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Abstract—In this paper, we consider the problem of wireless
federated learning, where the users wish to jointly train a machine
learning model with the help of a parameter server. During the
training, the local gradients from the users are aggregated over a
wireless channel. Typically, coefficients of the local gradients are
aligned by power control techniques to ensure that the estimated
aggregated gradient is an unbiased estimator of the true gradient.
However, schemes that align gradients require coordination, can
be challenging to implement in practice, and often lead to
degraded performance due to heterogeneity of users’ channels.
In this paper, we show that alignment of gradients for wireless
FL is not always necessary for convergence. Specifically, we
consider non-convex loss functions, and derive conditions under
which misaligned wireless gradient aggregation still converges to
a stationary point. We also present experimental results to show
that transmitting at full power can outperform aligned gradient
aggregation depending on the heterogeneity of users’ channels.

Index Terms—Federated learning, Wireless Aggregation,
Stochastic Gradient Descent.

I. INTRODUCTION

There has been a significant recent interest on the topic of
wireless federated learning (FL), in part due to a) the increase
of computational capabilities of mobile devices and b) the fact
that superposition property of wireless channel can naturally
facilitate bandwidth efficient aggregation of gradients/models
over the air. Several works [1]–[7]) under the umbrella of
wireless FL have been proposed.

In this paper, we consider the Federated stochastic gradient
descent (FedSGD) algorithm for FL, where in each training
iteration, the local gradients from the participating users need
to be aggregated for model updates. We focus on wireless
analog aggregation of gradients for FedSGD, in which the local
gradient of each user is rescaled (to satisfy power constraints
and/or mitigate channel impairments). The rescaled gradients
are then transmitted directly over the air by all users simulta-
neously. Since no error-control codes is used, the superposition
nature of the wireless medium aggregates the gradients from
users on the fly, which makes analog schemes more bandwidth
efficient compared to digital ones. There have been several
recent works (e.g., [3], [4], [8]–[10]) focusing on the design
of analog schemes for wireless FL that hinge on aligning
the gradients. More specifically, these schemes requires two
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Fig. 1. Illustration of the wireless FedSGD framework: Users collaborate with
the PS to jointly train a machine learning model over a fading MAC.

types of alignments: 1) temporal alignment; that requires strict
time synchronization between users and 2) power alignment;
where it requires accurate channel gain for pre-equalization.
For the former, practical synchronization mechanisms (e.g.,
timing advance [6]) can be adopted for aggregation with
negligible error. For the latter, power alignment schemes can
be challenging for two reasons: 1) it may not be feasible
to employ channel pre-equalization for some users due to
power constraints, and 2) it assumes perfect local channel state
information (CSI) which can be challenging in practice.

To tackle the issue of power alignment, several power
control strategies have recently been proposed: a truncation-
based strategy was proposed in [3] for improving the signal-
to-noise ratio (SNR) for unbiased gradient aggregation, [4],
[11] proposed to jointly design users’ transmit powers and a
denoising factor at the PS to minimize the mean-squared-error
(MSE) between the estimated gradient and the true gradient at
each iteration. The main concern in these works is that they
do not provide theoretical guarantees on the convergence rates
on their FL algorithms. Specifically, the underlying analysis is
only tailored for minimizing the MSE and does not guarantee
convergence of the learning algorithms in general.

Main Contributions: In this work, we study the problem
of wireless FL for smooth, non-convex loss functions with
a goal of answering the following question: is alignment of
gradients for analog aggregation necessary for convergence?
For non-convex losses, we first derive the convergence rate
of channel inversion based alignment scheme to a stationary
point. While for this scheme, the gradient estimate is unbiased,
the convergence rate is limited by the worst SNR across all
users. We then study the full power transmission scheme (in
which all users transmit the gradients at full power), and obtain
the resulting convergence rate of this scheme. When the local



gradients are assumed to be i.i.d., we prove that the full power
scheme always outperforms the alignment scheme. We also
study a variant of the full power scheme in which the gradient
estimate may be biased, and we show that a careful choice of
the bias can further improve the convergence rate. Through our
convergence results and experiments, we show that when SNRs
across users vary significantly, full power transmission schemes
(both unbiased and biased ones) can outperform alignment
based schemes.

