparse Hybrid BF [3]

Hybrid BF based on Efficient Power [17]

38.5% gain with hybrid BF via autoencoders

64.8% gain with unconstrained BF via autoencoders

(b) 8-by-8 mmWave system.
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Unconstrained BF

Unconstrained BF via Autoencoders

Hybrid BF via Autoencoders

Supervised Hybrid BF via CNNs [10]

Supervised Hybrid BF via DFNs [9]

Hybrid BF based on Adaptive CE [16]

Sparse Hybrid BF [3]

Hybrid BF based on Efficient Power [17]

32.3% gain with unconstrained BF via autoencoders

18.7% gain with hybrid BF via autoencoders

(c) 16-by-16 mmWave system.

Fig. 5. Stochastic mmW model results: Rates of unconstrained BF via SVD, unconstrained BF via autoencoder, hybrid BF via autoencoder, supervised hybrid
BF [9], [10], conventional hybrid BF algorithms [3], [16], [17].
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Hybrid BF via Autoencoders

Supervised Hybrid BF via CNNs [10]

Supervised Hybrid BF via DFNs [9]

Hybrid BF based on Adaptive CE [16]

Sparse Hybrid BF [3]

Hybrid BF based on Efficient Power [17]

64% gain with hybrid BF via autoencoders

Fig. 6. NYUSIM model results: Rates of 16-by-16 mmWave system using
hybrid BF via autoencoder and state-of-the-art.

VI. CONCLUSION
In this paper, we first presented a linear autoencoder for es-

timating the unconstrained beamformers. We then introduced
an autoencoder to design the hybrid beamformers under the
constraints of the finite-precision phase shifters and the power
restriction. With the stochastic and NYUSIM mmWave mod-
els, we compared the rates of the proposed approaches with the
unconstrained BF, supervised approaches for hybrid BF, and
conventional hybrid BF algorithms. Simulation results show
that the proposed approach for unconstrained BF obtains up
to 65% gain in rates compared to the supervised algorithm [9].
Moreover, the unsupervised approach for hybrid BF achieves
30 − 40% and 60 − 70% gains compared to the algorithm
based on DFNs when the stochastic and NYUSIM models are
used, respectively. In the future, we will study different types
of autoencoders and generative adversarial networks (GANs).

ACKNOWLEDGEMENT
This work was partially supported by the Broadband Wireless

Access and Applications Center (BWAC); NSF Award No. 1822071;
the work of R. Tandon was supported in part by NSF grants
CAREER 1651492, CNS 1715947 and the 2018 Keysight Early
Career Professor Award.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[2] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and
K. Haneda, “Hybrid Beamforming for Massive MIMO: A Survey,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 134–141, Sep. 2017.

[3] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially Sparse Precoding in Millimeter Wave MIMO Systems,” IEEE
Trans. on Wireless Communications, vol. 13, no. 3, pp. 1499–1513,
March 2014.

[4] N. Li, Z. Wei, H. Yang, X. Zhang, and D. Yang, “Hybrid Precoding for
mmWave Massive MIMO Systems With Partially Connected Structure,”
IEEE Access, vol. 5, pp. 15 142–15 151, 2017.

[5] S. Park, A. Alkhateeb, and R. W. Heath, “Dynamic Subarrays for Hybrid
Precoding in Wideband mmWave MIMO Systems,” IEEE Transactions
on Wireless Communications, vol. 16, no. 5, pp. 2907–2920, May 2017.

[6] Y. Ren, Y. Wang, C. Qi, and Y. Liu, “Multiple-Beam Selection With
Limited Feedback for Hybrid Beamforming in Massive MIMO Sys-
tems,” IEEE Access, vol. 5, pp. 13 327–13 335, 2017.

[7] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Hybrid
precoding for millimeter wave cellular systems with partial channel
knowledge,” in 2013 Information Theory and Applications Workshop
(ITA), Feb 2013, pp. 1–5.

[8] Y. Long, Z. Chen, J. Fang, and C. Tellambura, “Data-Driven-Based
Analog Beam Selection for Hybrid Beamforming Under mm-Wave
Channels,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 2, pp. 340–352, May 2018.

[9] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep
Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave
Systems,” CoRR, vol. abs/1804.10334, 2018.

[10] T. Peken, S. Adiga, R. Tandon, and T. Bose, “Deep Learning for SVD
and Hybrid Beamforming.” IEEE Transactions on Wireless Communi-
cations, submitted for publication in July 2019.

[11] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits
of MIMO channels,” IEEE Journal on Selected Areas in Communica-
tions, vol. 21, no. 5, pp. 684–702, June 2003.

[12] G. H. Golub and C. Reinsch, “Singular Value Decomposition and Least
Squares Solutions,” Numer. Math., vol. 14, pp. 403–420, Apr. 1970.

[13] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural Networks,
vol. 2, pp. 53–58, 1989.

[14] E. Plaut, “From principal subspaces to principal components with linear
autoencoders,” 2018.

[15] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural Networks,
vol. 2, pp. 53–58, 1989.

[16] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. H. Jr., “Channel Esti-
mation and Hybrid Precoding for Millimeter Wave Cellular Systems,”
CoRR, vol. abs/1401.7426, 2014.

[17] J. Singh and S. Ramakrishna, “On the Feasibility of Codebook-Based
Beamforming in Millimeter Wave Systems With Multiple Antenna
Arrays.” IEEE Trans. Wireless Communications, vol. 14, no. 5, pp.
2670–2683, 2015.

[18] A. A. M. Saleh and R. Valenzuela, “A Statistical Model for Indoor Multi-
path Propagation,” IEEE Journal on Selected Areas in Communications,
vol. 5, no. 2, pp. 128–137, February 1987.

[19] M. K. Samimi and T. S. Rappaport, “3-D Millimeter-Wave Statistical
Channel Model for 5G Wireless System Design,” IEEE Transactions on
Microwave Theory and Techniques, vol. 64, no. 7, pp. 2207–2225, July
2016.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 29,2020 at 21:19:14 UTC from IEEE Xplore.  Restrictions apply. 