II. SYSTEM MODEL

Wireless Channel Model: We consider a single-antenna
Wireless FL with n users and a central PS. Users are connected
to the PS through a fading MAC as shown in Fig. 1. The input-
output relationship at the t-th block is

yt =

K∑
k=1

hk,txk,t + nt, (1)

where xk,t ∈ Rd is transmitted signal by user k at the t-th
block, and yt is the received signal at the PS. Here, hk,t ∈ R
is the channel coefficient between the k-th user and the PS
at iteration t. We assume a block flat-fading channel, where
channel coefficients remain constant within the duration of
a communication block. Each user is assumed to know its
local channel gain, whereas we assume that the PS has global
channel state information. Each user can transmit subject to
average power constraint i.e., E

[
‖xk,t‖22

]
≤ Pk. nt ∈ Rd

is the channel noise whose elements are independent and
identically distributed (i.i.d.) according to N (0, N0).

Federated Learning Problem: Each user k has a private
local dataset Dk with Dk data points, denoted as Dk =

{(u(k)
i , v

(k)
i )}Dk

i=1, where u
(k)
i is the i-th data point and v

(k)
i

is the corresponding label at user k. The local loss function
at user k is given by fk(w) = 1

Dk

∑Dk

i=1 f(w;u
(k)
i , v

(k)
i ) +

ΩR(w), where w ∈ Rd is the parameter vector to be
optimized, R(w) is a regularization function and Ω ≥ 0
is a regularization hyperparameter. Users communicate with
the PS through the fading MAC described above in order
to train a model by minimizing the loss function F (w),
i.e., w∗ = arg minw F (w) , 1∑K

k=1Dk

∑K
k=1Dkfk(w). The

minimization of F (w) is carried out iteratively through a
distributed stochastic gradient descent (SGD) algorithm. More
specifically, in the t-th training iteration, the PS broadcasts the
global parameter vector wt to all users. Each user k computes
his local gradient using stochastic mini batch Bk ⊆ Dk, with
size bk (i.e., |Bk| = bk), i.e.,

gk,t =
1

bk

∑
i∈Bk

∇fk(wt; (u
(k)
i , v

(k)
i )) + Ω∇R(wt), (2)

where gk,t is the stochastic gradient estimate of user k. Upon
receiving yt, the PS performs post-processing on yt to obtain
ĝt, the estimate of the true gradient gt which is defined as,

gt =
1∑K

k=1Dk

K∑
k=1

Dk∇fk(wt). (3)

The global parameter wt is updated using the estimated
gradient ĝt (shown later) according to wt+1 = wt − ηtĝt,
where ηt is the learning rate of the distributed GD algorithm
at iteration t. The iteration process continues until convergence.

III. MAIN RESULTS & DISCUSSIONS

In this section, we present two schemes considered in this
paper. We show the convergence rate of the schemes, and show
that alignment of the local gradients is not necessary.

A. FL Transmission Scheme over Fading MAC

The transmitted signal of the k-th user at iteration t is

xk,t =

√
αk,tPk

L
gk,t, (4)

where we assume that the norm of gradient vectors are bounded
by L, i.e., ‖gk,t‖ ≤ L. The scaling factor αk,t ∈ [0, 1] denotes
a fraction of the maximum transmit power Pk at iteration t.
From (1) and (4), the received signal at the PS is given as

yt =

K∑
k=1

hk,t
√
αk,tPk

L
gk,t + nt.

We next present two transmission schemes which will be
analyzed in the next Section.
1. Alignment: In this scheme, all users pick the coefficients
αk,ts such that the transmitted local gradients are aligned at the

PS, i.e., calign
t =

hk,t

√
αk,tPk

L ,∀k, where calign
t is an alignment

constant. User k picks αk,t as αk,t =
(calign

t )2L2

h2
k,tPk

. Using the

fact that αk,t ≤ 1, the alignment constant calign
t can be upper

bounded as

calign
t ≤

√
mini h2i,tPi

L
. (5)

In order to maximize the SNR of the received signal, we pick

calign
t as calign

t =

√
mini h2

i,tPi

L . Therefore, we obtain αk,t =
mini h

2
i,tPi

h2
k,tPk

. It is worth noting that the alignment scheme is
effectively limited by the user with the worst effective SNR,
i.e., mini h

2
i,tPi. Upon receiving the local gradients estimates,

the PS performs post-processing on yt as follows

ĝt =
1

Kcalign
t

yt =
1

K

K∑
k=1

gk,t +
1

Kcalign
t

nt, (6)

where calign
t is a post-processing scaling factor at iteration t.

2. Full Power: The second scheme that we study is the full
power scheme, where all users pick αk,t = 1,∀k. The PS
performs post-processing on yt as follows

ĝt =
1

cF.P.
t

yt =
1

cF.P.
t

K∑
k=1

hk,t
√
Pk

L︸ ︷︷ ︸
ψk,t

gk,t +
1

cF.P.
t

nt,

where cF.P.
t is a post-processing scaling factor at itera-

tion t. Depending on the choice of cF.P.
t , we can get ob-

tain both unbiased and biased estimators for full power



scheme with an additional assumption that the local gradi-
ents across users are i.i.d. with bounded second moments,
i.e., E [gk,t] = gt, and E

[
‖gk,t‖2

]
≤ (1 + ε) ‖gt‖2,

and the variance of the estimated gradient is Var (ĝt) =(
ε/
(
cF.P.
t

)2)∑K
k=1 ψ

2
k,t ‖gt‖

2
+ dN0/

(
cF.P.
t

)2
. To obtain an

unbiased estimator, we let

cF.P.
t = cF.P., unbiased

t ,
K∑
k=1

ψk,t, (7)

We note that any other choice of cF.P.
t leads to biased esti-

mators of the full gradient. For the case when the estimated
gradient is a biased estimator, we define bias as follows,
bt = gt− (1/cF.P.

t )
∑K
k=1 ψk,tgk,t, and treat the channel noise

term separately. For simplicity, we let g̃t =
∑K
k=1 ψk,tgk,t.

We can observe that there is a clear tradeoff between the
bias and variance of the gradient estimate ĝt. One could
potentially reduce the variance and speed up the convergence
by introducing bias.

B. Convergence rate

We next analyze the convergence rate of the schemes con-
sidered when the global loss function is non-convex and µ-
smooth. Under these assumptions, we want to show that the
average expected norm squared of the true gradient diminishes
as the number of iterations T increases, which indicates that
FedSGD converges to a stationary point. We first look at the
case when the estimated gradient ĝt is unbiased.

Theorem 1. Suppose the loss function F is non-convex, µ-
smooth with respect to w and the local gradients are i.i.d. For
a learning rate of η = min(1/µ, η̃), we have

1

T

T−1∑
t=0

E
[
‖gt‖2

]
≤ 1

T

[
2R

η
+
ηµd

K2

T−1∑
t=0

N0

C2
t

]
, (8)

where R = E [f(w0)] − f∗ and η̃ =
√

2R/B,B =

(dµ/K2)
∑T−1
t=0 N0/C

2
t , where Ct can be either calign

t in (5)
or cF.P., unbiased

t in (7) depending on the scheme.

We note that the bound in (8) behaves as O(1/
√
T ). In ad-

dition, one can check that bound (8) is a monotonic increasing
function of B. Since calign

t < cF.P., unbiased
t , we conclude that

under the assumption of i.i.d. local gradients, the unbiased full
power scheme can outperform the alignment scheme. We next
present the result for the case when the estimated gradient is
a biased estimator of the true gradient.

Theorem 2. Suppose the loss function F is non-convex and
µ-smooth with respect to w. Then for a learning rate of η =
min{1/µ, η̃}, we have the following bound:

1

T

T−1∑
t=0

E
[
‖gt‖2

]
≤ 1

T mintmt

(
2R

η
+ ηµd

T−1∑
t=0

N0(
cF.P.
t

)2
)
,

(9)

for any

cF.P.
t >

(∑K
k=1 hk,t

√
Pk

)2
+ ε
∑K
k=1 h

2
k,tPk

2L
∑K
k=1 hk,t

√
Pk

, cF.P.
t,LB, (10)

where R = E [f(w0)] − f∗, η̃ =
√

2R/D,D =

µd
∑T−1
t=0 N0/(c

F.P.
t )2, and

mt =
2

cF.P.
t

K∑
k=1

ψk,t −

(
1

cF.P.
t

K∑
k=1

ψk,t

)2

− ε(
cF.P.
t

)2 K∑
k=1

ψ2
k,t.

The bound in (9) also behaves as O(1/
√
T ). When cF.P.

t =
calign
t , the convergence bound presented in Theorem 2 recovers

the result in Theorem 1 up to a constant term depending on
ε. We also observe that the term mintmt depends on the
choice of cF.P.

t , hence we can get a better constant (compared
to Theorem 1) by increasing mintmt. It can be readily shown
that the biased scheme in Theorem 2 performs better than
unbiased schemes by picking any cF.P.

t in the region R, where
R , {cF.P.

t : (4 − K)2(cF.P.
t )2 − 2αtc

F.P.
t + α2

t > 0 & cF.P.
t >

cF.P.
t,LB}, where αt =

∑K
k=1 ψk,t+ε.R is obtained by comparing

the right-hand sides of bounds in (8) and (9). The term mt

shows up due to the bias and appears in the denominator in
the proof of Theorem 2. Since cF.P.

t controls the bias, hence
mt, it needs to satisfy (10) to ensure that mintmt > 0.
This observation reveals that there are regimes in which
biased gradient aggregation can outperform unbiased gradient
aggregation (as highlighted in the experiments section as well).

Remark 1. We note that biased SGD in the centralized setting
has been studied in [12]. The key challenge in the wireless
federated learning setting is that the channels and the power
constraints need to be considered while designing transmis-
sion schemes and deriving convergence rates. It significantly
changes the proof of Theorem 2 and allows us to gain insight
on how post-processing should be done for fast convergence.

IV. EXPERIMENTS

In this section, we evaluate the performance of the wireless
FL schemes through experiments. We consider image clas-
sification task on MNIST dataset with LeNet-5 architecture.
MNIST dataset consists of 60, 000 training samples, and
10, 000 testing samples. The training samples are divided
evenly and distributed randomly across K = 10 users. Cross-
entropy and SGD optimizer are used for training with a
learning rate of η = 0.01. We consider two settings, ho-
mogeneous and heterogeneous. In homogeneous setting, all
users have the same channel statistics and transmit powers,
i.e., hk,t ∼ N (0.5, 0.01) and Pk = 5 dB for all k. In
heterogeneous setting, we split users into two groups. Without
loss of generality, we place the first five users in the first group
and the rest in the second group. The first group consists of five
users with good channel conditions and high transmit power,
i.e., hk,t ∼ N (1, 0.01) and Pk = 20 dB. The second group
consists of the other five users with poor channel conditions
and low transmit power, i.e., hk,t ∼ N (0.004, 10−6) and
Pk = 0 dB. For both settings, N0 = 1. The considered schemes
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Fig. 2. For the case when channels and powers are homogeneous for all users,
unbiased full power scheme performs as well as alignment scheme for MNIST
image classification.

are compared to the scheme proposed in [11], which minimizes
the MSE between true gradients and estimated gradients by
optimizing power control and post-processing factors using
the statistics of the gradients and channel conditions. Under
homogeneous setting, it can be seen in Fig. 2 that the scheme in
[11] has the best performance among the three due to optimized
power control and post-processing factors. However, alignment
and full power schemes achieve comparable performance with-
out the need of optimization. In addition, it can be seen that
full power performs as well as the alignment scheme. Under
heterogeneous setting, cF.P

t ’s are chosen by selecting the top r
users who have the largest ψk,t, i.e., cF.P

t =
∑r
k=1 ψk,t. We can

observe in Fig. 3 that alignment has the worst performance. We
note that by minimizing the MSE between true and estimated
gradients, the scheme in [11] tries to minimize the bias as well.
Therefore, the scheme in [11], unbiased full power scheme,
and biased full power scheme with r = 6 achieve similar
performance. In addition, biased full power scheme with r = 2
achieve the best performance. We can also observe that the
performance is better when r is small. This is due to the fact
that when r is small, 1/cF.P

t is large, hence, the gradients are
magnified. However, when r passes 5, ψk,t, k = 6, . . . , 10
are too small and do not contribute significantly to the post-
processing factor cF.P

t . Therefore, the performances for r = 6
and r = 10 do not change much.

V. CONCLUSION

In this work, we studied the problem of wireless federated
learning and considered two analog transmission schemes,
alignment and full power schemes for FedSGD. We derived
convergence bounds for the case when the global loss function
is non-convex and smooth. Our first finding is that under the
assumption of i.i.d. data, full power transmission scheme can
outperform the alignment scheme, thereby highlighting that
one is not always necessarily limited by worst users’ SNR
when performing analog aggregation. Secondly, we also show
that there are regimes (in terms of channel conditions across
users), where biased gradient aggregation can outperform
unbiased gradient aggregation, especially when the channels
across users are heterogenous. Generalizing the analysis to
non-i.i.d. setting and validating the results using other datasets
for broader studies are very interesting future directions.
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Fig. 3. For the case when there is heterogeneity in channel conditions and
power constraints, with proper choices of cF.P.

t ’s, biased full power scheme
outperforms both unbiased full power and alignment schemes.
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APPENDIX A: PROOF OF THEOREM 1

Starting with the µ-smooth assumption and taking expec-
tation over noise and randomness of SGD, we obtain the
following inequalities:

E [f(wt+1)] ≤ f(wt)− ηgTt E [ĝt] +
η2µ

2
E
[
‖ĝt‖2

]
(a)
= f(wt)− η ‖gt‖2 +

η2µ

2

[
‖gt‖2 +

1

C2
tK

2
E
[
‖nt‖2

]]
(b)
= f(wt)−

η

2
‖gt‖2 +

η2µdN0

2C2
tK

2
,

where (a) follows from the facts that ĝt is an unbiased
estimator of gt, noise is zero mean and by choosing η ≤ 1/µ;



and (b) follows from the fact that each element of the noise
vector has variance N0. We then take expectation over the
randomness of the model and apply telescoping sum.

E [f(wT )] ≤ E [f(w0)]− η

2

T−1∑
t=0

E
[
‖gt‖2

]
+
η2µd

2K2

T−1∑
t=0

N0

C2
t

.

Lower bounding E [f(wT )] with f∗ and rearranging, we get,

η

2

T−1∑
t=0

E
[
‖gt‖2

]
≤ E [f(w0)]− f∗ +

η2µd

2K2

T−1∑
t=0

N0

C2
t

.

Letting R = E [f(w0)]− f∗ and rearranging, we have,

1

T

T−1∑
t=0

E
[
‖gt‖2

]
≤ 1

T

(
2R

η
+
ηµd

K2

T−1∑
t=0

N0

C2
t

)
We can then optimize the learning rate by minimizing the
bound. This completes the proof of Theorem 1.

APPENDIX B: PROOF OF THEOREM 2
Before proving Theorem 2, we first introduce an upper

bound on the expectation of the squared norm of the bias
through the following Lemma.

Lemma 1. Under the assumptions that the local gradients
are i.i.d. with bounded second moment, the expectation of the
squared norm of the bias can be bounded using the squared
norm of the true gradient as follows,

E
[
‖bt‖2

]
≤

1 +

(
K∑
k=1

ψk,t
cF.P.
t

)2

− 2

K∑
k=1

ψk,t
cF.P.
t

+ ε

K∑
k=1

(
ψk,t
cF.P.
t

)2
 ‖gt‖2

Proof.

E
[
‖bt‖2

]
= E

[∥∥∥∥gt − 1

cF.P.
t

g̃t

∥∥∥∥2
]

= ‖gt‖2 − 2gTt E

[
K∑
k=1

ψk,t
cF.P.
t

gk,t

]
+ E

∥∥∥∥∥
K∑
k=1

ψk,t
cF.P.
t

gk,t

∥∥∥∥∥
2


(a)
= ‖gt‖2 − 2

(
K∑
k=1

ψk,t
cF.P.
t

)
‖gt‖2

+E

 K∑
k=1

(
ψk,t
cF.P.
t

)2

‖gk,t‖2 +

K∑
k=1

∑
k′ 6=k

ψk,tψk′,t(
cF.P.
t

)2 gTk,tgk′,t


=

1 +

K∑
k=1

∑
k′ 6=k

ψk,tψk′,t(
cF.P.
t

)2 − 2

K∑
k=1

ψk,t
cF.P.
t

 ‖gt‖2
+

K∑
k=1

(
ψk,t
cF.P.
t

)2

E
[
‖gk,t‖2

]
(b)

≤

1 +

(
K∑
k=1

ψk,t
cF.P.
t

)2

− 2

K∑
k=1

ψk,t
cF.P.
t

+ ε

K∑
k=1

(
ψk,t
cF.P.
t

)2
 ‖gt‖2

, (1−mt) ‖gt‖2 ,

where (a) and (b) follow from the assumptions that the gradi-
ents across users are i.i.d. with bounded second moments.

We now are ready to prove Theorem 2. Starting with the
smoothness assumption and taking expectation over noise and
randomness of SGD, we obtain the following inequalities:

E [f(wt+1)] ≤ f(wt)− ηgTt E [ĝt] +
η2µ

2
E
[
‖ĝt‖2

]
(a)
= f(wt)−

η

cF.P.
t

gTt E [g̃t] +
η2µ

2

E
[
‖g̃t‖2

]
(
cF.P.
t

)2 +
dN0(
cF.P.
t

)2


(b)

≤ f(wt)−
η

cF.P.
t

gTt E [g̃t] +
η

2
(
cF.P.
t

)2E [‖g̃t‖2]+
η2µdN0

2
(
cF.P.
t

)2
= f(wt)− ηgTt E [gt − bt] +

η

2
E
[
‖gt − bt‖2

]
+
η2µdN0

2
(
cF.P.
t

)2
= f(wt) +

η

2

(
−‖gt‖2 + E

[
‖bt‖2

])
+
η2µdN0

2
(
cF.P.
t

)2
(c)

≤ f(wt)−
η

2
mt ‖gt‖2 +

η2µdN0

2
(
cF.P.
t

)2 ,
where (a) follows due to zero mean noise vector with element
that has variance N0; (b) follows from choosing η ≤ 1/µ;
(c) follows from Lemma 1. We then take expectation over the
model and obtain,

E [f(wt+1)] ≤ E [f(wt)]−
η

2
mtE

[
‖gt‖2

]
+
η2µdN0

2
(
cF.P.
t

)2 .
We then again apply telescoping sum and lower bound
E [f(wT )] with f∗. With some rearranging, we get,

η

2

T−1∑
t=0

mtE
[
‖gt‖2

]
≤ E [f(w0)]− f∗ +

η2µd

2

T−1∑
t=0

N0(
cF.P.
t

)2 .
We can then lower bound mt by mintmt, and subsequently
divide both sides by η(mintmt)

2T to get,

1

T

T−1∑
t=0

E
[
‖gt‖2

]
≤ 1

T mintmt

(
2R

η
+ ηµd

T−1∑
t=0

N0(
cF.P.
t

)2
)
.

We get the expression in Theorem 2 by choosing η = 1/µ.
However, this is only true if mintmt is positive. Therefore,
we can obtain a condition on cF.P.

t to ensure that mintmt > 0:

cF.P.
t >

(∑K
k=1 ψk,t

)2
+ ε
∑K
k=1 ψ

2
k,t

2
∑K
k=1 ψk,t

.

This completes the proof of Theorem 2.


